Mass transport equation Cartesian to polar coordinates
$begingroup$
Can someone please advise on how to transform the following equation to polar coordinates?
$$frac{partial rho(x,t)}{partial t}=vfrac{partial left(rho(x,t) L(x)right)}{partial x}+Dfrac{partial}{partial x}left(L(x)frac{partial rho(x,t)}{partial x}right)$$
multivariable-calculus pde polar-coordinates
$endgroup$
add a comment |
$begingroup$
Can someone please advise on how to transform the following equation to polar coordinates?
$$frac{partial rho(x,t)}{partial t}=vfrac{partial left(rho(x,t) L(x)right)}{partial x}+Dfrac{partial}{partial x}left(L(x)frac{partial rho(x,t)}{partial x}right)$$
multivariable-calculus pde polar-coordinates
$endgroup$
$begingroup$
This looks like one dimensional equation (no $y$ and $z$), so no need to transform to polar coordinates
$endgroup$
– Andrei
Dec 12 '18 at 18:55
$begingroup$
What polar coordinates? There is only a one-dimensional coordinate $x$ here
$endgroup$
– Federico
Dec 12 '18 at 18:55
$begingroup$
Maybe you mean $partial_t rho + mathrm{div}(rho V + D nablarho)=0$? As in the en.wikipedia.org/wiki/Fokker%E2%80%93Planck_equation
$endgroup$
– Federico
Dec 12 '18 at 18:57
$begingroup$
You can write in several forms, see also here: en.wikipedia.org/wiki/Convection%E2%80%93diffusion_equation
$endgroup$
– Federico
Dec 12 '18 at 18:59
$begingroup$
You just have to use the formula for the divergence in polar coordinates
$endgroup$
– Federico
Dec 12 '18 at 18:59
add a comment |
$begingroup$
Can someone please advise on how to transform the following equation to polar coordinates?
$$frac{partial rho(x,t)}{partial t}=vfrac{partial left(rho(x,t) L(x)right)}{partial x}+Dfrac{partial}{partial x}left(L(x)frac{partial rho(x,t)}{partial x}right)$$
multivariable-calculus pde polar-coordinates
$endgroup$
Can someone please advise on how to transform the following equation to polar coordinates?
$$frac{partial rho(x,t)}{partial t}=vfrac{partial left(rho(x,t) L(x)right)}{partial x}+Dfrac{partial}{partial x}left(L(x)frac{partial rho(x,t)}{partial x}right)$$
multivariable-calculus pde polar-coordinates
multivariable-calculus pde polar-coordinates
edited Dec 13 '18 at 10:53
Harry49
6,21331132
6,21331132
asked Dec 12 '18 at 18:52
jarheadjarhead
1308
1308
$begingroup$
This looks like one dimensional equation (no $y$ and $z$), so no need to transform to polar coordinates
$endgroup$
– Andrei
Dec 12 '18 at 18:55
$begingroup$
What polar coordinates? There is only a one-dimensional coordinate $x$ here
$endgroup$
– Federico
Dec 12 '18 at 18:55
$begingroup$
Maybe you mean $partial_t rho + mathrm{div}(rho V + D nablarho)=0$? As in the en.wikipedia.org/wiki/Fokker%E2%80%93Planck_equation
$endgroup$
– Federico
Dec 12 '18 at 18:57
$begingroup$
You can write in several forms, see also here: en.wikipedia.org/wiki/Convection%E2%80%93diffusion_equation
$endgroup$
– Federico
Dec 12 '18 at 18:59
$begingroup$
You just have to use the formula for the divergence in polar coordinates
$endgroup$
– Federico
Dec 12 '18 at 18:59
add a comment |
$begingroup$
This looks like one dimensional equation (no $y$ and $z$), so no need to transform to polar coordinates
$endgroup$
– Andrei
Dec 12 '18 at 18:55
$begingroup$
What polar coordinates? There is only a one-dimensional coordinate $x$ here
$endgroup$
– Federico
Dec 12 '18 at 18:55
$begingroup$
Maybe you mean $partial_t rho + mathrm{div}(rho V + D nablarho)=0$? As in the en.wikipedia.org/wiki/Fokker%E2%80%93Planck_equation
$endgroup$
– Federico
Dec 12 '18 at 18:57
$begingroup$
You can write in several forms, see also here: en.wikipedia.org/wiki/Convection%E2%80%93diffusion_equation
$endgroup$
– Federico
Dec 12 '18 at 18:59
$begingroup$
You just have to use the formula for the divergence in polar coordinates
$endgroup$
– Federico
Dec 12 '18 at 18:59
$begingroup$
This looks like one dimensional equation (no $y$ and $z$), so no need to transform to polar coordinates
$endgroup$
– Andrei
Dec 12 '18 at 18:55
$begingroup$
This looks like one dimensional equation (no $y$ and $z$), so no need to transform to polar coordinates
$endgroup$
– Andrei
Dec 12 '18 at 18:55
$begingroup$
What polar coordinates? There is only a one-dimensional coordinate $x$ here
$endgroup$
