Let $sigma,tau in S_n$. Prove that $sigma tau$ and $tau sigma $ have the same cycle type.












5












$begingroup$


Let $sigma,tau in S_n$. Prove that $sigma tau$ and $tau sigma $ have the same cycle type.



I was thinking that you could rewrite $sigma=g_1cdots g_k$ with $g_i$ disjoint cycles and $tau=h_1cdots h_l$ with $h_i$ disjoint cycles. But I don't know what to do next, as $g_i$ and $h_j$ doesn't have to be disjoint.



Edit: Could I prove it like this ?



We can write $σ$ in disjoint cycles: $σ=σ_1...σ_r$ with lenghts $l_1,...l_r$. So you get: $σ_1=(a_1...a_{l_1}), σ_2=(b_1...b_{l_2}), σ_3=...$.



Which gives:
begin{align*}
τστ^{-1}&=τσ_1...σ_rτ^{-1}\
&=τσ_1(τ^{-1}τ)σ_2(τ^{-1}τ)...(τ^{-1}τ)σ_rτ^{-1}\
&=τ(a_1...a_{l_1})τ^{-1}τ(b_1...b_{l_2})τ^{-1}τ...τσ_rτ^{-1}\
&=(τ(a_1)...τ(a_{l_1}))(τ(b_1)...τ(b_{l_2}))...τσ_rτ^{-1}\
end{align*}



Therefore $σ$ and $τστ^{-1}$ have the same cycle type. So $τσ$ and $στ$ have the same cycle type.










share|cite|improve this question











$endgroup$

















    5












    $begingroup$


    Let $sigma,tau in S_n$. Prove that $sigma tau$ and $tau sigma $ have the same cycle type.



    I was thinking that you could rewrite $sigma=g_1cdots g_k$ with $g_i$ disjoint cycles and $tau=h_1cdots h_l$ with $h_i$ disjoint cycles. But I don't know what to do next, as $g_i$ and $h_j$ doesn't have to be disjoint.



    Edit: Could I prove it like this ?



    We can write $σ$ in disjoint cycles: $σ=σ_1...σ_r$ with lenghts $l_1,...l_r$. So you get: $σ_1=(a_1...a_{l_1}), σ_2=(b_1...b_{l_2}), σ_3=...$.



    Which gives:
    begin{align*}
    τστ^{-1}&=τσ_1...σ_rτ^{-1}\
    &=τσ_1(τ^{-1}τ)σ_2(τ^{-1}τ)...(τ^{-1}τ)σ_rτ^{-1}\
    &=τ(a_1...a_{l_1})τ^{-1}τ(b_1...b_{l_2})τ^{-1}τ...τσ_rτ^{-1}\
    &=(τ(a_1)...τ(a_{l_1}))(τ(b_1)...τ(b_{l_2}))...τσ_rτ^{-1}\
    end{align*}



    Therefore $σ$ and $τστ^{-1}$ have the same cycle type. So $τσ$ and $στ$ have the same cycle type.










    share|cite|improve this question











    $endgroup$















      5












      5








      5


      4



      $begingroup$


      Let $sigma,tau in S_n$. Prove that $sigma tau$ and $tau sigma $ have the same cycle type.



      I was thinking that you could rewrite $sigma=g_1cdots g_k$ with $g_i$ disjoint cycles and $tau=h_1cdots h_l$ with $h_i$ disjoint cycles. But I don't know what to do next, as $g_i$ and $h_j$ doesn't have to be disjoint.



      Edit: Could I prove it like this ?



      We can write $σ$ in disjoint cycles: $σ=σ_1...σ_r$ with lenghts $l_1,...l_r$. So you get: $σ_1=(a_1...a_{l_1}), σ_2=(b_1...b_{l_2}), σ_3=...$.



