Expressing Riemann sums as integrals












3












$begingroup$


$$L_2=lim_{n→∞}sum_{k=1}^nfrac{(k-cos^2(k))^4}{n^5}.$$
My teacher said that when brackets at the numarator is expanded the limit of sum except $dfrac{k^4}{n^5}$ equals $0$, so the Riemann sum becomes $limlimits_{n→∞}sumlimits_{k=1}^ndfrac{k^4}{n^5}$. I don't understand this point. Please explain this point. Sorry for my bad English.










share|cite|improve this question











$endgroup$

















    3












    $begingroup$


    $$L_2=lim_{n→∞}sum_{k=1}^nfrac{(k-cos^2(k))^4}{n^5}.$$
    My teacher said that when brackets at the numarator is expanded the limit of sum except $dfrac{k^4}{n^5}$ equals $0$, so the Riemann sum becomes $limlimits_{n→∞}sumlimits_{k=1}^ndfrac{k^4}{n^5}$. I don't understand this point. Please explain this point. Sorry for my bad English.










    share|cite|improve this question











    $endgroup$















      3












      3








      3


      1



      $begingroup$


      $$L_2=lim_{n→∞}sum_{k=1}^nfrac{(k-cos^2(k))^4}{n^5}.$$
      My teacher said that when brackets at the numarator is expanded the limit of sum except $dfrac{k^4}{n^5}$ equals $0$, so the Riemann sum becomes $limlimits_{n→∞}sumlimits_{k=1}^ndfrac{k^4}{n^5}$. I don't understand this point. Please explain this point. Sorry for my bad English.










      share|cite|improve this question











      $endgroup$




      $$L_2=lim_{n→∞}sum_{k=1}^nfrac{(k-cos^2(k))^4}{n^5}.$$
      My teacher said that when brackets at the numarator is expanded the limit of sum except $dfrac{k^4}{n^5}$ equals $0$, so the Riemann sum becomes $limlimits_{n→∞}sumlimits_{k=1}^ndfrac{k^4}{n^5}$. I don't understand this point. Please explain this point. Sorry for my bad English.







      limits definite-integrals






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 21 '18 at 8:11









      Saad

      19.7k92352




      19.7k92352










      asked Dec 21 '18 at 7:38









      1u2i3o41u2i3o4

      182




      182






















          3 Answers
          3






          active

          oldest

          votes


















          3












          $begingroup$

          $sum_{k=1}^{n} k^{j} leq int_1^{n} x^{j} dx =frac {n^{j+1} -1} {j+1}$ and $frac {n^{j+1} -1} {n^{5}} to 0$ as $ n to infty$ if $j <4$. Hence, when you expand $(k-cos^{2}(k))^{4}$ all terms except $k^{4}$ give limit $0$. [Note that $cos^{2} k leq 1$].






          share|cite|improve this answer









          $endgroup$





















            0












            $begingroup$

            $$sumfrac{(k-cos^2 k)^4}{n^5}=sum left(frac{k^4-4k^3cos ^2left(kright)+6k^2cos ^4left(kright)-4kcos ^6left(kright)+cos ^8left(kright)}{n^5}right)$$Every term is involving $cos k$ except the term $k^4$. Applying summation and use algebra of limits together with the fact $cos k$ is bounded by $1$ to get your result






            share|cite|improve this answer









            $endgroup$





















              0












              $begingroup$

              Since
              $$
              sum_{k=1}^nk^3=frac{n^2(n+1)^2}4
              $$

              we get
              $$
              begin{align}
              lim_{ntoinfty}sum_{k=1}^nfrac{left(k-cos^2(k)right)^4}{n^5}
              &=lim_{ntoinfty}sum_{k=1}^nleft[frac{k^4}{n^5}+O!left(frac{k^3}{n^5}right)right]\
              &=lim_{ntoinfty}left[sum_{k=1}^nfrac{k^4}{n^4}frac1n+O!left(frac1nright)right]\
              &=int_0^1x^4,mathrm{d}x+0\[6pt]
              &=frac15
              end{align}
              $$






              share|cite|improve this answer









              $endgroup$













                Your Answer





                StackExchange.ifUsing("editor", function () {
                return StackExchange.using("mathjaxEditing", function () {
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                });
                });
                }, "mathjax-editing");

