Expressing Riemann sums as integrals
$begingroup$
$$L_2=lim_{n→∞}sum_{k=1}^nfrac{(k-cos^2(k))^4}{n^5}.$$
My teacher said that when brackets at the numarator is expanded the limit of sum except $dfrac{k^4}{n^5}$ equals $0$, so the Riemann sum becomes $limlimits_{n→∞}sumlimits_{k=1}^ndfrac{k^4}{n^5}$. I don't understand this point. Please explain this point. Sorry for my bad English.
limits definite-integrals
$endgroup$
add a comment |
$begingroup$
$$L_2=lim_{n→∞}sum_{k=1}^nfrac{(k-cos^2(k))^4}{n^5}.$$
My teacher said that when brackets at the numarator is expanded the limit of sum except $dfrac{k^4}{n^5}$ equals $0$, so the Riemann sum becomes $limlimits_{n→∞}sumlimits_{k=1}^ndfrac{k^4}{n^5}$. I don't understand this point. Please explain this point. Sorry for my bad English.
limits definite-integrals
$endgroup$
add a comment |
$begingroup$
$$L_2=lim_{n→∞}sum_{k=1}^nfrac{(k-cos^2(k))^4}{n^5}.$$
My teacher said that when brackets at the numarator is expanded the limit of sum except $dfrac{k^4}{n^5}$ equals $0$, so the Riemann sum becomes $limlimits_{n→∞}sumlimits_{k=1}^ndfrac{k^4}{n^5}$. I don't understand this point. Please explain this point. Sorry for my bad English.
limits definite-integrals
$endgroup$
$$L_2=lim_{n→∞}sum_{k=1}^nfrac{(k-cos^2(k))^4}{n^5}.$$
My teacher said that when brackets at the numarator is expanded the limit of sum except $dfrac{k^4}{n^5}$ equals $0$, so the Riemann sum becomes $limlimits_{n→∞}sumlimits_{k=1}^ndfrac{k^4}{n^5}$. I don't understand this point. Please explain this point. Sorry for my bad English.
limits definite-integrals
limits definite-integrals
edited Dec 21 '18 at 8:11
Saad
19.7k92352
19.7k92352
asked Dec 21 '18 at 7:38
1u2i3o41u2i3o4
182
182
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
$sum_{k=1}^{n} k^{j} leq int_1^{n} x^{j} dx =frac {n^{j+1} -1} {j+1}$ and $frac {n^{j+1} -1} {n^{5}} to 0$ as $ n to infty$ if $j <4$. Hence, when you expand $(k-cos^{2}(k))^{4}$ all terms except $k^{4}$ give limit $0$. [Note that $cos^{2} k leq 1$].
$endgroup$
add a comment |
$begingroup$
$$sumfrac{(k-cos^2 k)^4}{n^5}=sum left(frac{k^4-4k^3cos ^2left(kright)+6k^2cos ^4left(kright)-4kcos ^6left(kright)+cos ^8left(kright)}{n^5}right)$$Every term is involving $cos k$ except the term $k^4$. Applying summation and use algebra of limits together with the fact $cos k$ is bounded by $1$ to get your result
$endgroup$
add a comment |
$begingroup$
Since
$$
sum_{k=1}^nk^3=frac{n^2(n+1)^2}4
$$
we get
$$
begin{align}
lim_{ntoinfty}sum_{k=1}^nfrac{left(k-cos^2(k)right)^4}{n^5}
&=lim_{ntoinfty}sum_{k=1}^nleft[frac{k^4}{n^5}+O!left(frac{k^3}{n^5}right)right]\
&=lim_{ntoinfty}left[sum_{k=1}^nfrac{k^4}{n^4}frac1n+O!left(frac1nright)right]\
&=int_0^1x^4,mathrm{d}x+0\[6pt]
&=frac15
end{align}
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048275%2fexpressing-riemann-sums-as-integrals%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$sum_{k=1}^{n} k^{j} leq int_1^{n} x^{j} dx =frac {n^{j+1} -1} {j+1}$ and $frac {n^{j+1} -1} {n^{5}} to 0$ as $ n to infty$ if $j <4$. Hence, when you expand $(k-cos^{2}(k))^{4}$ all terms except $k^{4}$ give limit $0$. [Note that $cos^{2} k leq 1$].
$endgroup$
add a comment |
$begingroup$
$sum_{k=1}^{n} k^{j} leq int_1^{n} x^{j} dx =frac {n^{j+1} -1} {j+1}$ and $frac {n^{j+1} -1} {n^{5}} to 0$ as $ n to infty$ if $j <4$. Hence, when you expand $(k-cos^{2}(k))^{4}$ all terms except $k^{4}$ give limit $0$. [Note that $cos^{2} k leq 1$].
$endgroup$
add a comment |
$begingroup$
$sum_{k=1}^{n} k^{j} leq int_1^{n} x^{j} dx =frac {n^{j+1} -1} {j+1}$ and $frac {n^{j+1} -1} {n^{5}} to 0$ as $ n to infty$ if $j <4$. Hence, when you expand $(k-cos^{2}(k))^{4}$ all terms except $k^{4}$ give limit $0$. [Note that $cos^{2} k leq 1$].
