Find the sum of these variables.












1












$begingroup$


Five real numbers $a_1, a_2, a_3, a_4;text{and}; a_5;$ are such that



$$sqrt{a_1- 1} + 2sqrt{a_2- 4}+3sqrt{a_3- 9}
+4sqrt{a_4- 16} + 5 sqrt{a_4- 25} =frac{a_1+a_2+a_3+a_4+a_5}{2}.$$



Find $a_1+a_2+a_3+a_4+a_5.$



Thanks for checking this out!










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    Five real numbers $a_1, a_2, a_3, a_4;text{and}; a_5;$ are such that



    $$sqrt{a_1- 1} + 2sqrt{a_2- 4}+3sqrt{a_3- 9}
    +4sqrt{a_4- 16} + 5 sqrt{a_4- 25} =frac{a_1+a_2+a_3+a_4+a_5}{2}.$$



    Find $a_1+a_2+a_3+a_4+a_5.$



    Thanks for checking this out!










    share|cite|improve this question











    $endgroup$















      1












      1








      1


      2



      $begingroup$


      Five real numbers $a_1, a_2, a_3, a_4;text{and}; a_5;$ are such that



      $$sqrt{a_1- 1} + 2sqrt{a_2- 4}+3sqrt{a_3- 9}
      +4sqrt{a_4- 16} + 5 sqrt{a_4- 25} =frac{a_1+a_2+a_3+a_4+a_5}{2}.$$



      Find $a_1+a_2+a_3+a_4+a_5.$



      Thanks for checking this out!










      share|cite|improve this question











      $endgroup$




      Five real numbers $a_1, a_2, a_3, a_4;text{and}; a_5;$ are such that



      $$sqrt{a_1- 1} + 2sqrt{a_2- 4}+3sqrt{a_3- 9}
      +4sqrt{a_4- 16} + 5 sqrt{a_4- 25} =frac{a_1+a_2+a_3+a_4+a_5}{2}.$$



      Find $a_1+a_2+a_3+a_4+a_5.$



      Thanks for checking this out!







      algebra-precalculus






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 14 '18 at 19:07









      user376343

      3,7783827




      3,7783827










      asked Dec 14 '18 at 17:05









      Sidharth A SSidharth A S

      111




      111






















          2 Answers
          2






          active

          oldest

          votes


















          4












          $begingroup$

          For real $sqrt{a-b^2},$ we need $a-b^2ge0$



          and for $b>0,$ and as $sqrt{a-b^2}ge0$ by AM-GM inequality,



          $$dfrac{(sqrt{a-b^2})^2+(b)^2}2ge bsqrt{a-b^2}$$



          the equality will occur if $sqrt{a-b^2}=b$



          $$impliesdfrac{(sqrt{a_1-1})^2+1^2+cdots+(sqrt{a_5-5^2})^2+5^2}2=dfrac{a_1+a_2+a_3+a_4+a_5}2 ge sqrt{a_1-1}+cdots$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            @MathLover, Please free to rectify
            $endgroup$
            – lab bhattacharjee
            Dec 14 '18 at 17:18










          • $begingroup$
            Sorry, but what does that first equation mean?
            $endgroup$
            – Sidharth A S
            Dec 14 '18 at 17:19










          • $begingroup$
            @SidharthAS, en.wikipedia.org/wiki/…
            $endgroup$
            – lab bhattacharjee
            Dec 14 '18 at 17:22



















          2












          $begingroup$

          Define$$b_1=sqrt{a_1-1}\b_2=sqrt{a_2-4}\b_3=sqrt{a_3-9}\b_4=sqrt{a_4-16}\b_5=sqrt{a_5-25}\$$therefore by substitution we have $$b_1+2b_2+3b_3+4b_4+5b_5={b_1^2+b_2^2+b_3^2+b_4^2+b_5^2over 2}+{55over 2}$$or$$2b_1+4b_2+6b_3+8b_4+10b_5={b_1^2+b_2^2+b_3^2+b_4^2+b_5^2}+{55}$$by rearranging we obtain$$(b_1-1)^2+(b_2-2)^2+(b_3-3)^2+(b_4-4)^2+(b_5-5)^2=0$$therefore $$b_i=iquad ,quad i=1,2,3,4,5$$and we have $$a_i=2i^2$$which yields to $$sum a_i=110$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            excellent solution!!!
            $endgroup$
            – user376343
            Dec 16 '18 at 10:48











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3039644%2ffind-the-sum-of-these-variables%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          4












          $begingroup$

          For real $sqrt{a-b^2},$ we need $a-b^2ge0$



          and for $b>0,$ and as $sqrt{a-b^2}ge0$ by AM-GM inequality,



          $$dfrac{(sqrt{a-b^2})^2+(b)^2}2ge bsqrt{a-b^2}$$



          the equality will occur if $sqrt{a-b^2}=b$



          $$impliesdfrac{(sqrt{a_1-1})^2+1^2+cdots+(sqrt{a_5-5^2})^2+5^2}2=dfrac{a_1+a_2+a_3+a_4+a_5}2 ge sqrt{a_1-1}+cdots$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            @MathLover, Please free to rectify
            $endgroup$
            – lab bhattacharjee
            Dec 14 '18 at 17:18