      Which gives:
      begin{align*}
      τστ^{-1}&=τσ_1...σ_rτ^{-1}\
      &=τσ_1(τ^{-1}τ)σ_2(τ^{-1}τ)...(τ^{-1}τ)σ_rτ^{-1}\
      &=τ(a_1...a_{l_1})τ^{-1}τ(b_1...b_{l_2})τ^{-1}τ...τσ_rτ^{-1}\
      &=(τ(a_1)...τ(a_{l_1}))(τ(b_1)...τ(b_{l_2}))...τσ_rτ^{-1}\
      end{align*}



      Therefore $σ$ and $τστ^{-1}$ have the same cycle type. So $τσ$ and $στ$ have the same cycle type.










      share|cite|improve this question











      $endgroup$




      Let $sigma,tau in S_n$. Prove that $sigma tau$ and $tau sigma $ have the same cycle type.



      I was thinking that you could rewrite $sigma=g_1cdots g_k$ with $g_i$ disjoint cycles and $tau=h_1cdots h_l$ with $h_i$ disjoint cycles. But I don't know what to do next, as $g_i$ and $h_j$ doesn't have to be disjoint.



      Edit: Could I prove it like this ?



      We can write $σ$ in disjoint cycles: $σ=σ_1...σ_r$ with lenghts $l_1,...l_r$. So you get: $σ_1=(a_1...a_{l_1}), σ_2=(b_1...b_{l_2}), σ_3=...$.



      Which gives:
      begin{align*}
      τστ^{-1}&=τσ_1...σ_rτ^{-1}\
      &=τσ_1(τ^{-1}τ)σ_2(τ^{-1}τ)...(τ^{-1}τ)σ_rτ^{-1}\
      &=τ(a_1...a_{l_1})τ^{-1}τ(b_1...b_{l_2})τ^{-1}τ...τσ_rτ^{-1}\
      &=(τ(a_1)...τ(a_{l_1}))(τ(b_1)...τ(b_{l_2}))...τσ_rτ^{-1}\
      end{align*}



      Therefore $σ$ and $τστ^{-1}$ have the same cycle type. So $τσ$ and $στ$ have the same cycle type.







      abstract-algebra group-theory finite-groups permutations






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 24 '18 at 21:16









      Shaun

      9,268113684




      9,268113684










      asked Mar 19 '13 at 15:51









      90intuition90intuition

      1,13331230




      1,13331230






















          5 Answers
          5






          active

          oldest

          votes


















          6












          $begingroup$

          Hint: they are conjugate elements of the group.






          share|cite|improve this answer









          $endgroup$









          • 5




            $begingroup$
            My book introduces conjugates in the next chapter.
            $endgroup$
            – 90intuition
            Mar 19 '13 at 15:59



















          4












          $begingroup$

          First consider the case that $tau$ is a single cycle, say $tau = (i_1,i_2,ldots,i_k)$. You should be able to compute $sigmatau$ and $tausigma$ explicitly in this case. Then figure out how to generalize when $tau$ is a product of disjoint cycles: for this try inserting copies of $sigma^{-1}sigma$ in various places of the product $sigmatausigma^{-1}$ when $tau$ is written as a product of disjoint cycles.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            This one did it ! Thanks
            $endgroup$
            – 90intuition
            Mar 19 '13 at 20:09










          • $begingroup$
            Let $σ=σ_1...σ_r$ with $σ_1=(a_1...a_{l_1}), σ_2=(b_1...b_{l_2}), σ_3=...$. Then you get: begin{align*} τστ^{-1}&=τσ_1...σ_rτ^{-1}\ &=τσ_1(τ^{-1}τ)σ_2(τ^{-1}τ)...(τ^{-1}τ)σ_rτ^{-1}\ &=τ(a_1...a_{l_1})τ^{-1}τ(b_1...b_{l_2})τ^{-1}τ...τσ_rτ^{-1}\ &=(τ(a_1)...τ(a_{l_1}))(τ(b_1)...τ(b_{l_2}))...τσ_rτ^{-1}\ end{align*}
            $endgroup$
            – 90intuition
            Mar 19 '13 at 20:38










          • $begingroup$
            I hope that this is what you meant.
            $endgroup$
            – 90intuition
            Mar 19 '13 at 20:38










          • $begingroup$
            Since this answer worked for you, @90intuition, please accept it by clicking the checkmark :)
            $endgroup$
            – Shaun
            Dec 24 '18 at 21:11



















          4












          $begingroup$

          First, it suffices to prove that $tausigmatau^{-1}$ and $sigma$ have the same cycle type.



