How to solve $alpha,beta$ in $frac{x}{1-x-x^2}=frac{x}{(1-alpha x)(1-beta x)}$
$begingroup$
I'm trying to understand a procedure within solving a generating function problem:
$$G(x) = dfrac{x}{1-x-x^2}=dfrac{x}{(1-alpha x)(1-beta x)}$$
I understand that the reason for this step is to utilize partial fraction s.t.
$$ =dfrac{a}{(1-alpha x)} + dfrac{b}{(1-beta x)}$$
I don't know why turning $(1-x-x^2)$ into $(1-alpha x)(1-beta x)$ is possible, and is there some formula for this case solving $alpha$ and $beta$? The method I'm familiar with is
$$(1-x-x^2)=-(x-r_1)(x-r_2)$$
then I can apply the formula $$r_i=frac{-bpmsqrt{b^2-4ac}}{2a}$$ but I don't know how to deal with the case $(1-alpha x)(1-beta x)$. I need a general method/formula to solve $alpha$ and $beta$...
algebra-precalculus
$endgroup$
add a comment |
$begingroup$
I'm trying to understand a procedure within solving a generating function problem:
$$G(x) = dfrac{x}{1-x-x^2}=dfrac{x}{(1-alpha x)(1-beta x)}$$
I understand that the reason for this step is to utilize partial fraction s.t.
$$ =dfrac{a}{(1-alpha x)} + dfrac{b}{(1-beta x)}$$
I don't know why turning $(1-x-x^2)$ into $(1-alpha x)(1-beta x)$ is possible, and is there some formula for this case solving $alpha$ and $beta$? The method I'm familiar with is
$$(1-x-x^2)=-(x-r_1)(x-r_2)$$
then I can apply the formula $$r_i=frac{-bpmsqrt{b^2-4ac}}{2a}$$ but I don't know how to deal with the case $(1-alpha x)(1-beta x)$. I need a general method/formula to solve $alpha$ and $beta$...
algebra-precalculus
$endgroup$
$begingroup$
To utilize en.wikipedia.org/wiki/Binomial_series
$endgroup$
– lab bhattacharjee
Dec 21 '18 at 7:18
2
$begingroup$
It's just factorisation. Always works over the complex numbers.
$endgroup$
– Lord Shark the Unknown
Dec 21 '18 at 7:20
$begingroup$
@LordSharktheUnknown So this is not related to testing whether $x=0$ is a root (my current idea)?
$endgroup$
– user7813604
Dec 21 '18 at 7:21
2
$begingroup$
If you have $1-x-x^2=-(x-r_1)(x-r_2)$ then $r_1r_2=1$ and then $1-x-x^2=(1-x/r_2)(1-x/r_1)$.
$endgroup$
– Lord Shark the Unknown
Dec 21 '18 at 7:31
$begingroup$
@LordSharktheUnknown: Oh so since $r_1r_2=1implies r_1,r_2not=0$ so I can divide it by $r_1cdot r_2$?
$endgroup$
– user7813604
Dec 21 '18 at 7:33
add a comment |
$begingroup$
I'm trying to understand a procedure within solving a generating function problem:
$$G(x) = dfrac{x}{1-x-x^2}=dfrac{x}{(1-alpha x)(1-beta x)}$$
I understand that the reason for this step is to utilize partial fraction s.t.
$$ =dfrac{a}{(1-alpha x)} + dfrac{b}{(1-beta x)}$$
I don't know why turning $(1-x-x^2)$ into $(1-alpha x)(1-beta x)$ is possible, and is there some formula for this case solving $alpha$ and $beta$? The method I'm familiar with is
$$(1-x-x^2)=-(x-r_1)(x-r_2)$$
then I can apply the formula $$r_i=frac{-bpmsqrt{b^2-4ac}}{2a}$$ but I don't know how to deal with the case $(1-alpha x)(1-beta x)$. I need a general method/formula to solve $alpha$ and $beta$...
algebra-precalculus
$endgroup$
I'm trying to understand a procedure within solving a generating function problem:
$$G(x) = dfrac{x}{1-x-x^2}=dfrac{x}{(1-alpha x)(1-beta x)}$$
I understand that the reason for this step is to utilize partial fraction s.t.
$$ =dfrac{a}{(1-alpha x)} + dfrac{b}{(1-beta x)}$$
I don't know why turning $(1-x-x^2)$ into $(1-alpha x)(1-beta x)$ is possible, and is there some formula for this case solving $alpha$ and $beta$? The method I'm familiar with is
$$(1-x-x^2)=-(x-r_1)(x-r_2)$$
then I can apply the formula $$r_i=frac{-bpmsqrt{b^2-4ac}}{2a}$$ but I don't know how to deal with the case $(1-alpha x)(1-beta x)$. I need a general method/formula to solve $alpha$ and $beta$...
algebra-precalculus
algebra-precalculus
edited Dec 21 '18 at 8:45
Lorenzo B.
1,8402520
1,8402520
asked Dec 21 '18 at 7:16
user7813604user7813604
15912
15912
$begingroup$
To utilize en.wikipedia.org/wiki/Binomial_series
$endgroup$
– lab bhattacharjee
Dec 21 '18 at 7:18
2
$begingroup$
It's just factorisation. Always works over the complex numbers.
$endgroup$
– Lord Shark the Unknown
Dec 21 '18 at 7:20
$begingroup$
@LordSharktheUnknown So this is not related to testing whether $x=0$ is a root (my current idea)?
$endgroup$
– user7813604
Dec 21 '18 at 7:21
2
$begingroup$
If you have $1-x-x^2=-(x-r_1)(x-r_2)$ then $r_1r_2=1$ and then $1-x-x^2=(1-x/r_2)(1-x/r_1)$.
$endgroup$
– Lord Shark the Unknown
Dec 21 '18 at 7:31
$begingroup$
@LordSharktheUnknown: Oh so since $r_1r_2=1implies r_1,r_2not=0$ so I can divide it by $r_1cdot r_2$?
$endgroup$
– user7813604
Dec 21 '18 at 7:33
add a comment |
$begingroup$
To utilize en.wikipedia.org/wiki/Binomial_series
$endgroup$
– lab bhattacharjee
Dec 21 '18 at 7:18
2
$begingroup$
It's just factorisation. Always works over the complex numbers.
$endgroup$
– Lord Shark the Unknown
Dec 21 '18 at 7:20
$begingroup$
@LordSharktheUnknown So this is not related to testing whether $x=0$ is a root (my current idea)?
$endgroup$
– user7813604
Dec 21 '18 at 7:21
2
$begingroup$
If you have $1-x-x^2=-(x-r_1)(x-r_2)$ then $r_1r_2=1$ and then $1-x-x^2=(1-x/r_2)(1-x/r_1)$.
$endgroup$
– Lord Shark the Unknown
Dec 21 '18 at 7:31
$begingroup$
@LordSharktheUnknown: Oh so since $r_1r_2=1implies r_1,r_2not=0$ so I can divide it by $r_1cdot r_2$?
$endgroup$
– user7813604
Dec 21 '18 at 7:33
$begingroup$
To utilize en.wikipedia.org/wiki/Binomial_series
$endgroup$
– lab bhattacharjee
Dec 21 '18 at 7:18
$begingroup$
To utilize en.wikipedia.org/wiki/Binomial_series
$endgroup$
– lab bhattacharjee
Dec 21 '18 at 7:18
2
2
$begingroup$
It's just factorisation. Always works over the complex numbers.
$endgroup$
– Lord Shark the Unknown
Dec 21 '18 at 7:20
$begingroup$
It's just factorisation. Always works over the complex numbers.
$endgroup$
– Lord Shark the Unknown
Dec 21 '18 at 7:20
$begingroup$
@LordSharktheUnknown So this is not related to testing whether $x=0$ is a root (my current idea)?