          • $begingroup$
            Sorry, but what does that first equation mean?
            $endgroup$
            – Sidharth A S
            Dec 14 '18 at 17:19










          • $begingroup$
            @SidharthAS, en.wikipedia.org/wiki/…
            $endgroup$
            – lab bhattacharjee
            Dec 14 '18 at 17:22
















          4












          $begingroup$

          For real $sqrt{a-b^2},$ we need $a-b^2ge0$



          and for $b>0,$ and as $sqrt{a-b^2}ge0$ by AM-GM inequality,



          $$dfrac{(sqrt{a-b^2})^2+(b)^2}2ge bsqrt{a-b^2}$$



          the equality will occur if $sqrt{a-b^2}=b$



          $$impliesdfrac{(sqrt{a_1-1})^2+1^2+cdots+(sqrt{a_5-5^2})^2+5^2}2=dfrac{a_1+a_2+a_3+a_4+a_5}2 ge sqrt{a_1-1}+cdots$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            @MathLover, Please free to rectify
            $endgroup$
            – lab bhattacharjee
            Dec 14 '18 at 17:18










          • $begingroup$
            Sorry, but what does that first equation mean?
            $endgroup$
            – Sidharth A S
            Dec 14 '18 at 17:19










          • $begingroup$
            @SidharthAS, en.wikipedia.org/wiki/…
            $endgroup$
            – lab bhattacharjee
            Dec 14 '18 at 17:22














          4












          4








          4





          $begingroup$

          For real $sqrt{a-b^2},$ we need $a-b^2ge0$



          and for $b>0,$ and as $sqrt{a-b^2}ge0$ by AM-GM inequality,



          $$dfrac{(sqrt{a-b^2})^2+(b)^2}2ge bsqrt{a-b^2}$$



          the equality will occur if $sqrt{a-b^2}=b$



          $$impliesdfrac{(sqrt{a_1-1})^2+1^2+cdots+(sqrt{a_5-5^2})^2+5^2}2=dfrac{a_1+a_2+a_3+a_4+a_5}2 ge sqrt{a_1-1}+cdots$$






          share|cite|improve this answer











          $endgroup$



          For real $sqrt{a-b^2},$ we need $a-b^2ge0$



          and for $b>0,$ and as $sqrt{a-b^2}ge0$ by AM-GM inequality,



          $$dfrac{(sqrt{a-b^2})^2+(b)^2}2ge bsqrt{a-b^2}$$



          the equality will occur if $sqrt{a-b^2}=b$



          $$impliesdfrac{(sqrt{a_1-1})^2+1^2+cdots+(sqrt{a_5-5^2})^2+5^2}2=dfrac{a_1+a_2+a_3+a_4+a_5}2 ge sqrt{a_1-1}+cdots$$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Dec 14 '18 at 17:39

























          answered Dec 14 '18 at 17:16









          lab bhattacharjeelab bhattacharjee

          225k15157275




          225k15157275












          • $begingroup$
            @MathLover, Please free to rectify
            $endgroup$
            – lab bhattacharjee
            Dec 14 '18 at 17:18










          • $begingroup$
            Sorry, but what does that first equation mean?
            $endgroup$
            – Sidharth A S
            Dec 14 '18 at 17:19










          • $begingroup$
            @SidharthAS, en.wikipedia.org/wiki/…
            $endgroup$
            – lab bhattacharjee
            Dec 14 '18 at 17:22


















          • $begingroup$
            @MathLover, Please free to rectify
            $endgroup$
            – lab bhattacharjee
            Dec 14 '18 at 17:18










          • $begingroup$
            Sorry, but what does that first equation mean?
            $endgroup$
            – Sidharth A S
            Dec 14 '18 at 17:19










          • $begingroup$
            @SidharthAS, en.wikipedia.org/wiki/…
            $endgroup$
            – lab bhattacharjee
            Dec 14 '18 at 17:22
















          $begingroup$
          @MathLover, Please free to rectify
          $endgroup$
          – lab bhattacharjee
          Dec 14 '18 at 17:18




          $begingroup$
          @MathLover, Please free to rectify
          $endgroup$
          – lab bhattacharjee
          Dec 14 '18 at 17:18












          $begingroup$
          Sorry, but what does that first equation mean?
          $endgroup$
          – Sidharth A S
          Dec 14 '18 at 17:19




          $begingroup$
          Sorry, but what does that first equation mean?
          $endgroup$
          – Sidharth A S
          Dec 14 '18 at 17:19