          Suppse one of the cycles in $sigma$ is $(a_1,a_2,dots,a_n)$. Then, try to prove that there is a corresponding cycle in $tausigmatau^{-1}$ that is $big(tau(a_1),tau(a_2),dots,tau(a_n) big)$.



          If $sigma$ sends $a_1$ to $a_2$, what does $tausigmatau^{-1}$ send $tau(a_1)$ to?






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Specifically, it suffices to show $alphabetaalpha^{-1}$ and $beta$ have the same cycle type, because then one can set $beta=tausigma$ and $alpha=sigma^{-1}$ to conclude $sigmatau$ and $tausigma$ have the same cycle type. Which is also the hint of Robert's answer. (Sorry for the anachronistic comment.)
            $endgroup$
            – whacka
            Aug 2 '15 at 21:06





















          3












          $begingroup$

          In the light of @Robert's answer, if $x$ and $y$ are two permutations of a set $Omega$, and $x=(xi_1,xi_2,...,xi_k)$ then $$y^{-1}xy=(xi_1^y,xi_2^y,...,xi_k^y)$$ In fact, in the product $xy$ we expect to have the result of first applying the mapping $x$ and then the mapping $y$. This is what @Robert's trying to tell you.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Nice! $quad ddot smile quad +1 quad$
            $endgroup$
            – amWhy
            Mar 20 '13 at 0:15



















          0












          $begingroup$

          Suppose that $sigma tau=(a_1a_2cdots a_k)(b_1b_2cdots b_{lambda})cdots$.

          Then $tausigma(tau(a_i))=tau(sigmatau(a_i))=tau(a_{i+1})ldots$



          Show that $tausigma=left(tau(a_1)tau(a_2)cdotstau(a_k)right)left(tau(b_1)tau(b_2)cdotstau(b_{lambda})right)cdots$.






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f334856%2flet-sigma-tau-in-s-n-prove-that-sigma-tau-and-tau-sigma-have-the%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            5 Answers
            5






            active

            oldest

            votes








            5 Answers
            5






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            6












            $begingroup$

            Hint: they are conjugate elements of the group.






            share|cite|improve this answer









            $endgroup$









            • 5




              $begingroup$
              My book introduces conjugates in the next chapter.
              $endgroup$
              – 90intuition
              Mar 19 '13 at 15:59
















            6












            $begingroup$

            Hint: they are conjugate elements of the group.






            share|cite|improve this answer









            $endgroup$









            • 5




              $begingroup$
              My book introduces conjugates in the next chapter.
              $endgroup$
              – 90intuition
              Mar 19 '13 at 15:59














            6












            6








            6





            $begingroup$

            Hint: they are conjugate elements of the group.






            share|cite|improve this answer









            $endgroup$



            Hint: they are conjugate elements of the group.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Mar 19 '13 at 15:57









            Robert IsraelRobert Israel

            324k23214468




            324k23214468








            • 5




              $begingroup$
              My book introduces conjugates in the next chapter.
              $endgroup$
              – 90intuition
              Mar 19 '13 at 15:59














            • 5




              $begingroup$
              My book introduces conjugates in the next chapter.
              $endgroup$
              – 90intuition
              Mar 19 '13 at 15:59








            5




            5




            $begingroup$
            My book introduces conjugates in the next chapter.
            $endgroup$
            – 90intuition
            Mar 19 '13 at 15:59




            $begingroup$
            My book introduces conjugates in the next chapter.
            $endgroup$
            – 90intuition
            Mar 19 '13 at 15:59











            4












            $begingroup$

            First consider the case that $tau$ is a single cycle, say $tau = (i_1,i_2,ldots,i_k)$. You should be able to compute $sigmatau$ and $tausigma$ explicitly in this case. Then figure out how to generalize when $tau$ is a product of disjoint cycles: for this try inserting copies of $sigma^{-1}sigma$ in various places of the product $sigmatausigma^{-1}$ when $tau$ is written as a product of disjoint cycles.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              This one did it ! Thanks
              $endgroup$
              – 90intuition
              Mar 19 '13 at 20:09










            • $begingroup$
              Let $σ=σ_1...σ_r$ with $σ_1=(a_1...a_{l_1}), σ_2=(b_1...b_{l_2}), σ_3=...$. Then you get: begin{align*} τστ^{-1}&=τσ_1...σ_rτ^{-1}\ &=τσ_1(τ^{-1}τ)σ_2(τ^{-1}τ)...(τ^{-1}τ)σ_rτ^{-1}\ &=τ(a_1...a_{l_1})τ^{-1}τ(b_1...b_{l_2})τ^{-1}τ...τσ_rτ^{-1}\ &=(τ(a_1)...τ(a_{l_1}))(τ(b_1)...τ(b_{l_2}))...τσ_rτ^{-1}\ end{align*}
              $endgroup$
              – 90intuition
              Mar 19 '13 at 20:38










            • $begingroup$
              I hope that this is what you meant.
              $endgroup$
              – 90intuition
              Mar 19 '13 at 20:38










            • $begingroup$
              Since this answer worked for you, @90intuition, please accept it by clicking the checkmark :)
              $endgroup$
              – Shaun
              Dec 24 '18 at 21:11
















            4












            $begingroup$

            First consider the case that $tau$ is a single cycle, say $tau = (i_1,i_2,ldots,i_k)$. You should be able to compute $sigmatau$ and $tausigma$ explicitly in this case. Then figure out how to generalize when $tau$ is a product of disjoint cycles: for this try inserting copies of $sigma^{-1}sigma$ in various places of the product $sigmatausigma^{-1}$ when $tau$ is written as a product of disjoint cycles.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              This one did it ! Thanks
              $endgroup$
              – 90intuition
              Mar 19 '13 at 20:09










            • $begingroup$
              Let $σ=σ_1...σ_r$ with $σ_1=(a_1...a_{l_1}), σ_2=(b_1...b_{l_2}), σ_3=...$. Then you get: begin{align*} τστ^{-1}&=τσ_1...σ_rτ^{-1}\ &=τσ_1(τ^{-1}τ)σ_2(τ^{-1}τ)...(τ^{-1}τ)σ_rτ^{-1}\ &=τ(a_1...a_{l_1})τ^{-1}τ(b_1...b_{l_2})τ^{-1}τ...τσ_rτ^{-1}\ &=(τ(a_1)...τ(a_{l_1}))(τ(b_1)...τ(b_{l_2}))...τσ_rτ^{-1}\ end{align*}
              $endgroup$
              – 90intuition
              Mar 19 '13 at 20:38










            • $begingroup$
              I hope that this is what you meant.
              $endgroup$
              – 90intuition
              Mar 19 '13 at 20:38










            • $begingroup$
              Since this answer worked for you, @90intuition, please accept it by clicking the checkmark :)
              $endgroup$
              – Shaun
              Dec 24 '18 at 21:11














            4












            4








            4





            $begingroup$

            First consider the case that $tau$ is a single cycle, say $tau = (i_1,i_2,ldots,i_k)$. You should be able to compute $sigmatau$ and $tausigma$ explicitly in this case. Then figure out how to generalize when $tau$ is a product of disjoint cycles: for this try inserting copies of $sigma^{-1}sigma$ in various places of the product $sigmatausigma^{-1}$ when $tau$ is written as a product of disjoint cycles.






            share|cite|improve this answer









            $endgroup$



            First consider the case that $tau$ is a single cycle, say $tau = (i_1,i_2,ldots,i_k)$. You should be able to compute $sigmatau$ and $tausigma$ explicitly in this case. Then figure out how to generalize when $tau$ is a product of disjoint cycles: for this try inserting copies of $sigma^{-1}sigma$ in various places of the product $sigmatausigma^{-1}$ when $tau$ is written as a product of disjoint cycles.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Mar 19 '13 at 16:03









            Santiago CanezSantiago Canez

            2,07111113




            2,07111113












            • $begingroup$
              This one did it ! Thanks
              $endgroup$
              – 90intuition
              Mar 19 '13 at 20:09










            • $begingroup$
              Let $σ=σ_1...σ_r$ with $σ_1=(a_1...a_{l_1}), σ_2=(b_1...b_{l_2}), σ_3=...$. Then you get: begin{align*} τστ^{-1}&=τσ_1...σ_rτ^{-1}\ &=τσ_1(τ^{-1}τ)σ_2(τ^{-1}τ)...(τ^{-1}τ)σ_rτ^{-1}\ &=τ(a_1...a_{l_1})τ^{-1}τ(b_1...b_{l_2})τ^{-1}τ...τσ_rτ^{-1}\ &=(τ(a_1)...τ(a_{l_1}))(τ(b_1)...τ(b_{l_2}))...τσ_rτ^{-1}\ end{align*}
              $endgroup$
              – 90intuition
              Mar 19 '13 at 20:38










            • $begingroup$
              I hope that this is what you meant.
              $endgroup$
              – 90intuition
              Mar 19 '13 at 20:38










            • $begingroup$
              Since this answer worked for you, @90intuition, please accept it by clicking the checkmark :)
              $endgroup$
              – Shaun
              Dec 24 '18 at 21:11


















            • $begingroup$
              This one did it ! Thanks
              $endgroup$
              – 90intuition
              Mar 19 '13 at 20:09










            • $begingroup$
              Let $σ=σ_1...σ_r$ with $σ_1=(a_1...a_{l_1}), σ_2=(b_1...b_{l_2}), σ_3=...$. Then you get: begin{align*} τστ^{-1}&=τσ_1...σ_rτ^{-1}\ &=τσ_1(τ^{-1}τ)σ_2(τ^{-1}τ)...(τ^{-1}τ)σ_rτ^{-1}\ &=τ(a_1...a_{l_1})τ^{-1}τ(b_1...b_{l_2})τ^{-1}τ...τσ_rτ^{-1}\ &=(τ(a_1)...τ(a_{l_1}))(τ(b_1)...τ(b_{l_2}))...τσ_rτ^{-1}\ end{align*}
              $endgroup$
              – 90intuition
              Mar 19 '13 at 20:38










            • $begingroup$
              I hope that this is what you meant.
              $endgroup$
              – 90intuition
              Mar 19 '13 at 20:38










            • $begingroup$
              Since this answer worked for you, @90intuition, please accept it by clicking the checkmark :)
              $endgroup$
              – Shaun
              Dec 24 '18 at 21:11
















            $begingroup$
            This one did it ! Thanks
            $endgroup$
            – 90intuition
            Mar 19 '13 at 20:09




            $begingroup$
            This one did it ! Thanks
            $endgroup$
            – 90intuition
            Mar 19 '13 at 20:09












            $begingroup$
            Let $σ=σ_1...σ_r$ with $σ_1=(a_1...a_{l_1}), σ_2=(b_1...b_{l_2}), σ_3=...$. Then you get: begin{align*} τστ^{-1}&=τσ_1...σ_rτ^{-1}\ &=τσ_1(τ^{-1}τ)σ_2(τ^{-1}τ)...(τ^{-1}τ)σ_rτ^{-1}\ &=τ(a_1...a_{l_1})τ^{-1}τ(b_1...b_{l_2})τ^{-1}τ...τσ_rτ^{-1}\ &=(τ(a_1)...τ(a_{l_1}))(τ(b_1)...τ(b_{l_2}))...τσ_rτ^{-1}\ end{align*}
            $endgroup$
            – 90intuition
            Mar 19 '13 at 20:38




            $begingroup$
            Let $σ=σ_1...σ_r$ with $σ_1=(a_1...a_{l_1}), σ_2=(b_1...b_{l_2}), σ_3=...$. Then you get: begin{align*} τστ^{-1}&=τσ_1...σ_rτ^{-1}\ &=τσ_1(τ^{-1}τ)σ_2(τ^{-1}τ)...(τ^{-1}τ)σ_rτ^{-1}\ &=τ(a_1...a_{l_1})τ^{-1}τ(b_1...b_{l_2})τ^{-1}τ...τσ_rτ^{-1}\ &=(τ(a_1)...τ(a_{l_1}))(τ(b_1)...τ(b_{l_2}))...τσ_rτ^{-1}\ end{align*}
            $endgroup$
            – 90intuition
            Mar 19 '13 at 20:38












            $begingroup$
            I hope that this is what you meant.
            $endgroup$
            – 90intuition
            Mar 19 '13 at 20:38




            $begingroup$
            I hope that this is what you meant.
            $endgroup$
            – 90intuition
            Mar 19 '13 at 20:38












            $begingroup$
            Since this answer worked for you, @90intuition, please accept it by clicking the checkmark :)
            $endgroup$
            – Shaun
            Dec 24 '18 at 21:11




            $begingroup$
            Since this answer worked for you, @90intuition, please accept it by clicking the checkmark :)
            $endgroup$
            – Shaun
            Dec 24 '18 at 21:11











            4












            $begingroup$

            First, it suffices to prove that $tausigmatau^{-1}$ and $sigma$ have the same cycle type.



            Suppse one of the cycles in $sigma$ is $(a_1,a_2,dots,a_n)$. Then, try to prove that there is a corresponding cycle in $tausigmatau^{-1}$ that is $big(tau(a_1),tau(a_2),dots,tau(a_n) big)$.



            If $sigma$ sends $a_1$ to $a_2$, what does $tausigmatau^{-1}$ send $tau(a_1)$ to?






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Specifically, it suffices to show $alphabetaalpha^{-1}$ and $beta$ have the same cycle type, because then one can set $beta=tausigma$ and $alpha=sigma^{-1}$ to conclude $sigmatau$ and $tausigma$ have the same cycle type. Which is also the hint of Robert's answer. (Sorry for the anachronistic comment.)
              $endgroup$
              – whacka
              Aug 2 '15 at 21:06


















            4












            $begingroup$

            First, it suffices to prove that $tausigmatau^{-1}$ and $sigma$ have the same cycle type.



            Suppse one of the cycles in $sigma$ is $(a_1,a_2,dots,a_n)$. Then, try to prove that there is a corresponding cycle in $tausigmatau^{-1}$ that is $big(tau(a_1),tau(a_2),dots,tau(a_n) big)$.



            If $sigma$ sends $a_1$ to $a_2$, what does $tausigmatau^{-1}$ send $tau(a_1)$ to?






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Specifically, it suffices to show $alphabetaalpha^{-1}$ and $beta$ have the same cycle type, because then one can set $beta=tausigma$ and $alpha=sigma^{-1}$ to conclude $sigmatau$ and $tausigma$ have the same cycle type. Which is also the hint of Robert's answer. (Sorry for the anachronistic comment.)
              $endgroup$
              – whacka
              Aug 2 '15 at 21:06
















            4












            4








            4





            $begingroup$

            First, it suffices to prove that $tausigmatau^{-1}$ and $sigma$ have the same cycle type.



