Real Conjugacy Class, group theory












1












$begingroup$


Let G be a finite group of odd order n. Suppose that g is in a real conjugacy class C (a real conjugacy class C is a conjugacy class so that $C$ = $C^{-1}$ ). So $h^{−1}gh = g^{−1}$ for some h $in G$.



Why can we follow from that: $h^{−2}gh^2 = g$ ?



This means $h^2 in C_G(g)$. Since n is odd, the order of h is odd, say
2k + 1. It follows that h = ($h^2)^{k+1}$



Why can we follow from that: h $in C_G(g)$ ?



Thankfull for any help.










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    Let G be a finite group of odd order n. Suppose that g is in a real conjugacy class C (a real conjugacy class C is a conjugacy class so that $C$ = $C^{-1}$ ). So $h^{−1}gh = g^{−1}$ for some h $in G$.



    Why can we follow from that: $h^{−2}gh^2 = g$ ?



    This means $h^2 in C_G(g)$. Since n is odd, the order of h is odd, say
    2k + 1. It follows that h = ($h^2)^{k+1}$



    Why can we follow from that: h $in C_G(g)$ ?



    Thankfull for any help.










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      Let G be a finite group of odd order n. Suppose that g is in a real conjugacy class C (a real conjugacy class C is a conjugacy class so that $C$ = $C^{-1}$ ). So $h^{−1}gh = g^{−1}$ for some h $in G$.



      Why can we follow from that: $h^{−2}gh^2 = g$ ?



      This means $h^2 in C_G(g)$. Since n is odd, the order of h is odd, say
      2k + 1. It follows that h = ($h^2)^{k+1}$



      Why can we follow from that: h $in C_G(g)$ ?



      Thankfull for any help.










      share|cite|improve this question











      $endgroup$




      Let G be a finite group of odd order n. Suppose that g is in a real conjugacy class C (a real conjugacy class C is a conjugacy class so that $C$ = $C^{-1}$ ). So $h^{−1}gh = g^{−1}$ for some h $in G$.



      Why can we follow from that: $h^{−2}gh^2 = g$ ?



      This means $h^2 in C_G(g)$. Since n is odd, the order of h is odd, say
      2k + 1. It follows that h = ($h^2)^{k+1}$



      Why can we follow from that: h $in C_G(g)$ ?



      Thankfull for any help.







      abstract-algebra group-theory finite-groups






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 13 '18 at 16:23







      FabianSchneider

















      asked Dec 12 '18 at 20:57









      FabianSchneiderFabianSchneider

      706




      706






















          2 Answers
          2






          active

          oldest

          votes


















          1












          $begingroup$

          The order of $|G|$ is odd, say $G=2m-1$, for some positive integer $m$. Hence by Lagrange $h^{|G|}=1=(h^2)^m cdot h^{-1}$. It follows that $h=(h^2)^m$, so if $h^2 in C_G(g)$, then $h in C_G(g)$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Can you please be more precise at the end where you follow $h in C_G(g)$. That´s the part where I´m struggeling.
            $endgroup$
            – FabianSchneider
            Dec 12 '18 at 21:45












          • $begingroup$
            If $h^2$ is in the subgroup then any power of it is too.
            $endgroup$
            – Nicky Hekster
            Dec 12 '18 at 21:49










          • $begingroup$
            Makes sense. Thank you so much!
            $endgroup$
            – FabianSchneider
            Dec 12 '18 at 21:52



















          1












          $begingroup$

          Rewrite the equality as $h^{-1}g^{-1}h=g$ and now(here’s the trick!) replace the g in $h^{-1}g^{-1}h$ with $h^{-1}g^{-1}h$ (because g and $h^{-1}g^{-1}h$ are equal). So we get that $g=h^{-1}g^{-1}h=h^{-1}(h^{-1}g^{-1}h)^{-1}h=h^{-2}gh^2$ keep replacing g inside $h^{-2}gh^2$ with $h^{-1}g^{-1}h$ to eventually get that $h^{-2k}gh^{2k}=g$, but $h^{2k}=h^{-1}$ so by the last equality $h$ and $g$ commute