          $begingroup$
          @SidharthAS, en.wikipedia.org/wiki/…
          $endgroup$
          – lab bhattacharjee
          Dec 14 '18 at 17:22




          $begingroup$
          @SidharthAS, en.wikipedia.org/wiki/…
          $endgroup$
          – lab bhattacharjee
          Dec 14 '18 at 17:22











          2












          $begingroup$

          Define$$b_1=sqrt{a_1-1}\b_2=sqrt{a_2-4}\b_3=sqrt{a_3-9}\b_4=sqrt{a_4-16}\b_5=sqrt{a_5-25}\$$therefore by substitution we have $$b_1+2b_2+3b_3+4b_4+5b_5={b_1^2+b_2^2+b_3^2+b_4^2+b_5^2over 2}+{55over 2}$$or$$2b_1+4b_2+6b_3+8b_4+10b_5={b_1^2+b_2^2+b_3^2+b_4^2+b_5^2}+{55}$$by rearranging we obtain$$(b_1-1)^2+(b_2-2)^2+(b_3-3)^2+(b_4-4)^2+(b_5-5)^2=0$$therefore $$b_i=iquad ,quad i=1,2,3,4,5$$and we have $$a_i=2i^2$$which yields to $$sum a_i=110$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            excellent solution!!!
            $endgroup$
            – user376343
            Dec 16 '18 at 10:48
















          2












          $begingroup$

          Define$$b_1=sqrt{a_1-1}\b_2=sqrt{a_2-4}\b_3=sqrt{a_3-9}\b_4=sqrt{a_4-16}\b_5=sqrt{a_5-25}\$$therefore by substitution we have $$b_1+2b_2+3b_3+4b_4+5b_5={b_1^2+b_2^2+b_3^2+b_4^2+b_5^2over 2}+{55over 2}$$or$$2b_1+4b_2+6b_3+8b_4+10b_5={b_1^2+b_2^2+b_3^2+b_4^2+b_5^2}+{55}$$by rearranging we obtain$$(b_1-1)^2+(b_2-2)^2+(b_3-3)^2+(b_4-4)^2+(b_5-5)^2=0$$therefore $$b_i=iquad ,quad i=1,2,3,4,5$$and we have $$a_i=2i^2$$which yields to $$sum a_i=110$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            excellent solution!!!
            $endgroup$
            – user376343
            Dec 16 '18 at 10:48














          2












          2








          2





          $begingroup$

          Define$$b_1=sqrt{a_1-1}\b_2=sqrt{a_2-4}\b_3=sqrt{a_3-9}\b_4=sqrt{a_4-16}\b_5=sqrt{a_5-25}\$$therefore by substitution we have $$b_1+2b_2+3b_3+4b_4+5b_5={b_1^2+b_2^2+b_3^2+b_4^2+b_5^2over 2}+{55over 2}$$or$$2b_1+4b_2+6b_3+8b_4+10b_5={b_1^2+b_2^2+b_3^2+b_4^2+b_5^2}+{55}$$by rearranging we obtain$$(b_1-1)^2+(b_2-2)^2+(b_3-3)^2+(b_4-4)^2+(b_5-5)^2=0$$therefore $$b_i=iquad ,quad i=1,2,3,4,5$$and we have $$a_i=2i^2$$which yields to $$sum a_i=110$$






          share|cite|improve this answer









          $endgroup$



          Define$$b_1=sqrt{a_1-1}\b_2=sqrt{a_2-4}\b_3=sqrt{a_3-9}\b_4=sqrt{a_4-16}\b_5=sqrt{a_5-25}\$$therefore by substitution we have $$b_1+2b_2+3b_3+4b_4+5b_5={b_1^2+b_2^2+b_3^2+b_4^2+b_5^2over 2}+{55over 2}$$or$$2b_1+4b_2+6b_3+8b_4+10b_5={b_1^2+b_2^2+b_3^2+b_4^2+b_5^2}+{55}$$by rearranging we obtain$$(b_1-1)^2+(b_2-2)^2+(b_3-3)^2+(b_4-4)^2+(b_5-5)^2=0$$therefore $$b_i=iquad ,quad i=1,2,3,4,5$$and we have $$a_i=2i^2$$which yields to $$sum a_i=110$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 14 '18 at 21:25









          Mostafa AyazMostafa Ayaz

          15.6k3939




          15.6k3939












          • $begingroup$
            excellent solution!!!
            $endgroup$
            – user376343
            Dec 16 '18 at 10:48


















          • $begingroup$
            excellent solution!!!
            $endgroup$
            – user376343
            Dec 16 '18 at 10:48
















          $begingroup$
          excellent solution!!!
          $endgroup$
          – user376343
          Dec 16 '18 at 10:48




          $begingroup$
          excellent solution!!!
          $endgroup$
          – user376343
          Dec 16 '18 at 10:48


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3039644%2ffind-the-sum-of-these-variables%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Ellipse (mathématiques)

          Quarter-circle Tiles

          Mont Emei