                StackExchange.ready(function() {
                var channelOptions = {
                tags: "".split(" "),
                id: "69"
                };
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function() {
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled) {
                StackExchange.using("snippets", function() {
                createEditor();
                });
                }
                else {
                createEditor();
                }
                });

                function createEditor() {
                StackExchange.prepareEditor({
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader: {
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                },
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                });


                }
                });














                draft saved

                draft discarded


















                StackExchange.ready(
                function () {
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048275%2fexpressing-riemann-sums-as-integrals%23new-answer', 'question_page');
                }
                );

                Post as a guest















                Required, but never shown

























                3 Answers
                3






                active

                oldest

                votes








                3 Answers
                3






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                3












                $begingroup$

                $sum_{k=1}^{n} k^{j} leq int_1^{n} x^{j} dx =frac {n^{j+1} -1} {j+1}$ and $frac {n^{j+1} -1} {n^{5}} to 0$ as $ n to infty$ if $j <4$. Hence, when you expand $(k-cos^{2}(k))^{4}$ all terms except $k^{4}$ give limit $0$. [Note that $cos^{2} k leq 1$].






                share|cite|improve this answer









                $endgroup$


















                  3












                  $begingroup$

                  $sum_{k=1}^{n} k^{j} leq int_1^{n} x^{j} dx =frac {n^{j+1} -1} {j+1}$ and $frac {n^{j+1} -1} {n^{5}} to 0$ as $ n to infty$ if $j <4$. Hence, when you expand $(k-cos^{2}(k))^{4}$ all terms except $k^{4}$ give limit $0$. [Note that $cos^{2} k leq 1$].






                  share|cite|improve this answer









                  $endgroup$
















                    3












                    3








                    3





                    $begingroup$

                    $sum_{k=1}^{n} k^{j} leq int_1^{n} x^{j} dx =frac {n^{j+1} -1} {j+1}$ and $frac {n^{j+1} -1} {n^{5}} to 0$ as $ n to infty$ if $j <4$. Hence, when you expand $(k-cos^{2}(k))^{4}$ all terms except $k^{4}$ give limit $0$. [Note that $cos^{2} k leq 1$].






                    share|cite|improve this answer









                    $endgroup$



                    $sum_{k=1}^{n} k^{j} leq int_1^{n} x^{j} dx =frac {n^{j+1} -1} {j+1}$ and $frac {n^{j+1} -1} {n^{5}} to 0$ as $ n to infty$ if $j <4$. Hence, when you expand $(k-cos^{2}(k))^{4}$ all terms except $k^{4}$ give limit $0$. [Note that $cos^{2} k leq 1$].







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Dec 21 '18 at 7:50









                    Kavi Rama MurthyKavi Rama Murthy

                    60.6k42161




                    60.6k42161























                        0












                        $begingroup$

                        $$sumfrac{(k-cos^2 k)^4}{n^5}=sum left(frac{k^4-4k^3cos ^2left(kright)+6k^2cos ^4left(kright)-4kcos ^6left(kright)+cos ^8left(kright)}{n^5}right)$$Every term is involving $cos k$ except the term $k^4$. Applying summation and use algebra of limits together with the fact $cos k$ is bounded by $1$ to get your result






                        share|cite|improve this answer









                        $endgroup$


















                          0












                          $begingroup$

                          $$sumfrac{(k-cos^2 k)^4}{n^5}=sum left(frac{k^4-4k^3cos ^2left(kright)+6k^2cos ^4left(kright)-4kcos ^6left(kright)+cos ^8left(kright)}{n^5}right)$$Every term is involving $cos k$ except the term $k^4$. Applying summation and use algebra of limits together with the fact $cos k$ is bounded by $1$ to get your result






                          share|cite|improve this answer









                          $endgroup$
















                            0












                            0








                            0





                            $begingroup$

                            $$sumfrac{(k-cos^2 k)^4}{n^5}=sum left(frac{k^4-4k^3cos ^2left(kright)+6k^2cos ^4left(kright)-4kcos ^6left(kright)+cos ^8left(kright)}{n^5}right)$$Every term is involving $cos k$ except the term $k^4$. Applying summation and use algebra of limits together with the fact $cos k$ is bounded by $1$ to get your result






                            share|cite|improve this answer









                            $endgroup$



                            $$sumfrac{(k-cos^2 k)^4}{n^5}=sum left(frac{k^4-4k^3cos ^2left(kright)+6k^2cos ^4left(kright)-4kcos ^6left(kright)+cos ^8left(kright)}{n^5}right)$$Every term is involving $cos k$ except the term $k^4$. Applying summation and use algebra of limits together with the fact $cos k$ is bounded by $1$ to get your result







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Dec 21 '18 at 7:58









                            Chinnapparaj RChinnapparaj R

                            5,5072928




                            5,5072928























                                0












                                $begingroup$

                                Since
                                $$
                                sum_{k=1}^nk^3=frac{n^2(n+1)^2}4
                                $$

                                we get
                                $$
                                begin{align}
                                lim_{ntoinfty}sum_{k=1}^nfrac{left(k-cos^2(k)right)^4}{n^5}
                                &=lim_{ntoinfty}sum_{k=1}^nleft[frac{k^4}{n^5}+O!left(frac{k^3}{n^5}right)right]\
                                &=lim_{ntoinfty}left[sum_{k=1}^nfrac{k^4}{n^4}frac1n+O!left(frac1nright)right]\
                                &=int_0^1x^4,mathrm{d}x+0\[6pt]
                                &=frac15
                                end{align}
                                $$






                                share|cite|improve this answer









                                $endgroup$


















                                  0












                                  $begingroup$

                                  Since
                                  $$
                                  sum_{k=1}^nk^3=frac{n^2(n+1)^2}4
                                  $$

                                  we get
                                  $$
                                  begin{align}
                                  lim_{ntoinfty}sum_{k=1}^nfrac{left(k-cos^2(k)right)^4}{n^5}
                                  &=lim_{ntoinfty}sum_{k=1}^nleft[frac{k^4}{n^5}+O!left(frac{k^3}{n^5}right)right]\
                                  &=lim_{ntoinfty}left[sum_{k=1}^nfrac{k^4}{n^4}frac1n+O!left(frac1nright)right]\
                                  &=int_0^1x^4,mathrm{d}x+0\[6pt]
                                  &=frac15
                                  end{align}
                                  $$






                                  share|cite|improve this answer









                                  $endgroup$
















                                    0












                                    0








                                    0





                                    $begingroup$

                                    Since
                                    $$
                                    sum_{k=1}^nk^3=frac{n^2(n+1)^2}4
                                    $$

                                    we get
                                    $$
                                    begin{align}
                                    lim_{ntoinfty}sum_{k=1}^nfrac{left(k-cos^2(k)right)^4}{n^5}
                                    &=lim_{ntoinfty}sum_{k=1}^nleft[frac{k^4}{n^5}+O!left(frac{k^3}{n^5}right)right]\
                                    &=lim_{ntoinfty}left[sum_{k=1}^nfrac{k^4}{n^4}frac1n+O!left(frac1nright)right]\
                                    &=int_0^1x^4,mathrm{d}x+0\[6pt]
                                    &=frac15
                                    end{align}
                                    $$






                                    share|cite|improve this answer









                                    $endgroup$



                                    Since
                                    $$
                                    sum_{k=1}^nk^3=frac{n^2(n+1)^2}4
                                    $$

                                    we get
                                    $$
                                    begin{align}
                                    lim_{ntoinfty}sum_{k=1}^nfrac{left(k-cos^2(k)right)^4}{n^5}
                                    &=lim_{ntoinfty}sum_{k=1}^nleft[frac{k^4}{n^5}+O!left(frac{k^3}{n^5}right)right]\
                                    &=lim_{ntoinfty}left[sum_{k=1}^nfrac{k^4}{n^4}frac1n+O!left(frac1nright)right]\
                                    &=int_0^1x^4,mathrm{d}x+0\[6pt]
                                    &=frac15
                                    end{align}
                                    $$







                                    share|cite|improve this answer












                                    share|cite|improve this answer



                                    share|cite|improve this answer










                                    answered Dec 21 '18 at 9:15









                                    robjohnrobjohn

                                    268k27308633




                                    268k27308633






























                                        draft saved

                                        draft discarded




















































                                        Thanks for contributing an answer to Mathematics Stack Exchange!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid



                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.


                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function () {
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048275%2fexpressing-riemann-sums-as-integrals%23new-answer', 'question_page');
                                        }
                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        Ellipse (mathématiques)

                                        Quarter-circle Tiles

                                        Mont Emei