$endgroup$
– user7813604
Dec 21 '18 at 7:21
$begingroup$
@LordSharktheUnknown So this is not related to testing whether $x=0$ is a root (my current idea)?
$endgroup$
– user7813604
Dec 21 '18 at 7:21
2
2
$begingroup$
If you have $1-x-x^2=-(x-r_1)(x-r_2)$ then $r_1r_2=1$ and then $1-x-x^2=(1-x/r_2)(1-x/r_1)$.
$endgroup$
– Lord Shark the Unknown
Dec 21 '18 at 7:31
$begingroup$
If you have $1-x-x^2=-(x-r_1)(x-r_2)$ then $r_1r_2=1$ and then $1-x-x^2=(1-x/r_2)(1-x/r_1)$.
$endgroup$
– Lord Shark the Unknown
Dec 21 '18 at 7:31
$begingroup$
@LordSharktheUnknown: Oh so since $r_1r_2=1implies r_1,r_2not=0$ so I can divide it by $r_1cdot r_2$?
$endgroup$
– user7813604
Dec 21 '18 at 7:33
$begingroup$
@LordSharktheUnknown: Oh so since $r_1r_2=1implies r_1,r_2not=0$ so I can divide it by $r_1cdot r_2$?
$endgroup$
– user7813604
Dec 21 '18 at 7:33
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
Finally I understand @Lord Shark the Unknown's comment, it's
$$(1-x-x^2)=-(x-r_1)(x-r_2)$$
then solving for $r_1,r_2=dfrac{-1pmsqrt5}{2},$ and since $r_1r_2=-1$, simplify to
$$=dfrac{1}{r_1r_2}(x-r_1)(x-r_2)=(dfrac{x}{r_1}-1)(dfrac{x}{r_2}-1)$$
And since $dfrac{1}{r_1}=-r_2$ and $dfrac{1}{r_2}=-r_1$,
begin{align}&=(-r_2x-1)(-r_1x-1)\
&=(dfrac{1+sqrt5}{2}x-1)(dfrac{1-sqrt5}{2}x-1)end{align}
(But why $1+sqrt5over2$ is so strange...?)
$endgroup$
add a comment |
$begingroup$
If you can factor a quadratic trinomial as
$$(x-alpha')(x-beta')$$ then you can also solve for
$$(alpha x-1)(beta x-1).$$
Because
$$(alpha x-1)(beta x-1)=alphabetaleft(x-frac1alpharight)left(x-frac1betaright)$$
and the roots in the second factorization are the inverses of those in the first one.
In other words,
$$alpha,beta=frac1{alpha'},frac1{beta'}=frac{2a}{-bpmsqrt{b^2-4ac}}=frac{-bpmsqrt{b^2-4ac}}{2c}.$$
$endgroup$
add a comment |
$begingroup$
Since $1-x-x^2=0$ has two real roots, which are$$alpha=frac{-1+sqrt{5}}{2},beta=frac{-1-sqrt{5}}{2},$$We can denote$$1-x-x^2=-(x-alpha)(x-beta).$$Thus, we may assume $$frac{x}{1-x-x^2}=frac{A}{x-alpha}+frac{B}{x-beta}.tag1$$
Multiply $x-alpha$ to the both sides of $(1)$ and then let $x=alpha$. We have$$A=frac{alpha}{beta-alpha}.$$Likewise, multiply $x-beta$ to the both sides of $(1)$ and then let $x=beta$. We have$$B=frac{beta}{alpha-beta}.$$As a result,$$frac{x}{1-x-x^2}=frac{alpha}{(beta-alpha)(x-alpha)}+frac{beta}{(alpha-beta)(x-beta)}.$$
$endgroup$
add a comment |
$begingroup$
Hint: we have $$1-x-x^2=1-(alpha+beta)x+alphabeta x^2$$therefore $$begin{cases}alpha+beta=1\alphabeta=-1end{cases}$$can you finish now?
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048262%2fhow-to-solve-alpha-beta-in-fracx1-x-x2-fracx1-alpha-x1-beta%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Finally I understand @Lord Shark the Unknown's comment, it's
$$(1-x-x^2)=-(x-r_1)(x-r_2)$$
then solving for $r_1,r_2=dfrac{-1pmsqrt5}{2},$ and since $r_1r_2=-1$, simplify to
$$=dfrac{1}{r_1r_2}(x-r_1)(x-r_2)=(dfrac{x}{r_1}-1)(dfrac{x}{r_2}-1)$$
And since $dfrac{1}{r_1}=-r_2$ and $dfrac{1}{r_2}=-r_1$,
begin{align}&=(-r_2x-1)(-r_1x-1)\
&=(dfrac{1+sqrt5}{2}x-1)(dfrac{1-sqrt5}{2}x-1)end{align}
(But why $1+sqrt5over2$ is so strange...?)
$endgroup$
add a comment |
$begingroup$
Finally I understand @Lord Shark the Unknown's comment, it's
$$(1-x-x^2)=-(x-r_1)(x-r_2)$$
then solving for $r_1,r_2=dfrac{-1pmsqrt5}{2},$ and since $r_1r_2=-1$, simplify to
$$=dfrac{1}{r_1r_2}(x-r_1)(x-r_2)=(dfrac{x}{r_1}-1)(dfrac{x}{r_2}-1)$$
And since $dfrac{1}{r_1}=-r_2$ and $dfrac{1}{r_2}=-r_1$,
begin{align}&=(-r_2x-1)(-r_1x-1)\
&=(dfrac{1+sqrt5}{2}x-1)(dfrac{1-sqrt5}{2}x-1)end{align}
(But why $1+sqrt5over2$ is so strange...?)
$endgroup$
add a comment |
$begingroup$
Finally I understand @Lord Shark the Unknown's comment, it's
$$(1-x-x^2)=-(x-r_1)(x-r_2)$$
then solving for $r_1,r_2=dfrac{-1pmsqrt5}{2},$ and since $r_1r_2=-1$, simplify to
$$=dfrac{1}{r_1r_2}(x-r_1)(x-r_2)=(dfrac{x}{r_1}-1)(dfrac{x}{r_2}-1)$$
And since $dfrac{1}{r_1}=-r_2$ and $dfrac{1}{r_2}=-r_1$,
begin{align}&=(-r_2x-1)(-r_1x-1)\
&=(dfrac{1+sqrt5}{2}x-1)(dfrac{1-sqrt5}{2}x-1)end{align}
(But why $1+sqrt5over2$ is so strange...?)
$endgroup$
Finally I understand @Lord Shark the Unknown's comment, it's
$$(1-x-x^2)=-(x-r_1)(x-r_2)$$
then solving for $r_1,r_2=dfrac{-1pmsqrt5}{2},$ and since $r_1r_2=-1$, simplify to
$$=dfrac{1}{r_1r_2}(x-r_1)(x-r_2)=(dfrac{x}{r_1}-1)(dfrac{x}{r_2}-1)$$
And since $dfrac{1}{r_1}=-r_2$ and $dfrac{1}{r_2}=-r_1$,
begin{align}&=(-r_2x-1)(-r_1x-1)\
&=(dfrac{1+sqrt5}{2}x-1)(dfrac{1-sqrt5}{2}x-1)end{align}
(But why $1+sqrt5over2$ is so strange...?)
answered Dec 21 '18 at 8:04
community wiki
user7813604
add a comment |
add a comment |
$begingroup$
If you can factor a quadratic trinomial as
$$(x-alpha')(x-beta')$$ then you can also solve for
$$(alpha x-1)(beta x-1).$$
Because
$$(alpha x-1)(beta x-1)=alphabetaleft(x-frac1alpharight)left(x-frac1betaright)$$
and the roots in the second factorization are the inverses of those in the first one.