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Why do we, after k-1 substitutions, have $ g = h^{-2k}gh^{2k}$ and not $ g = h^{-2k}g^{-1}h^{2k}$ ?
            $endgroup$
            – FabianSchneider
            Dec 12 '18 at 21:43








          • 1




            $begingroup$
            You get $g = h^{-2k}gh^{2k}$ after $2k $ substitutions, not after $ k$, and the reason you get $ g $ and not $ g^{-1}$ is because $ 2k $ is even and after an even number of substitutions you get g while after an odd number of substitutions you get $g^{-1}$
            $endgroup$
            – Sorin Tirc
            Dec 12 '18 at 23:19












          • $begingroup$
            I meant 2k-1 (not k-1) but i was still false....thank you for your help! I got it know.
            $endgroup$
            – FabianSchneider
            Dec 12 '18 at 23:24










          • $begingroup$
            We can´t follow $h^{-1}g^{-1}h=g$ from $h^{-1}gh = g^{-1}$, because G is not neccesarry commutative ?!
            $endgroup$
            – FabianSchneider
            Dec 13 '18 at 16:35








          • 1




            $begingroup$
            you are partly right because it should be $hg^{-1}h^{-1}=g$ but the argument still goes through ;)
            $endgroup$
            – Sorin Tirc
            Dec 13 '18 at 20:39













          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037207%2freal-conjugacy-class-group-theory%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          The order of $|G|$ is odd, say $G=2m-1$, for some positive integer $m$. Hence by Lagrange $h^{|G|}=1=(h^2)^m cdot h^{-1}$. It follows that $h=(h^2)^m$, so if $h^2 in C_G(g)$, then $h in C_G(g)$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Can you please be more precise at the end where you follow $h in C_G(g)$. That´s the part where I´m struggeling.
            $endgroup$
            – FabianSchneider
            Dec 12 '18 at 21:45












          • $begingroup$
            If $h^2$ is in the subgroup then any power of it is too.
            $endgroup$
            – Nicky Hekster
            Dec 12 '18 at 21:49










          • $begingroup$
            Makes sense. Thank you so much!
            $endgroup$
            – FabianSchneider
            Dec 12 '18 at 21:52
















          1












          $begingroup$

          The order of $|G|$ is odd, say $G=2m-1$, for some positive integer $m$. Hence by Lagrange $h^{|G|}=1=(h^2)^m cdot h^{-1}$. It follows that $h=(h^2)^m$, so if $h^2 in C_G(g)$, then $h in C_G(g)$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Can you please be more precise at the end where you follow $h in C_G(g)$. That´s the part where I´m struggeling.
            $endgroup$
            – FabianSchneider
            Dec 12 '18 at 21:45












          • $begingroup$
            If $h^2$ is in the subgroup then any power of it is too.
            $endgroup$
            – Nicky Hekster
            Dec 12 '18 at 21:49










          • $begingroup$
            Makes sense. Thank you so much!
            $endgroup$
            – FabianSchneider
            Dec 12 '18 at 21:52














          1












          1








          1





          $begingroup$

          The order of $|G|$ is odd, say $G=2m-1$, for some positive integer $m$. Hence by Lagrange $h^{|G|}=1=(h^2)^m cdot h^{-1}$. It follows that $h=(h^2)^m$, so if $h^2 in C_G(g)$, then $h in C_G(g)$.






          share|cite|improve this answer









          $endgroup$



          The order of $|G|$ is odd, say $G=2m-1$, for some positive integer $m$. Hence by Lagrange $h^{|G|}=1=(h^2)^m cdot h^{-1}$. It follows that $h=(h^2)^m$, so if $h^2 in C_G(g)$, then $h in C_G(g)$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 12 '18 at 21:17









          Nicky HeksterNicky Hekster

          28.4k53456




          28.4k53456












          • $begingroup$
            Can you please be more precise at the end where you follow $h in C_G(g)$. That´s the part where I´m struggeling.
            $endgroup$
            – FabianSchneider
            Dec 12 '18 at 21:45












          • $begingroup$
            If $h^2$ is in the subgroup then any power of it is too.
            $endgroup$
            – Nicky Hekster
            Dec 12 '18 at 21:49










          • $begingroup$
            Makes sense. Thank you so much!
            $endgroup$
            – FabianSchneider
            Dec 12 '18 at 21:52


















          • $begingroup$
            Can you please be more precise at the end where you follow $h in C_G(g)$. That´s the part where I´m struggeling.
            $endgroup$
            – FabianSchneider
            Dec 12 '18 at 21:45












          • $begingroup$
            If $h^2$ is in the subgroup then any power of it is too.
            $endgroup$
            – Nicky Hekster
            Dec 12 '18 at 21:49










          • $begingroup$
            Makes sense. Thank you so much!
            $endgroup$
            – FabianSchneider
            Dec 12 '18 at 21:52
















          $begingroup$
          Can you please be more precise at the end where you follow $h in C_G(g)$. That´s the part where I´m struggeling.
          $endgroup$
          – FabianSchneider
          Dec 12 '18 at 21:45






          $begingroup$
          Can you please be more precise at the end where you follow $h in C_G(g)$. That´s the part where I´m struggeling.
          $endgroup$
          – FabianSchneider
          Dec 12 '18 at 21:45














          $begingroup$
          If $h^2$ is in the subgroup then any power of it is too.
          $endgroup$
          – Nicky Hekster
          Dec 12 '18 at 21:49




          $begingroup$
          If $h^2$ is in the subgroup then any power of it is too.
          $endgroup$
          – Nicky Hekster
          Dec 12 '18 at 21:49












          $begingroup$
          Makes sense. Thank you so much!
          $endgroup$
          – FabianSchneider
          Dec 12 '18 at 21:52




          $begingroup$
          Makes sense. Thank you so much!
          $endgroup$
          – FabianSchneider
          Dec 12 '18 at 21:52











          1












          $begingroup$

          Rewrite the equality as $h^{-1}g^{-1}h=g$ and now(here’s the trick!) replace the g in $h^{-1}g^{-1}h$ with $h^{-1}g^{-1}h$ (because g and $h^{-1}g^{-1}h$ are equal). So we get that $g=h^{-1}g^{-1}h=h^{-1}(h^{-1}g^{-1}h)^{-1}h=h^{-2}gh^2$ keep replacing g inside $h^{-2}gh^2$ with $h^{-1}g^{-1}h$ to eventually get that $h^{-2k}gh^{2k}=g$, but $h^{2k}=h^{-1}$ so by the last equality $h$ and $g$ commute






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Why do we, after k-1 substitutions, have $ g = h^{-2k}gh^{2k}$ and not $ g = h^{-2k}g^{-1}h^{2k}$ ?
            $endgroup$
            – FabianSchneider
            Dec 12 '18 at 21:43








          • 1




            $begingroup$
            You get $g = h^{-2k}gh^{2k}$ after $2k $ substitutions, not after $ k$, and the reason you get $ g $ and not $ g^{-1}$ is because $ 2k $ is even and after an even number of substitutions you get g while after an odd number of substitutions you get $g^{-1}$
            $endgroup$
            – Sorin Tirc
            Dec 12 '18 at 23:19












          • $begingroup$
            I meant 2k-1 (not k-1) but i was still false....thank you for your help! I got it know.
            $endgroup$
            – FabianSchneider
            Dec 12 '18 at 23:24










          • $begingroup$
            We can´t follow $h^{-1}g^{-1}h=g$ from $h^{-1}gh = g^{-1}$, because G is not neccesarry commutative ?!
            $endgroup$
            – FabianSchneider
            Dec 13 '18 at 16:35








          • 1




            $begingroup$
            you are partly right because it should be $hg^{-1}h^{-1}=g$ but the argument still goes through ;)
            $endgroup$
            – Sorin Tirc
            Dec 13 '18 at 20:39


















          1












          $begingroup$

          Rewrite the equality as $h^{-1}g^{-1}h=g$ and now(here’s the trick!) replace the g in $h^{-1}g^{-1}h$ with $h^{-1}g^{-1}h$ (because g and $h^{-1}g^{-1}h$ are equal). So we get that $g=h^{-1}g^{-1}h=h^{-1}(h^{-1}g^{-1}h)^{-1}h=h^{-2}gh^2$ keep replacing g inside $h^{-2}gh^2$ with $h^{-1}g^{-1}h$ to eventually get that $h^{-2k}gh^{2k}=g$, but $h^{2k}=h^{-1}$ so by the last equality $h$ and $g$ commute






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Why do we, after k-1 substitutions, have $ g = h^{-2k}gh^{2k}$ and not $ g = h^{-2k}g^{-1}h^{2k}$ ?
            $endgroup$
            – FabianSchneider
            Dec 12 '18 at 21:43








          • 1




            $begingroup$
            You get $g = h^{-2k}gh^{2k}$ after $2k $ substitutions, not after $ k$, and the reason you get $ g $ and not $ g^{-1}$ is because $ 2k $ is even and after an even number of substitutions you get g while after an odd number of substitutions you get $g^{-1}$
            $endgroup$
            – Sorin Tirc
            Dec 12 '18 at 23:19












          • $begingroup$
            I meant 2k-1 (not k-1) but i was still false....thank you for your help! I got it know.
            $endgroup$
            – FabianSchneider
            Dec 12 '18 at 23:24










          • $begingroup$
            We can´t follow $h^{-1}g^{-1}h=g$ from $h^{-1}gh = g^{-1}$, because G is not neccesarry commutative ?!
            $endgroup$
            – FabianSchneider
            Dec 13 '18 at 16:35








          • 1




            $begingroup$
            you are partly right because it should be $hg^{-1}h^{-1}=g$ but the argument still goes through ;)
            $endgroup$
            – Sorin Tirc
            Dec 13 '18 at 20:39
















          1












          1








          1





          $begingroup$

          Rewrite the equality as $h^{-1}g^{-1}h=g$ and now(here’s the trick!) replace the g in $h^{-1}g^{-1}h$ with $h^{-1}g^{-1}h$ (because g and $h^{-1}g^{-1}h$ are equal). So we get that $g=h^{-1}g^{-1}h=h^{-1}(h^{-1}g^{-1}h)^{-1}h=h^{-2}gh^2$ keep replacing g inside $h^{-2}gh^2$ with $h^{-1}g^{-1}h$ to eventually get that $h^{-2k}gh^{2k}=g$, but $h^{2k}=h^{-1}$ so by the last equality $h$ and $g$ commute






          share|cite|improve this answer









          $endgroup$



          Rewrite the equality as $h^{-1}g^{-1}h=g$ and now(here’s the trick!) replace the g in $h^{-1}g^{-1}h$ with $h^{-1}g^{-1}h$ (because g and $h^{-1}g^{-1}h$ are equal). So we get that $g=h^{-1}g^{-1}h=h^{-1}(h^{-1}g^{-1}h)^{-1}h=h^{-2}gh^2$ keep replacing g inside $h^{-2}gh^2$ with $h^{-1}g^{-1}h$ to eventually get that $h^{-2k}gh^{2k}=g$, but $h^{2k}=h^{-1}$ so by the last equality $h$ and $g$ commute







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 12 '18 at 21:17









          Sorin TircSorin Tirc

          1,755213




          1,755213












          • $begingroup$
            Why do we, after k-1 substitutions, have $ g = h^{-2k}gh^{2k}$ and not $ g = h^{-2k}g^{-1}h^{2k}$ ?
            $endgroup$
            – FabianSchneider
            Dec 12 '18 at 21:43








          • 1




            $begingroup$
            You get $g = h^{-2k}gh^{2k}$ after $2k $ substitutions, not after $ k$, and the reason you get $ g $ and not $ g^{-1}$ is because $ 2k $ is even and after an even number of substitutions you get g while after an odd number of substitutions you get $g^{-1}$
            $endgroup$
            – Sorin Tirc
            Dec 12 '18 at 23:19












          • $begingroup$
            I meant 2k-1 (not k-1) but i was still false....thank you for your help! I got it know.
            $endgroup$
            – FabianSchneider
            Dec 12 '18 at 23:24










          • $begingroup$
            We can´t follow $h^{-1}g^{-1}h=g$ from $h^{-1}gh = g^{-1}$, because G is not neccesarry commutative ?!
            $endgroup$
            – FabianSchneider
            Dec 13 '18 at 16:35








          • 1




            $begingroup$
            you are partly right because it should be $hg^{-1}h^{-1}=g$ but the argument still goes through ;)
            $endgroup$
            – Sorin Tirc
            Dec 13 '18 at 20:39




