– Federico
Dec 12 '18 at 18:55
$begingroup$
What polar coordinates? There is only a one-dimensional coordinate $x$ here
$endgroup$
– Federico
Dec 12 '18 at 18:55
$begingroup$
Maybe you mean $partial_t rho + mathrm{div}(rho V + D nablarho)=0$? As in the en.wikipedia.org/wiki/Fokker%E2%80%93Planck_equation
$endgroup$
– Federico
Dec 12 '18 at 18:57
$begingroup$
Maybe you mean $partial_t rho + mathrm{div}(rho V + D nablarho)=0$? As in the en.wikipedia.org/wiki/Fokker%E2%80%93Planck_equation
$endgroup$
– Federico
Dec 12 '18 at 18:57
$begingroup$
You can write in several forms, see also here: en.wikipedia.org/wiki/Convection%E2%80%93diffusion_equation
$endgroup$
– Federico
Dec 12 '18 at 18:59
$begingroup$
You can write in several forms, see also here: en.wikipedia.org/wiki/Convection%E2%80%93diffusion_equation
$endgroup$
– Federico
Dec 12 '18 at 18:59
$begingroup$
You just have to use the formula for the divergence in polar coordinates
$endgroup$
– Federico
Dec 12 '18 at 18:59
$begingroup$
You just have to use the formula for the divergence in polar coordinates
$endgroup$
– Federico
Dec 12 '18 at 18:59
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
This is a convection-diffusion equation
$$
frac{partial rho}{partial t} = nablacdot(underbrace{D, {boldsymbol nabla}rho - rho{boldsymbol v}}_{-boldsymbol f}) ,
$$
where $rho$ is a species concentration (in mass transfer), $D$ is the diffusivity, ${boldsymbol v} = v_r {boldsymbol e}_r + v_theta {boldsymbol e}_theta$ is the velocity field, and ${boldsymbol f} = f_r {boldsymbol e}_r + f_theta {boldsymbol e}_theta$ is the flux. The differential operators write
$$
{boldsymbol nabla}rho = partial_rrho, {boldsymbol e}_r + frac{partial_thetarho}{r}, {boldsymbol e}_theta,
qquadtext{and}qquad
nablacdot {boldsymbol f} = frac{partial_r (r f_r)}{r} + frac{partial_theta f_theta}{r}
$$
with the flux components $f_r = rho v_r - Dpartial_rrho$ and $f_theta = rho v_theta - D partial_thetarho / r$.
If $D$ and $v$ do not depend on space (as seems to be the case here), we have
$$
frac{partial rho}{partial t} = frac{D partial_r (r partial_rrho) - v_r partial_r(rrho)}{r} + frac{D/r, partial_{thetatheta} rho - v_theta partial_thetarho }{r} .
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037082%2fmass-transport-equation-cartesian-to-polar-coordinates%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
This is a convection-diffusion equation
$$
frac{partial rho}{partial t} = nablacdot(underbrace{D, {boldsymbol nabla}rho - rho{boldsymbol v}}_{-boldsymbol f}) ,
$$
where $rho$ is a species concentration (in mass transfer), $D$ is the diffusivity, ${boldsymbol v} = v_r {boldsymbol e}_r + v_theta {boldsymbol e}_theta$ is the velocity field, and ${boldsymbol f} = f_r {boldsymbol e}_r + f_theta {boldsymbol e}_theta$ is the flux. The differential operators write
$$
{boldsymbol nabla}rho = partial_rrho, {boldsymbol e}_r + frac{partial_thetarho}{r}, {boldsymbol e}_theta,
qquadtext{and}qquad
nablacdot {boldsymbol f} = frac{partial_r (r f_r)}{r} + frac{partial_theta f_theta}{r}
$$
with the flux components $f_r = rho v_r - Dpartial_rrho$ and $f_theta = rho v_theta - D partial_thetarho / r$.
If $D$ and $v$ do not depend on space (as seems to be the case here), we have
$$
frac{partial rho}{partial t} = frac{D partial_r (r partial_rrho) - v_r partial_r(rrho)}{r} + frac{D/r, partial_{thetatheta} rho - v_theta partial_thetarho }{r} .
$$
$endgroup$
add a comment |
$begingroup$
This is a convection-diffusion equation
$$
frac{partial rho}{partial t} = nablacdot(underbrace{D, {boldsymbol nabla}rho - rho{boldsymbol v}}_{-boldsymbol f}) ,
$$
where $rho$ is a species concentration (in mass transfer), $D$ is the diffusivity, ${boldsymbol v} = v_r {boldsymbol e}_r + v_theta {boldsymbol e}_theta$ is the velocity field, and ${boldsymbol f} = f_r {boldsymbol e}_r + f_theta {boldsymbol e}_theta$ is the flux. The differential operators write
$$
{boldsymbol nabla}rho = partial_rrho, {boldsymbol e}_r + frac{partial_thetarho}{r}, {boldsymbol e}_theta,
qquadtext{and}qquad
nablacdot {boldsymbol f} = frac{partial_r (r f_r)}{r} + frac{partial_theta f_theta}{r}
$$
with the flux components $f_r = rho v_r - Dpartial_rrho$ and $f_theta = rho v_theta - D partial_thetarho / r$.
If $D$ and $v$ do not depend on space (as seems to be the case here), we have
$$
frac{partial rho}{partial t} = frac{D partial_r (r partial_rrho) - v_r partial_r(rrho)}{r} + frac{D/r, partial_{thetatheta} rho - v_theta partial_thetarho }{r} .
$$
$endgroup$
add a comment |
$begingroup$
This is a convection-diffusion equation
$$
frac{partial rho}{partial t} = nablacdot(underbrace{D, {boldsymbol nabla}rho - rho{boldsymbol v}}_{-boldsymbol f}) ,
$$
where $rho$ is a species concentration (in mass transfer), $D$ is the diffusivity, ${boldsymbol v} = v_r {boldsymbol e}_r + v_theta {boldsymbol e}_theta$ is the velocity field, and ${boldsymbol f} = f_r {boldsymbol e}_r + f_theta {boldsymbol e}_theta$ is the flux. The differential operators write
$$
{boldsymbol nabla}rho = partial_rrho, {boldsymbol e}_r + frac{partial_thetarho}{r}, {boldsymbol e}_theta,
qquadtext{and}qquad
nablacdot {boldsymbol f} = frac{partial_r (r f_r)}{r} + frac{partial_theta f_theta}{r}
$$
with the flux components $f_r = rho v_r - Dpartial_rrho$ and $f_theta = rho v_theta - D partial_thetarho / r$.
If $D$ and $v$ do not depend on space (as seems to be the case here), we have
$$
frac{partial rho}{partial t} = frac{D partial_r (r partial_rrho) - v_r partial_r(rrho)}{r} + frac{D/r, partial_{thetatheta} rho - v_theta partial_thetarho }{r} .
$$
$endgroup$
This is a convection-diffusion equation
$$
frac{partial rho}{partial t} = nablacdot(underbrace{D, {boldsymbol nabla}rho - rho{boldsymbol v}}_{-boldsymbol f}) ,
$$
where $rho$ is a species concentration (in mass transfer), $D$ is the diffusivity, ${boldsymbol v} = v_r {boldsymbol e}_r + v_theta {boldsymbol e}_theta$ is the velocity field, and ${boldsymbol f} = f_r {boldsymbol e}_r + f_theta {boldsymbol e}_theta$ is the flux. The differential operators write
$$
{boldsymbol nabla}rho = partial_rrho, {boldsymbol e}_r + frac{partial_thetarho}{r}, {boldsymbol e}_theta,
qquadtext{and}qquad
nablacdot {boldsymbol f} = frac{partial_r (r f_r)}{r} + frac{partial_theta f_theta}{r}
$$
with the flux components $f_r = rho v_r - Dpartial_rrho$ and $f_theta = rho v_theta - D partial_thetarho / r$.
If $D$ and $v$ do not depend on space (as seems to be the case here), we have
$$
frac{partial rho}{partial t} = frac{D partial_r (r partial_rrho) - v_r partial_r(rrho)}{r} + frac{D/r, partial_{thetatheta} rho - v_theta partial_thetarho }{r} .
$$
edited Dec 13 '18 at 11:14
answered Dec 13 '18 at 10:53
Harry49Harry49
6,21331132
6,21331132
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037082%2fmass-transport-equation-cartesian-to-polar-coordinates%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
This looks like one dimensional equation (no $y$ and $z$), so no need to transform to polar coordinates
$endgroup$
– Andrei
Dec 12 '18 at 18:55
$begingroup$
What polar coordinates? There is only a one-dimensional coordinate $x$ here
$endgroup$
– Federico
Dec 12 '18 at 18:55
$begingroup$
Maybe you mean $partial_t rho + mathrm{div}(rho V + D nablarho)=0$? As in the en.wikipedia.org/wiki/Fokker%E2%80%93Planck_equation
$endgroup$
– Federico
Dec 12 '18 at 18:57
$begingroup$
You can write in several forms, see also here: en.wikipedia.org/wiki/Convection%E2%80%93diffusion_equation
$endgroup$
– Federico
Dec 12 '18 at 18:59
$begingroup$
You just have to use the formula for the divergence in polar coordinates
$endgroup$
– Federico
Dec 12 '18 at 18:59