In other words,
$$alpha,beta=frac1{alpha'},frac1{beta'}=frac{2a}{-bpmsqrt{b^2-4ac}}=frac{-bpmsqrt{b^2-4ac}}{2c}.$$
$endgroup$
add a comment |
$begingroup$
If you can factor a quadratic trinomial as
$$(x-alpha')(x-beta')$$ then you can also solve for
$$(alpha x-1)(beta x-1).$$
Because
$$(alpha x-1)(beta x-1)=alphabetaleft(x-frac1alpharight)left(x-frac1betaright)$$
and the roots in the second factorization are the inverses of those in the first one.
In other words,
$$alpha,beta=frac1{alpha'},frac1{beta'}=frac{2a}{-bpmsqrt{b^2-4ac}}=frac{-bpmsqrt{b^2-4ac}}{2c}.$$
$endgroup$
add a comment |
$begingroup$
If you can factor a quadratic trinomial as
$$(x-alpha')(x-beta')$$ then you can also solve for
$$(alpha x-1)(beta x-1).$$
Because
$$(alpha x-1)(beta x-1)=alphabetaleft(x-frac1alpharight)left(x-frac1betaright)$$
and the roots in the second factorization are the inverses of those in the first one.
In other words,
$$alpha,beta=frac1{alpha'},frac1{beta'}=frac{2a}{-bpmsqrt{b^2-4ac}}=frac{-bpmsqrt{b^2-4ac}}{2c}.$$
$endgroup$
If you can factor a quadratic trinomial as
$$(x-alpha')(x-beta')$$ then you can also solve for
$$(alpha x-1)(beta x-1).$$
Because
$$(alpha x-1)(beta x-1)=alphabetaleft(x-frac1alpharight)left(x-frac1betaright)$$
and the roots in the second factorization are the inverses of those in the first one.
In other words,
$$alpha,beta=frac1{alpha'},frac1{beta'}=frac{2a}{-bpmsqrt{b^2-4ac}}=frac{-bpmsqrt{b^2-4ac}}{2c}.$$
edited Dec 21 '18 at 8:29
answered Dec 21 '18 at 8:23
Yves DaoustYves Daoust
128k675227
128k675227
add a comment |
add a comment |
$begingroup$
Since $1-x-x^2=0$ has two real roots, which are$$alpha=frac{-1+sqrt{5}}{2},beta=frac{-1-sqrt{5}}{2},$$We can denote$$1-x-x^2=-(x-alpha)(x-beta).$$Thus, we may assume $$frac{x}{1-x-x^2}=frac{A}{x-alpha}+frac{B}{x-beta}.tag1$$
Multiply $x-alpha$ to the both sides of $(1)$ and then let $x=alpha$. We have$$A=frac{alpha}{beta-alpha}.$$Likewise, multiply $x-beta$ to the both sides of $(1)$ and then let $x=beta$. We have$$B=frac{beta}{alpha-beta}.$$As a result,$$frac{x}{1-x-x^2}=frac{alpha}{(beta-alpha)(x-alpha)}+frac{beta}{(alpha-beta)(x-beta)}.$$
$endgroup$
add a comment |
$begingroup$
Since $1-x-x^2=0$ has two real roots, which are$$alpha=frac{-1+sqrt{5}}{2},beta=frac{-1-sqrt{5}}{2},$$We can denote$$1-x-x^2=-(x-alpha)(x-beta).$$Thus, we may assume $$frac{x}{1-x-x^2}=frac{A}{x-alpha}+frac{B}{x-beta}.tag1$$
Multiply $x-alpha$ to the both sides of $(1)$ and then let $x=alpha$. We have$$A=frac{alpha}{beta-alpha}.$$Likewise, multiply $x-beta$ to the both sides of $(1)$ and then let $x=beta$. We have$$B=frac{beta}{alpha-beta}.$$As a result,$$frac{x}{1-x-x^2}=frac{alpha}{(beta-alpha)(x-alpha)}+frac{beta}{(alpha-beta)(x-beta)}.$$
$endgroup$
add a comment |
$begingroup$