          • $begingroup$
            Why do we, after k-1 substitutions, have $ g = h^{-2k}gh^{2k}$ and not $ g = h^{-2k}g^{-1}h^{2k}$ ?
            $endgroup$
            – FabianSchneider
            Dec 12 '18 at 21:43








          • 1




            $begingroup$
            You get $g = h^{-2k}gh^{2k}$ after $2k $ substitutions, not after $ k$, and the reason you get $ g $ and not $ g^{-1}$ is because $ 2k $ is even and after an even number of substitutions you get g while after an odd number of substitutions you get $g^{-1}$
            $endgroup$
            – Sorin Tirc
            Dec 12 '18 at 23:19












          • $begingroup$
            I meant 2k-1 (not k-1) but i was still false....thank you for your help! I got it know.
            $endgroup$
            – FabianSchneider
            Dec 12 '18 at 23:24










          • $begingroup$
            We can´t follow $h^{-1}g^{-1}h=g$ from $h^{-1}gh = g^{-1}$, because G is not neccesarry commutative ?!
            $endgroup$
            – FabianSchneider
            Dec 13 '18 at 16:35








          • 1




            $begingroup$
            you are partly right because it should be $hg^{-1}h^{-1}=g$ but the argument still goes through ;)
            $endgroup$
            – Sorin Tirc
            Dec 13 '18 at 20:39


















          $begingroup$
          Why do we, after k-1 substitutions, have $ g = h^{-2k}gh^{2k}$ and not $ g = h^{-2k}g^{-1}h^{2k}$ ?
          $endgroup$
          – FabianSchneider
          Dec 12 '18 at 21:43






          $begingroup$
          Why do we, after k-1 substitutions, have $ g = h^{-2k}gh^{2k}$ and not $ g = h^{-2k}g^{-1}h^{2k}$ ?
          $endgroup$
          – FabianSchneider
          Dec 12 '18 at 21:43






          1




          1




          $begingroup$
          You get $g = h^{-2k}gh^{2k}$ after $2k $ substitutions, not after $ k$, and the reason you get $ g $ and not $ g^{-1}$ is because $ 2k $ is even and after an even number of substitutions you get g while after an odd number of substitutions you get $g^{-1}$
          $endgroup$
          – Sorin Tirc
          Dec 12 '18 at 23:19






          $begingroup$
          You get $g = h^{-2k}gh^{2k}$ after $2k $ substitutions, not after $ k$, and the reason you get $ g $ and not $ g^{-1}$ is because $ 2k $ is even and after an even number of substitutions you get g while after an odd number of substitutions you get $g^{-1}$
          $endgroup$
          – Sorin Tirc
          Dec 12 '18 at 23:19














          $begingroup$
          I meant 2k-1 (not k-1) but i was still false....thank you for your help! I got it know.
          $endgroup$
          – FabianSchneider
          Dec 12 '18 at 23:24




          $begingroup$
          I meant 2k-1 (not k-1) but i was still false....thank you for your help! I got it know.
          $endgroup$
          – FabianSchneider
          Dec 12 '18 at 23:24












          $begingroup$
          We can´t follow $h^{-1}g^{-1}h=g$ from $h^{-1}gh = g^{-1}$, because G is not neccesarry commutative ?!
          $endgroup$
          – FabianSchneider
          Dec 13 '18 at 16:35






          $begingroup$
          We can´t follow $h^{-1}g^{-1}h=g$ from $h^{-1}gh = g^{-1}$, because G is not neccesarry commutative ?!
          $endgroup$
          – FabianSchneider
          Dec 13 '18 at 16:35






          1




          1




          $begingroup$
          you are partly right because it should be $hg^{-1}h^{-1}=g$ but the argument still goes through ;)
          $endgroup$
          – Sorin Tirc
          Dec 13 '18 at 20:39






          $begingroup$
          you are partly right because it should be $hg^{-1}h^{-1}=g$ but the argument still goes through ;)
          $endgroup$
          – Sorin Tirc
          Dec 13 '18 at 20:39




















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037207%2freal-conjugacy-class-group-theory%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Quarter-circle Tiles

          build a pushdown automaton that recognizes the reverse language of a given pushdown automaton?

          Mont Emei