Question arising from the proof of the existence of $mathbb E[X]$ when $X$ ~ $mathcal{N}(mu, sigma ^2)$












0












$begingroup$


$mathbb E[X]$ when $X$ ~ $mathcal{N}(mu, sigma ^2)$



I know that $mathbb E[X]$ exists iff $mathbb E[|X|]<infty$



$mathbb E[|X|]=int_{mathbb R}|x|frac{1}{sqrt{2pi sigma^2}}e^{-frac{(x-mu)}{2sigma^2}}dx$



My Professor then goes into the next step saying:
$int_{mathbb R}|x|frac{1}{sqrt{2pi sigma^2}}e^{-frac{(x-mu)}{2sigma^2}}dxleqint_{mathbb R}|x-mu|frac{1}{sqrt{2pi sigma^2}}e^{-frac{(x-mu)}{2sigma^2}}dx+mu$



and this is where I get confused.



I recognize that he is trying to get to a substitution $y=x-mu$, and $mathbb E[|X|]=mathbb E[|X-mu+mu|]leqmathbb E[|X-mu|]+mu$



But why is $mathbb E[|X-mu|]=int_{mathbb R}|x-mu|frac{1}{sqrt{2pi sigma^2}}e^{-frac{(x-mu)}{2sigma^2}}dx$ and not equal $int_{mathbb R}|x-mu|frac{1}{sqrt{2pi sigma^2}}e^{-frac{(x-2mu)}{2sigma^2}}dx$. I mean surely the density function $frac{1}{sqrt{2pi sigma^2}}e^{-frac{(x-2mu)}{2sigma^2}}$ shifts to the left if $mu$ is subtracted.



Additional Question out of interest:
If I can prove $mathbb E[X] in mathbb R$, can I then automatically assume $mathbb E[X]$ exists? In other words, why is $mathbb E[|X|]<infty$ neccessary rather than $mathbb E[X]$? I realize that it has something to do with the Lebesgue Integral that only looks at positive functions, but I am not sure.










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    $mathbb E[X]$ when $X$ ~ $mathcal{N}(mu, sigma ^2)$



    I know that $mathbb E[X]$ exists iff $mathbb E[|X|]<infty$



    $mathbb E[|X|]=int_{mathbb R}|x|frac{1}{sqrt{2pi sigma^2}}e^{-frac{(x-mu)}{2sigma^2}}dx$



    My Professor then goes into the next step saying:
    $int_{mathbb R}|x|frac{1}{sqrt{2pi sigma^2}}e^{-frac{(x-mu)}{2sigma^2}}dxleqint_{mathbb R}|x-mu|frac{1}{sqrt{2pi sigma^2}}e^{-frac{(x-mu)}{2sigma^2}}dx+mu$



    and this is where I get confused.



    I recognize that he is trying to get to a substitution $y=x-mu$, and $mathbb E[|X|]=mathbb E[|X-mu+mu|]leqmathbb E[|X-mu|]+mu$



    But why is $mathbb E[|X-mu|]=int_{mathbb R}|x-mu|frac{1}{sqrt{2pi sigma^2}}e^{-frac{(x-mu)}{2sigma^2}}dx$ and not equal $int_{mathbb R}|x-mu|frac{1}{sqrt{2pi sigma^2}}e^{-frac{(x-2mu)}{2sigma^2}}dx$. I mean surely the density function $frac{1}{sqrt{2pi sigma^2}}e^{-frac{(x-2mu)}{2sigma^2}}$ shifts to the left if $mu$ is subtracted.



    Additional Question out of interest:
    If I can prove $mathbb E[X] in mathbb R$, can I then automatically assume $mathbb E[X]$ exists? In other words, why is $mathbb E[|X|]<infty$ neccessary rather than $mathbb E[X]$? I realize that it has something to do with the Lebesgue Integral that only looks at positive functions, but I am not sure.










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      $mathbb E[X]$ when $X$ ~ $mathcal{N}(mu, sigma ^2)$



      I know that $mathbb E[X]$ exists iff $mathbb E[|X|]<infty$



      $mathbb E[|X|]=int_{mathbb R}|x|frac{1}{sqrt{2pi sigma^2}}e^{-frac{(x-mu)}{2sigma^2}}dx$



      My Professor then goes into the next step saying:
      $int_{mathbb R}|x|frac{1}{sqrt{2pi sigma^2}}e^{-frac{(x-mu)}{2sigma^2}}dxleqint_{mathbb R}|x-mu|frac{1}{sqrt{2pi sigma^2}}e^{-frac{(x-mu)}{2sigma^2}}dx+mu$



      and this is where I get confused.