Since $1-x-x^2=0$ has two real roots, which are$$alpha=frac{-1+sqrt{5}}{2},beta=frac{-1-sqrt{5}}{2},$$We can denote$$1-x-x^2=-(x-alpha)(x-beta).$$Thus, we may assume $$frac{x}{1-x-x^2}=frac{A}{x-alpha}+frac{B}{x-beta}.tag1$$
Multiply $x-alpha$ to the both sides of $(1)$ and then let $x=alpha$. We have$$A=frac{alpha}{beta-alpha}.$$Likewise, multiply $x-beta$ to the both sides of $(1)$ and then let $x=beta$. We have$$B=frac{beta}{alpha-beta}.$$As a result,$$frac{x}{1-x-x^2}=frac{alpha}{(beta-alpha)(x-alpha)}+frac{beta}{(alpha-beta)(x-beta)}.$$
$endgroup$
Since $1-x-x^2=0$ has two real roots, which are$$alpha=frac{-1+sqrt{5}}{2},beta=frac{-1-sqrt{5}}{2},$$We can denote$$1-x-x^2=-(x-alpha)(x-beta).$$Thus, we may assume $$frac{x}{1-x-x^2}=frac{A}{x-alpha}+frac{B}{x-beta}.tag1$$
Multiply $x-alpha$ to the both sides of $(1)$ and then let $x=alpha$. We have$$A=frac{alpha}{beta-alpha}.$$Likewise, multiply $x-beta$ to the both sides of $(1)$ and then let $x=beta$. We have$$B=frac{beta}{alpha-beta}.$$As a result,$$frac{x}{1-x-x^2}=frac{alpha}{(beta-alpha)(x-alpha)}+frac{beta}{(alpha-beta)(x-beta)}.$$
answered Dec 21 '18 at 8:09
mengdie1982mengdie1982
4,897618
4,897618
add a comment |
add a comment |
$begingroup$
Hint: we have $$1-x-x^2=1-(alpha+beta)x+alphabeta x^2$$therefore $$begin{cases}alpha+beta=1\alphabeta=-1end{cases}$$can you finish now?
$endgroup$
add a comment |
$begingroup$
Hint: we have $$1-x-x^2=1-(alpha+beta)x+alphabeta x^2$$therefore $$begin{cases}alpha+beta=1\alphabeta=-1end{cases}$$can you finish now?
$endgroup$
add a comment |
$begingroup$
Hint: we have $$1-x-x^2=1-(alpha+beta)x+alphabeta x^2$$therefore $$begin{cases}alpha+beta=1\alphabeta=-1end{cases}$$can you finish now?
$endgroup$
Hint: we have $$1-x-x^2=1-(alpha+beta)x+alphabeta x^2$$therefore $$begin{cases}alpha+beta=1\alphabeta=-1end{cases}$$can you finish now?
answered Dec 21 '18 at 10:30
Mostafa AyazMostafa Ayaz
15.6k3939
15.6k3939
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048262%2fhow-to-solve-alpha-beta-in-fracx1-x-x2-fracx1-alpha-x1-beta%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
To utilize en.wikipedia.org/wiki/Binomial_series
$endgroup$
– lab bhattacharjee
Dec 21 '18 at 7:18
2
$begingroup$
It's just factorisation. Always works over the complex numbers.
$endgroup$
– Lord Shark the Unknown
Dec 21 '18 at 7:20
$begingroup$
@LordSharktheUnknown So this is not related to testing whether $x=0$ is a root (my current idea)?
$endgroup$
– user7813604
Dec 21 '18 at 7:21
2
$begingroup$
If you have $1-x-x^2=-(x-r_1)(x-r_2)$ then $r_1r_2=1$ and then $1-x-x^2=(1-x/r_2)(1-x/r_1)$.
$endgroup$
– Lord Shark the Unknown
Dec 21 '18 at 7:31
$begingroup$
@LordSharktheUnknown: Oh so since $r_1r_2=1implies r_1,r_2not=0$ so I can divide it by $r_1cdot r_2$?
$endgroup$
– user7813604
Dec 21 '18 at 7:33