$endgroup$
$sum_{k=1}^{n} k^{j} leq int_1^{n} x^{j} dx =frac {n^{j+1} -1} {j+1}$ and $frac {n^{j+1} -1} {n^{5}} to 0$ as $ n to infty$ if $j <4$. Hence, when you expand $(k-cos^{2}(k))^{4}$ all terms except $k^{4}$ give limit $0$. [Note that $cos^{2} k leq 1$].
answered Dec 21 '18 at 7:50
Kavi Rama MurthyKavi Rama Murthy
60.6k42161
60.6k42161
add a comment |
add a comment |
$begingroup$
$$sumfrac{(k-cos^2 k)^4}{n^5}=sum left(frac{k^4-4k^3cos ^2left(kright)+6k^2cos ^4left(kright)-4kcos ^6left(kright)+cos ^8left(kright)}{n^5}right)$$Every term is involving $cos k$ except the term $k^4$. Applying summation and use algebra of limits together with the fact $cos k$ is bounded by $1$ to get your result
$endgroup$
add a comment |
$begingroup$
$$sumfrac{(k-cos^2 k)^4}{n^5}=sum left(frac{k^4-4k^3cos ^2left(kright)+6k^2cos ^4left(kright)-4kcos ^6left(kright)+cos ^8left(kright)}{n^5}right)$$Every term is involving $cos k$ except the term $k^4$. Applying summation and use algebra of limits together with the fact $cos k$ is bounded by $1$ to get your result
$endgroup$
add a comment |
$begingroup$
$$sumfrac{(k-cos^2 k)^4}{n^5}=sum left(frac{k^4-4k^3cos ^2left(kright)+6k^2cos ^4left(kright)-4kcos ^6left(kright)+cos ^8left(kright)}{n^5}right)$$Every term is involving $cos k$ except the term $k^4$. Applying summation and use algebra of limits together with the fact $cos k$ is bounded by $1$ to get your result
$endgroup$
$$sumfrac{(k-cos^2 k)^4}{n^5}=sum left(frac{k^4-4k^3cos ^2left(kright)+6k^2cos ^4left(kright)-4kcos ^6left(kright)+cos ^8left(kright)}{n^5}right)$$Every term is involving $cos k$ except the term $k^4$. Applying summation and use algebra of limits together with the fact $cos k$ is bounded by $1$ to get your result
answered Dec 21 '18 at 7:58
Chinnapparaj RChinnapparaj R
5,5072928
5,5072928
add a comment |
add a comment |
$begingroup$
Since
$$
sum_{k=1}^nk^3=frac{n^2(n+1)^2}4
$$
we get
$$
begin{align}
lim_{ntoinfty}sum_{k=1}^nfrac{left(k-cos^2(k)right)^4}{n^5}
&=lim_{ntoinfty}sum_{k=1}^nleft[frac{k^4}{n^5}+O!left(frac{k^3}{n^5}right)right]\
&=lim_{ntoinfty}left[sum_{k=1}^nfrac{k^4}{n^4}frac1n+O!left(frac1nright)right]\
&=int_0^1x^4,mathrm{d}x+0\[6pt]
&=frac15
end{align}
$$
$endgroup$
add a comment |
$begingroup$
Since
$$
sum_{k=1}^nk^3=frac{n^2(n+1)^2}4
$$
we get
$$
begin{align}
lim_{ntoinfty}sum_{k=1}^nfrac{left(k-cos^2(k)right)^4}{n^5}
&=lim_{ntoinfty}sum_{k=1}^nleft[frac{k^4}{n^5}+O!left(frac{k^3}{n^5}right)right]\
&=lim_{ntoinfty}left[sum_{k=1}^nfrac{k^4}{n^4}frac1n+O!left(frac1nright)right]\
&=int_0^1x^4,mathrm{d}x+0\[6pt]
&=frac15
end{align}
$$
$endgroup$
add a comment |
$begingroup$
Since
$$
sum_{k=1}^nk^3=frac{n^2(n+1)^2}4
$$
we get
$$
begin{align}
lim_{ntoinfty}sum_{k=1}^nfrac{left(k-cos^2(k)right)^4}{n^5}
&=lim_{ntoinfty}sum_{k=1}^nleft[frac{k^4}{n^5}+O!left(frac{k^3}{n^5}right)right]\
&=lim_{ntoinfty}left[sum_{k=1}^nfrac{k^4}{n^4}frac1n+O!left(frac1nright)right]\
&=int_0^1x^4,mathrm{d}x+0\[6pt]
&=frac15
end{align}
$$
$endgroup$
Since
$$
sum_{k=1}^nk^3=frac{n^2(n+1)^2}4
$$
we get
$$
begin{align}
lim_{ntoinfty}sum_{k=1}^nfrac{left(k-cos^2(k)right)^4}{n^5}
&=lim_{ntoinfty}sum_{k=1}^nleft[frac{k^4}{n^5}+O!left(frac{k^3}{n^5}right)right]\
&=lim_{ntoinfty}left[sum_{k=1}^nfrac{k^4}{n^4}frac1n+O!left(frac1nright)right]\
&=int_0^1x^4,mathrm{d}x+0\[6pt]
&=frac15
end{align}
$$
answered Dec 21 '18 at 9:15
robjohn♦robjohn
268k27308633
268k27308633
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048275%2fexpressing-riemann-sums-as-integrals%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown