Solution of $u_t=mathcal{F}u$












5












$begingroup$


I tried to solve the equation $u_t=mathcal{F}u$, where $mathcal{F}$ denotes the Fourier transform, with initial data $u(x,0)=u_0(x)$. The solution should be given by
$$
u(x,t)=e^{mathcal{F}t}u_0=left(sum_{jgeq0}frac{mathcal{F}^jt^j}{j!}right)u_0(x)
$$

and I looked for an explicit expression of it in terms of $u_0$. Since $mathcal{F}^2=(cdot)^check{}$ (the operator that maps $v(x)mapstocheck{v}(x):=v(-x)$), we have that $mathcal{F}^3=mathcal{F}^{-1}$ and $mathcal{F}^4=id$. Suppose $u_0$ is a Schwartz function so all of this makes sense. Then we have
$$
u(x,t)=left(sum_{jin4mathbb{N}}frac{t^j}{j!}+sum_{jin1+4mathbb{N}}frac{t^j}{j!}mathcal{F}+sum_{jin2+4mathbb{N}}frac{t^j}{j!}(cdot)check{}+sum_{jin3+4mathbb{N}}frac{t^j}{j!}mathcal{F}^{-1}right)u_0(x)
$$


Next i wrote the function $u_0=phi+psi$, where $phi$ is even and $psi$ is odd, namely
$$
phi(x)=frac{1}{2}(u_0(x)+u_0(-x))quadtext{and}quadpsi(x)=frac{1}{2}(u_0(x)-u_0(-x))
$$

In this way (recalling that Fourier transform of an even function is odd and viceversa) one computes
$$
u(x,t)=sum_{jinmathbb{N}}frac{t^{2j}}{(2j)!}phi(x)+sum_{jinmathbb{N}}(-)^jfrac{t^{2j}}{(2j)!}psi(x)+sum_{jinmathbb{N}}(-)^jfrac{t^{2j+1}}{(2j+1)!}mathcal{F}phi(x)+sum_{jinmathbb{N}}frac{t^{2j+1}}{(2j+1)!}mathcal{F}psi(x)
$$

which equals
$$
u(x,t)=cosh(t)phi(x)+cos(t)psi(x)+sin(t)mathcal{F}phi(x)+sinh(t)mathcal{F}psi(x).
$$

The problem is that now, trying to check
$$
u_t(x,t)=sinh(t)phi(x)-sin(t)psi(x)+cos(t)mathcal{F}phi(x)+cosh(t)mathcal{F}psi(x)
$$

and
$$
mathcal{F}u(x,t)=cosh(t)mathcal{F}phi(x)+cos(t)mathcal{F}psi(x)+sin(t)phi(x)-sinh(t)psi(x)
$$

they are not equal. Is my calculation wrong? Every help is extremely appreciated.










share|cite|improve this question









$endgroup$

















    5












    $begingroup$


    I tried to solve the equation $u_t=mathcal{F}u$, where $mathcal{F}$ denotes the Fourier transform, with initial data $u(x,0)=u_0(x)$. The solution should be given by
    $$
    u(x,t)=e^{mathcal{F}t}u_0=left(sum_{jgeq0}frac{mathcal{F}^jt^j}{j!}right)u_0(x)
    $$

    and I looked for an explicit expression of it in terms of $u_0$. Since $mathcal{F}^2=(cdot)^check{}$ (the operator that maps $v(x)mapstocheck{v}(x):=v(-x)$), we have that $mathcal{F}^3=mathcal{F}^{-1}$ and $mathcal{F}^4=id$. Suppose $u_0$ is a Schwartz function so all of this makes sense. Then we have
    $$
    u(x,t)=left(sum_{jin4mathbb{N}}frac{t^j}{j!}+sum_{jin1+4mathbb{N}}frac{t^j}{j!}mathcal{F}+sum_{jin2+4mathbb{N}}frac{t^j}{j!}(cdot)check{}+sum_{jin3+4mathbb{N}}frac{t^j}{j!}mathcal{F}^{-1}right)u_0(x)
    $$


    Next i wrote the function $u_0=phi+psi$, where $phi$ is even and $psi$ is odd, namely
    $$
    phi(x)=frac{1}{2}(u_0(x)+u_0(-x))quadtext{and}quadpsi(x)=frac{1}{2}(u_0(x)-u_0(-x))
    $$

    In this way (recalling that Fourier transform of an even function is odd and viceversa) one computes
    $$
    u(x,t)=sum_{jinmathbb{N}}frac{t^{2j}}{(2j)!}phi(x)+sum_{jinmathbb{N}}(-)^jfrac{t^{2j}}{(2j)!}psi(x)+sum_{jinmathbb{N}}(-)^jfrac{t^{2j+1}}{(2j+1)!}mathcal{F}phi(x)+sum_{jinmathbb{N}}frac{t^{2j+1}}{(2j+1)!}mathcal{F}psi(x)
    $$

    which equals
    $$
    u(x,t)=cosh(t)phi(x)+cos(t)psi(x)+sin(t)mathcal{F}phi(x)+sinh(t)mathcal{F}psi(x).
    $$

    The problem is that now, trying to check
    $$
    u_t(x,t)=sinh(t)phi(x)-sin(t)psi(x)+cos(t)mathcal{F}phi(x)+cosh(t)mathcal{F}psi(x)
    $$

    and
    $$
    mathcal{F}u(x,t)=cosh(t)mathcal{F}phi(x)+cos(t)mathcal{F}psi(x)+sin(t)phi(x)-sinh(t)psi(x)
    $$

    they are not equal. Is my calculation wrong? Every help is extremely appreciated.










    share|cite|improve this question









    $endgroup$















      5












      5








      5


      2



      $begingroup$


      I tried to solve the equation $u_t=mathcal{F}u$, where $mathcal{F}$ denotes the Fourier transform, with initial data $u(x,0)=u_0(x)$. The solution should be given by
      $$
      u(x,t)=e^{mathcal{F}t}u_0=left(sum_{jgeq0}frac{mathcal{F}^jt^j}{j!}right)u_0(x)
      $$

      and I looked for an explicit expression of it in terms of $u_0$. Since $mathcal{F}^2=(cdot)^check{}$ (the operator that maps $v(x)mapstocheck{v}(x):=v(-x)$), we have that $mathcal{F}^3=mathcal{F}^{-1}$ and $mathcal{F}^4=id$. Suppose $u_0$ is a Schwartz function so all of this makes sense. Then we have
      $$
      u(x,t)=left(sum_{jin4mathbb{N}}frac{t^j}{j!}+sum_{jin1+4mathbb{N}}frac{t^j}{j!}mathcal{F}+sum_{jin2+4mathbb{N}}frac{t^j}{j!}(cdot)check{}+sum_{jin3+4mathbb{N}}frac{t^j}{j!}mathcal{F}^{-1}right)u_0(x)
      $$


      Next i wrote the function $u_0=phi+psi$, where $phi$ is even and $psi$ is odd, namely
      $$
      phi(x)=frac{1}{2}(u_0(x)+u_0(-x))quadtext{and}quadpsi(x)=frac{1}{2}(u_0(x)-u_0(-x))
      $$

      In this way (recalling that Fourier transform of an even function is odd and viceversa) one computes
      $$
      u(x,t)=sum_{jinmathbb{N}}frac{t^{2j}}{(2j)!}phi(x)+sum_{jinmathbb{N}}(-)^jfrac{t^{2j}}{(2j)!}psi(x)+sum_{jinmathbb{N}}(-)^jfrac{t^{2j+1}}{(2j+1)!}mathcal{F}phi(x)+sum_{jinmathbb{N}}frac{t^{2j+1}}{(2j+1)!}mathcal{F}psi(x)
      $$

      which equals
      $$
      u(x,t)=cosh(t)phi(x)+cos(t)psi(x)+sin(t)mathcal{F}phi(x)+sinh(t)mathcal{F}psi(x).
      $$

      The problem is that now, trying to check
      $$
      u_t(x,t)=sinh(t)phi(x)-sin(t)psi(x)+cos(t)mathcal{F}phi(x)+cosh(t)mathcal{F}psi(x)
      $$

      and
      $$
      mathcal{F}u(x,t)=cosh(t)mathcal{F}phi(x)+cos(t)mathcal{F}psi(x)+sin(t)phi(x)-sinh(t)psi(x)
      $$

      they are not equal. Is my calculation wrong? Every help is extremely appreciated.










      share|cite|improve this question









      $endgroup$




      I tried to solve the equation $u_t=mathcal{F}u$, where $mathcal{F}$ denotes the Fourier transform, with initial data $u(x,0)=u_0(x)$. The solution should be given by
      $$
      u(x,t)=e^{mathcal{F}t}u_0=left(sum_{jgeq0}frac{mathcal{F}^jt^j}{j!}right)u_0(x)
      $$

      and I looked for an explicit expression of it in terms of $u_0$. Since $mathcal{F}^2=(cdot)^check{}$ (the operator that maps $v(x)mapstocheck{v}(x):=v(-x)$), we have that $mathcal{F}^3=mathcal{F}^{-1}$ and $mathcal{F}^4=id$. Suppose $u_0$ is a Schwartz function so all of this makes sense. Then we have
      $$
      u(x,t)=left(sum_{jin4mathbb{N}}frac{t^j}{j!}+sum_{jin1+4mathbb{N}}frac{t^j}{j!}mathcal{F}+sum_{jin2+4mathbb{N}}frac{t^j}{j!}(cdot)check{}+sum_{jin3+4mathbb{N}}frac{t^j}{j!}mathcal{F}^{-1}right)u_0(x)
      $$


      Next i wrote the function $u_0=phi+psi$, where $phi$ is even and $psi$ is odd, namely
      $$
      phi(x)=frac{1}{2}(u_0(x)+u_0(-x))quadtext{and}quadpsi(x)=frac{1}{2}(u_0(x)-u_0(-x))
      $$

      In this way (recalling that Fourier transform of an even function is odd and viceversa) one computes
      $$
      u(x,t)=sum_{jinmathbb{N}}frac{t^{2j}}{(2j)!}phi(x)+sum_{jinmathbb{N}}(-)^jfrac{t^{2j}}{(2j)!}psi(x)+sum_{jinmathbb{N}}(-)^jfrac{t^{2j+1}}{(2j+1)!}mathcal{F}phi(x)+sum_{jinmathbb{N}}frac{t^{2j+1}}{(2j+1)!}mathcal{F}psi(x)
      $$

      which equals
      $$
      u(x,t)=cosh(t)phi(x)+cos(t)psi(x)+sin(t)mathcal{F}phi(x)+sinh(t)mathcal{F}psi(x).
      $$

      The problem is that now, trying to check
      $$
      u_t(x,t)=sinh(t)phi(x)-sin(t)psi(x)+cos(t)mathcal{F}phi(x)+cosh(t)mathcal{F}psi(x)
      $$

      and
      $$
      mathcal{F}u(x,t)=cosh(t)mathcal{F}phi(x)+cos(t)mathcal{F}psi(x)+sin(t)phi(x)-sinh(t)psi(x)
      $$

      they are not equal. Is my calculation wrong? Every help is extremely appreciated.







      pde fourier-analysis






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 14 '18 at 19:17









      MarcoMarco

      331110




      331110






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          As you noted, $mathcal{F}^4=I$. So
          $$
          (1-lambda^4)I=(mathcal{F}^4-lambda^4 I)=(mathcal{F}-lambda I)(mathcal{F}^3+lambdamathcal{F}^2+lambda^2mathcal{F}+lambda^3I)
          $$

          which gives
          $$
          (lambda I-mathcal{F})^{-1}=frac{1}{lambda^4-1}(mathcal{F}^3+lambda mathcal{F}^2+lambda^2mathcal{F}+lambda^3 I)
          $$

          So, the following is evaluated by computing residues at $1,i,-1,-i$:
          $$
          e^{tmathcal{F}}=frac{1}{2pi i}oint_{C}e^{lambda t}(lambda I-mathcal{F})^{-1}dlambda \
          =frac{1}{2pi i}oint_{C}frac{e^{lambda t}(mathcal{F}^3+lambdamathcal{F}^2+lambda^2mathcal{F}+lambda^3I)}{(lambda-1)(lambda-i)(lambda+1)(lambda+i)}dlambda
          $$






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3039795%2fsolution-of-u-t-mathcalfu%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            As you noted, $mathcal{F}^4=I$. So
            $$
            (1-lambda^4)I=(mathcal{F}^4-lambda^4 I)=(mathcal{F}-lambda I)(mathcal{F}^3+lambdamathcal{F}^2+lambda^2mathcal{F}+lambda^3I)
            $$

            which gives
            $$
            (lambda I-mathcal{F})^{-1}=frac{1}{lambda^4-1}(mathcal{F}^3+lambda mathcal{F}^2+lambda^2mathcal{F}+lambda^3 I)
            $$

            So, the following is evaluated by computing residues at $1,i,-1,-i$:
            $$
            e^{tmathcal{F}}=frac{1}{2pi i}oint_{C}e^{lambda t}(lambda I-mathcal{F})^{-1}dlambda \
            =frac{1}{2pi i}oint_{C}frac{e^{lambda t}(mathcal{F}^3+lambdamathcal{F}^2+lambda^2mathcal{F}+lambda^3I)}{(lambda-1)(lambda-i)(lambda+1)(lambda+i)}dlambda
            $$






            share|cite|improve this answer









            $endgroup$


















              0












              $begingroup$

              As you noted, $mathcal{F}^4=I$. So
              $$
              (1-lambda^4)I=(mathcal{F}^4-lambda^4 I)=(mathcal{F}-lambda I)(mathcal{F}^3+lambdamathcal{F}^2+lambda^2mathcal{F}+lambda^3I)
              $$

              which gives
              $$
              (lambda I-mathcal{F})^{-1}=frac{1}{lambda^4-1}(mathcal{F}^3+lambda mathcal{F}^2+lambda^2mathcal{F}+lambda^3 I)
              $$

              So, the following is evaluated by computing residues at $1,i,-1,-i$:
              $$
              e^{tmathcal{F}}=frac{1}{2pi i}oint_{C}e^{lambda t}(lambda I-mathcal{F})^{-1}dlambda \
              =frac{1}{2pi i}oint_{C}frac{e^{lambda t}(mathcal{F}^3+lambdamathcal{F}^2+lambda^2mathcal{F}+lambda^3I)}{(lambda-1)(lambda-i)(lambda+1)(lambda+i)}dlambda
              $$






              share|cite|improve this answer









              $endgroup$
















                0












                0








                0





                $begingroup$

                As you noted, $mathcal{F}^4=I$. So
                $$
                (1-lambda^4)I=(mathcal{F}^4-lambda^4 I)=(mathcal{F}-lambda I)(mathcal{F}^3+lambdamathcal{F}^2+lambda^2mathcal{F}+lambda^3I)
                $$

                which gives
                $$
                (lambda I-mathcal{F})^{-1}=frac{1}{lambda^4-1}(mathcal{F}^3+lambda mathcal{F}^2+lambda^2mathcal{F}+lambda^3 I)
                $$

                So, the following is evaluated by computing residues at $1,i,-1,-i$:
                $$
                e^{tmathcal{F}}=frac{1}{2pi i}oint_{C}e^{lambda t}(lambda I-mathcal{F})^{-1}dlambda \
                =frac{1}{2pi i}oint_{C}frac{e^{lambda t}(mathcal{F}^3+lambdamathcal{F}^2+lambda^2mathcal{F}+lambda^3I)}{(lambda-1)(lambda-i)(lambda+1)(lambda+i)}dlambda
                $$






                share|cite|improve this answer









                $endgroup$



                As you noted, $mathcal{F}^4=I$. So
                $$
                (1-lambda^4)I=(mathcal{F}^4-lambda^4 I)=(mathcal{F}-lambda I)(mathcal{F}^3+lambdamathcal{F}^2+lambda^2mathcal{F}+lambda^3I)
                $$

                which gives
                $$
                (lambda I-mathcal{F})^{-1}=frac{1}{lambda^4-1}(mathcal{F}^3+lambda mathcal{F}^2+lambda^2mathcal{F}+lambda^3 I)
                $$

                So, the following is evaluated by computing residues at $1,i,-1,-i$:
                $$
                e^{tmathcal{F}}=frac{1}{2pi i}oint_{C}e^{lambda t}(lambda I-mathcal{F})^{-1}dlambda \
                =frac{1}{2pi i}oint_{C}frac{e^{lambda t}(mathcal{F}^3+lambdamathcal{F}^2+lambda^2mathcal{F}+lambda^3I)}{(lambda-1)(lambda-i)(lambda+1)(lambda+i)}dlambda
                $$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Dec 18 '18 at 5:58









                DisintegratingByPartsDisintegratingByParts

                59.3k42580




                59.3k42580






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3039795%2fsolution-of-u-t-mathcalfu%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Ellipse (mathématiques)

                    Quarter-circle Tiles

                    Mont Emei