      I recognize that he is trying to get to a substitution $y=x-mu$, and $mathbb E[|X|]=mathbb E[|X-mu+mu|]leqmathbb E[|X-mu|]+mu$



      But why is $mathbb E[|X-mu|]=int_{mathbb R}|x-mu|frac{1}{sqrt{2pi sigma^2}}e^{-frac{(x-mu)}{2sigma^2}}dx$ and not equal $int_{mathbb R}|x-mu|frac{1}{sqrt{2pi sigma^2}}e^{-frac{(x-2mu)}{2sigma^2}}dx$. I mean surely the density function $frac{1}{sqrt{2pi sigma^2}}e^{-frac{(x-2mu)}{2sigma^2}}$ shifts to the left if $mu$ is subtracted.



      Additional Question out of interest:
      If I can prove $mathbb E[X] in mathbb R$, can I then automatically assume $mathbb E[X]$ exists? In other words, why is $mathbb E[|X|]<infty$ neccessary rather than $mathbb E[X]$? I realize that it has something to do with the Lebesgue Integral that only looks at positive functions, but I am not sure.










      share|cite|improve this question









      $endgroup$




      $mathbb E[X]$ when $X$ ~ $mathcal{N}(mu, sigma ^2)$



      I know that $mathbb E[X]$ exists iff $mathbb E[|X|]<infty$



      $mathbb E[|X|]=int_{mathbb R}|x|frac{1}{sqrt{2pi sigma^2}}e^{-frac{(x-mu)}{2sigma^2}}dx$



      My Professor then goes into the next step saying:
      $int_{mathbb R}|x|frac{1}{sqrt{2pi sigma^2}}e^{-frac{(x-mu)}{2sigma^2}}dxleqint_{mathbb R}|x-mu|frac{1}{sqrt{2pi sigma^2}}e^{-frac{(x-mu)}{2sigma^2}}dx+mu$



      and this is where I get confused.



      I recognize that he is trying to get to a substitution $y=x-mu$, and $mathbb E[|X|]=mathbb E[|X-mu+mu|]leqmathbb E[|X-mu|]+mu$



      But why is $mathbb E[|X-mu|]=int_{mathbb R}|x-mu|frac{1}{sqrt{2pi sigma^2}}e^{-frac{(x-mu)}{2sigma^2}}dx$ and not equal $int_{mathbb R}|x-mu|frac{1}{sqrt{2pi sigma^2}}e^{-frac{(x-2mu)}{2sigma^2}}dx$. I mean surely the density function $frac{1}{sqrt{2pi sigma^2}}e^{-frac{(x-2mu)}{2sigma^2}}$ shifts to the left if $mu$ is subtracted.



      Additional Question out of interest:
      If I can prove $mathbb E[X] in mathbb R$, can I then automatically assume $mathbb E[X]$ exists? In other words, why is $mathbb E[|X|]<infty$ neccessary rather than $mathbb E[X]$? I realize that it has something to do with the Lebesgue Integral that only looks at positive functions, but I am not sure.







      probability normal-distribution expected-value






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 14 '18 at 16:46









      SABOYSABOY

      699311




      699311






















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          What your professor did is simply applying the triangle inequality (assuming $mugeq 0$)
          $$
          |x|leq|x-mu|+mu,
          $$

          which implies that
          begin{align}
          int_{mathbb R}|x|frac{1}{sqrt{2pi sigma^2}}e^{-frac{(x-mu)}{2sigma^2}}dx
          &leq
          int_{mathbb R}|x-mu|frac{1}{sqrt{2pi sigma^2}}e^{-frac{(x-mu)}{2sigma^2}}dx
          +int_{mathbb R}mufrac{1}{sqrt{2pi sigma^2}}e^{-frac{(x-mu)}{2sigma^2}}dx\
          &=
          int_{mathbb R}|x-mu|frac{1}{sqrt{2pi sigma^2}}e^{-frac{(x-mu)}{2sigma^2}}dx
          +mu.
          end{align}



          For the additional question: lots of authors define $EX$ only for absolutely integrable random variables (i.e., $E|X|<infty$) and leave $EX$ undefined when $E|X|=infty$. Whenever $EX$ is defined, it must be a real number (in the context of real random variables).






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3039608%2fquestion-arising-from-the-proof-of-the-existence-of-mathbb-ex-when-x%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2












            $begingroup$

            What your professor did is simply applying the triangle inequality (assuming $mugeq 0$)
            $$
            |x|leq|x-mu|+mu,
            $$

            which implies that
            begin{align}
            int_{mathbb R}|x|frac{1}{sqrt{2pi sigma^2}}e^{-frac{(x-mu)}{2sigma^2}}dx
            &leq
            int_{mathbb R}|x-mu|frac{1}{sqrt{2pi sigma^2}}e^{-frac{(x-mu)}{2sigma^2}}dx
            +int_{mathbb R}mufrac{1}{sqrt{2pi sigma^2}}e^{-frac{(x-mu)}{2sigma^2}}dx\
            &=
            int_{mathbb R}|x-mu|frac{1}{sqrt{2pi sigma^2}}e^{-frac{(x-mu)}{2sigma^2}}dx
            +mu.
            end{align}



            For the additional question: lots of authors define $EX$ only for absolutely integrable random variables (i.e., $E|X|<infty$) and leave $EX$ undefined when $E|X|=infty$. Whenever $EX$ is defined, it must be a real number (in the context of real random variables).






            share|cite|improve this answer











            $endgroup$


















              2












              $begingroup$

              What your professor did is simply applying the triangle inequality (assuming $mugeq 0$)
              $$
              |x|leq|x-mu|+mu,
              $$

              which implies that
              begin{align}
              int_{mathbb R}|x|frac{1}{sqrt{2pi sigma^2}}e^{-frac{(x-mu)}{2sigma^2}}dx
              &leq
              int_{mathbb R}|x-mu|frac{1}{sqrt{2pi sigma^2}}e^{-frac{(x-mu)}{2sigma^2}}dx
              +int_{mathbb R}mufrac{1}{sqrt{2pi sigma^2}}e^{-frac{(x-mu)}{2sigma^2}}dx\
              &=
              int_{mathbb R}|x-mu|frac{1}{sqrt{2pi sigma^2}}e^{-frac{(x-mu)}{2sigma^2}}dx
              +mu.
              end{align}



              For the additional question: lots of authors define $EX$ only for absolutely integrable random variables (i.e., $E|X|<infty$) and leave $EX$ undefined when $E|X|=infty$. Whenever $EX$ is defined, it must be a real number (in the context of real random variables).






              share|cite|improve this answer











              $endgroup$
















                2












                2








                2





                $begingroup$

                What your professor did is simply applying the triangle inequality (assuming $mugeq 0$)
                $$
                |x|leq|x-mu|+mu,
                $$

                which implies that
                begin{align}
                int_{mathbb R}|x|frac{1}{sqrt{2pi sigma^2}}e^{-frac{(x-mu)}{2sigma^2}}dx
                &leq
                int_{mathbb R}|x-mu|frac{1}{sqrt{2pi sigma^2}}e^{-frac{(x-mu)}{2sigma^2}}dx
                +int_{mathbb R}mufrac{1}{sqrt{2pi sigma^2}}e^{-frac{(x-mu)}{2sigma^2}}dx\
                &=
                int_{mathbb R}|x-mu|frac{1}{sqrt{2pi sigma^2}}e^{-frac{(x-mu)}{2sigma^2}}dx
                +mu.
                end{align}



                For the additional question: lots of authors define $EX$ only for absolutely integrable random variables (i.e., $E|X|<infty$) and leave $EX$ undefined when $E|X|=infty$. Whenever $EX$ is defined, it must be a real number (in the context of real random variables).






                share|cite|improve this answer











                $endgroup$



                What your professor did is simply applying the triangle inequality (assuming $mugeq 0$)
                $$
                |x|leq|x-mu|+mu,
                $$

                which implies that
                begin{align}
                int_{mathbb R}|x|frac{1}{sqrt{2pi sigma^2}}e^{-frac{(x-mu)}{2sigma^2}}dx
                &leq
                int_{mathbb R}|x-mu|frac{1}{sqrt{2pi sigma^2}}e^{-frac{(x-mu)}{2sigma^2}}dx
                +int_{mathbb R}mufrac{1}{sqrt{2pi sigma^2}}e^{-frac{(x-mu)}{2sigma^2}}dx\
                &=
                int_{mathbb R}|x-mu|frac{1}{sqrt{2pi sigma^2}}e^{-frac{(x-mu)}{2sigma^2}}dx
                +mu.
                end{align}



                For the additional question: lots of authors define $EX$ only for absolutely integrable random variables (i.e., $E|X|<infty$) and leave $EX$ undefined when $E|X|=infty$. Whenever $EX$ is defined, it must be a real number (in the context of real random variables).







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Dec 14 '18 at 17:14

























                answered Dec 14 '18 at 17:05









                user587192user587192

                2,064415




                2,064415






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3039608%2fquestion-arising-from-the-proof-of-the-existence-of-mathbb-ex-when-x%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Ellipse (mathématiques)

                    Quarter-circle Tiles

                    Mont Emei