            Suppse one of the cycles in $sigma$ is $(a_1,a_2,dots,a_n)$. Then, try to prove that there is a corresponding cycle in $tausigmatau^{-1}$ that is $big(tau(a_1),tau(a_2),dots,tau(a_n) big)$.



            If $sigma$ sends $a_1$ to $a_2$, what does $tausigmatau^{-1}$ send $tau(a_1)$ to?






            share|cite|improve this answer











            $endgroup$



            First, it suffices to prove that $tausigmatau^{-1}$ and $sigma$ have the same cycle type.



            Suppse one of the cycles in $sigma$ is $(a_1,a_2,dots,a_n)$. Then, try to prove that there is a corresponding cycle in $tausigmatau^{-1}$ that is $big(tau(a_1),tau(a_2),dots,tau(a_n) big)$.



            If $sigma$ sends $a_1$ to $a_2$, what does $tausigmatau^{-1}$ send $tau(a_1)$ to?







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Mar 19 '13 at 18:23

























            answered Mar 19 '13 at 16:51









            NECingNECing

            3,30231628




            3,30231628












            • $begingroup$
              Specifically, it suffices to show $alphabetaalpha^{-1}$ and $beta$ have the same cycle type, because then one can set $beta=tausigma$ and $alpha=sigma^{-1}$ to conclude $sigmatau$ and $tausigma$ have the same cycle type. Which is also the hint of Robert's answer. (Sorry for the anachronistic comment.)
              $endgroup$
              – whacka
              Aug 2 '15 at 21:06




















            • $begingroup$
              Specifically, it suffices to show $alphabetaalpha^{-1}$ and $beta$ have the same cycle type, because then one can set $beta=tausigma$ and $alpha=sigma^{-1}$ to conclude $sigmatau$ and $tausigma$ have the same cycle type. Which is also the hint of Robert's answer. (Sorry for the anachronistic comment.)
              $endgroup$
              – whacka
              Aug 2 '15 at 21:06


















            $begingroup$
            Specifically, it suffices to show $alphabetaalpha^{-1}$ and $beta$ have the same cycle type, because then one can set $beta=tausigma$ and $alpha=sigma^{-1}$ to conclude $sigmatau$ and $tausigma$ have the same cycle type. Which is also the hint of Robert's answer. (Sorry for the anachronistic comment.)
            $endgroup$
            – whacka
            Aug 2 '15 at 21:06






            $begingroup$
            Specifically, it suffices to show $alphabetaalpha^{-1}$ and $beta$ have the same cycle type, because then one can set $beta=tausigma$ and $alpha=sigma^{-1}$ to conclude $sigmatau$ and $tausigma$ have the same cycle type. Which is also the hint of Robert's answer. (Sorry for the anachronistic comment.)
            $endgroup$
            – whacka
            Aug 2 '15 at 21:06













            3












            $begingroup$

            In the light of @Robert's answer, if $x$ and $y$ are two permutations of a set $Omega$, and $x=(xi_1,xi_2,...,xi_k)$ then $$y^{-1}xy=(xi_1^y,xi_2^y,...,xi_k^y)$$ In fact, in the product $xy$ we expect to have the result of first applying the mapping $x$ and then the mapping $y$. This is what @Robert's trying to tell you.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              Nice! $quad ddot smile quad +1 quad$
              $endgroup$
              – amWhy
              Mar 20 '13 at 0:15
















            3












            $begingroup$

            In the light of @Robert's answer, if $x$ and $y$ are two permutations of a set $Omega$, and $x=(xi_1,xi_2,...,xi_k)$ then $$y^{-1}xy=(xi_1^y,xi_2^y,...,xi_k^y)$$ In fact, in the product $xy$ we expect to have the result of first applying the mapping $x$ and then the mapping $y$. This is what @Robert's trying to tell you.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              Nice! $quad ddot smile quad +1 quad$
              $endgroup$
              – amWhy
              Mar 20 '13 at 0:15














            3












            3








            3





            $begingroup$

            In the light of @Robert's answer, if $x$ and $y$ are two permutations of a set $Omega$, and $x=(xi_1,xi_2,...,xi_k)$ then $$y^{-1}xy=(xi_1^y,xi_2^y,...,xi_k^y)$$ In fact, in the product $xy$ we expect to have the result of first applying the mapping $x$ and then the mapping $y$. This is what @Robert's trying to tell you.






            share|cite|improve this answer









            $endgroup$



            In the light of @Robert's answer, if $x$ and $y$ are two permutations of a set $Omega$, and $x=(xi_1,xi_2,...,xi_k)$ then $$y^{-1}xy=(xi_1^y,xi_2^y,...,xi_k^y)$$ In fact, in the product $xy$ we expect to have the result of first applying the mapping $x$ and then the mapping $y$. This is what @Robert's trying to tell you.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Mar 19 '13 at 16:51









            mrsmrs

            1




            1












            • $begingroup$
              Nice! $quad ddot smile quad +1 quad$
              $endgroup$
              – amWhy
              Mar 20 '13 at 0:15


















            • $begingroup$
              Nice! $quad ddot smile quad +1 quad$
              $endgroup$
              – amWhy
              Mar 20 '13 at 0:15
















            $begingroup$
            Nice! $quad ddot smile quad +1 quad$
            $endgroup$
            – amWhy
            Mar 20 '13 at 0:15




            $begingroup$
            Nice! $quad ddot smile quad +1 quad$
            $endgroup$
            – amWhy
            Mar 20 '13 at 0:15











            0












            $begingroup$

            Suppose that $sigma tau=(a_1a_2cdots a_k)(b_1b_2cdots b_{lambda})cdots$.

            Then $tausigma(tau(a_i))=tau(sigmatau(a_i))=tau(a_{i+1})ldots$



            Show that $tausigma=left(tau(a_1)tau(a_2)cdotstau(a_k)right)left(tau(b_1)tau(b_2)cdotstau(b_{lambda})right)cdots$.






            share|cite|improve this answer









            $endgroup$


















              0












              $begingroup$

              Suppose that $sigma tau=(a_1a_2cdots a_k)(b_1b_2cdots b_{lambda})cdots$.

              Then $tausigma(tau(a_i))=tau(sigmatau(a_i))=tau(a_{i+1})ldots$



              Show that $tausigma=left(tau(a_1)tau(a_2)cdotstau(a_k)right)left(tau(b_1)tau(b_2)cdotstau(b_{lambda})right)cdots$.






              share|cite|improve this answer









              $endgroup$
















                0












                0








                0





                $begingroup$

                Suppose that $sigma tau=(a_1a_2cdots a_k)(b_1b_2cdots b_{lambda})cdots$.

                Then $tausigma(tau(a_i))=tau(sigmatau(a_i))=tau(a_{i+1})ldots$



                Show that $tausigma=left(tau(a_1)tau(a_2)cdotstau(a_k)right)left(tau(b_1)tau(b_2)cdotstau(b_{lambda})right)cdots$.






                share|cite|improve this answer









                $endgroup$



                Suppose that $sigma tau=(a_1a_2cdots a_k)(b_1b_2cdots b_{lambda})cdots$.

                Then $tausigma(tau(a_i))=tau(sigmatau(a_i))=tau(a_{i+1})ldots$



                Show that $tausigma=left(tau(a_1)tau(a_2)cdotstau(a_k)right)left(tau(b_1)tau(b_2)cdotstau(b_{lambda})right)cdots$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Mar 19 '13 at 20:04









                P..P..

                13.4k22348




                13.4k22348






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f334856%2flet-sigma-tau-in-s-n-prove-that-sigma-tau-and-tau-sigma-have-the%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Quarter-circle Tiles

                    build a pushdown automaton that recognizes the reverse language of a given pushdown automaton?

                    Mont Emei