Non-real complex numbers are roots of polynomials with positive real coefficients
$begingroup$
Prove this:
For every $zinmathbb{C}$ with nonzero imaginary part, there exists a polynomial $p(x)=a_0+a_1x+a_2x^2+cdots + a_nx^n$ such that $a_k>0$ for every nonnegative $kleqslant n$, with $p(z)=0$.
For instance, $i$ is a zero of $1+x+x^2+x^3.$
I could reduce the problem to $z=a+i.$ That is, the statement is proved if the following can be shown:
For every $ainmathbb{R},$ there exists a polynomial $p(x)=a_0+a_1x+a_2x^2+cdots + a_nx^n$ such that $a_k>0$ for every nonnegative $kleqslant n$, with $p(a+i)=0$.
But I could not show this. Perhaps, the general statement is easier to prove! Any help will be appreciated.
complex-analysis polynomials
$endgroup$
add a comment |
$begingroup$
Prove this:
For every $zinmathbb{C}$ with nonzero imaginary part, there exists a polynomial $p(x)=a_0+a_1x+a_2x^2+cdots + a_nx^n$ such that $a_k>0$ for every nonnegative $kleqslant n$, with $p(z)=0$.
For instance, $i$ is a zero of $1+x+x^2+x^3.$
I could reduce the problem to $z=a+i.$ That is, the statement is proved if the following can be shown:
For every $ainmathbb{R},$ there exists a polynomial $p(x)=a_0+a_1x+a_2x^2+cdots + a_nx^n$ such that $a_k>0$ for every nonnegative $kleqslant n$, with $p(a+i)=0$.
But I could not show this. Perhaps, the general statement is easier to prove! Any help will be appreciated.
complex-analysis polynomials
$endgroup$
add a comment |
$begingroup$
Prove this:
For every $zinmathbb{C}$ with nonzero imaginary part, there exists a polynomial $p(x)=a_0+a_1x+a_2x^2+cdots + a_nx^n$ such that $a_k>0$ for every nonnegative $kleqslant n$, with $p(z)=0$.
For instance, $i$ is a zero of $1+x+x^2+x^3.$
I could reduce the problem to $z=a+i.$ That is, the statement is proved if the following can be shown:
For every $ainmathbb{R},$ there exists a polynomial $p(x)=a_0+a_1x+a_2x^2+cdots + a_nx^n$ such that $a_k>0$ for every nonnegative $kleqslant n$, with $p(a+i)=0$.
But I could not show this. Perhaps, the general statement is easier to prove! Any help will be appreciated.
complex-analysis polynomials
$endgroup$
Prove this:
For every $zinmathbb{C}$ with nonzero imaginary part, there exists a polynomial $p(x)=a_0+a_1x+a_2x^2+cdots + a_nx^n$ such that $a_k>0$ for every nonnegative $kleqslant n$, with $p(z)=0$.
For instance, $i$ is a zero of $1+x+x^2+x^3.$
I could reduce the problem to $z=a+i.$ That is, the statement is proved if the following can be shown:
For every $ainmathbb{R},$ there exists a polynomial $p(x)=a_0+a_1x+a_2x^2+cdots + a_nx^n$ such that $a_k>0$ for every nonnegative $kleqslant n$, with $p(a+i)=0$.
But I could not show this. Perhaps, the general statement is easier to prove! Any help will be appreciated.
complex-analysis polynomials
complex-analysis polynomials
edited Dec 21 '18 at 13:20
Did
248k23224462
248k23224462
asked Dec 21 '18 at 11:12
ArvindArvind
885
885
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
We start from the simple observation: if $a< 0$, then
$$
p(z) = z^2 -2az+a^2+1
$$ satisfies the condition. If $ageq 0$, we can find $nin mathbb{N}$ such that $Re[(a+i)^n]< 0.$ Let $b = (a+i)^n$. Then,
$$
(z^{2n} -2Re[b]z^n +|b|^2)(z^n+z^{n-1} +cdots +1)
$$ satisfies the condition.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048407%2fnon-real-complex-numbers-are-roots-of-polynomials-with-positive-real-coefficient%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We start from the simple observation: if $a< 0$, then
$$
p(z) = z^2 -2az+a^2+1
$$ satisfies the condition. If $ageq 0$, we can find $nin mathbb{N}$ such that $Re[(a+i)^n]< 0.$ Let $b = (a+i)^n$. Then,
$$
(z^{2n} -2Re[b]z^n +|b|^2)(z^n+z^{n-1} +cdots +1)
$$ satisfies the condition.
$endgroup$
add a comment |
$begingroup$
We start from the simple observation: if $a< 0$, then
$$
p(z) = z^2 -2az+a^2+1
$$ satisfies the condition. If $ageq 0$, we can find $nin mathbb{N}$ such that $Re[(a+i)^n]< 0.$ Let $b = (a+i)^n$. Then,
$$
(z^{2n} -2Re[b]z^n +|b|^2)(z^n+z^{n-1} +cdots +1)
$$ satisfies the condition.
$endgroup$
add a comment |
$begingroup$
We start from the simple observation: if $a< 0$, then
$$
p(z) = z^2 -2az+a^2+1
$$ satisfies the condition. If $ageq 0$, we can find $nin mathbb{N}$ such that $Re[(a+i)^n]< 0.$ Let $b = (a+i)^n$. Then,
$$
(z^{2n} -2Re[b]z^n +|b|^2)(z^n+z^{n-1} +cdots +1)
$$ satisfies the condition.
$endgroup$
We start from the simple observation: if $a< 0$, then
$$
p(z) = z^2 -2az+a^2+1
$$ satisfies the condition. If $ageq 0$, we can find $nin mathbb{N}$ such that $Re[(a+i)^n]< 0.$ Let $b = (a+i)^n$. Then,
$$
(z^{2n} -2Re[b]z^n +|b|^2)(z^n+z^{n-1} +cdots +1)
$$ satisfies the condition.
edited Dec 21 '18 at 13:36
J.G.
27.1k22843
27.1k22843
answered Dec 21 '18 at 13:31
SongSong
13.9k633
13.9k633
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048407%2fnon-real-complex-numbers-are-roots-of-polynomials-with-positive-real-coefficient%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown