$sum_{n=0}^infty (sqrt[3]{n+1} - sqrt[3]{n})^alpha (2+n^4)^beta$ convergence/divergence












0












$begingroup$


I am trying to analyze the convergence/divergence of:
$sum_{n=0}^infty (sqrt[3]{n+1} - sqrt[3]{n})^alpha (2+n^4)^beta$
depending on $alpha$ and $beta$. This is how far I have gone:
First i have changed it a bit using $(a^3-b^3)=(a-b)(a^2+ab+b^2)$ and i have studied this: $sum_{n=0}^infty frac{(2+n^4)^beta}{((n+1)^{2/3} + (n(n+1))^{1/3} + n^{2/3})^alpha}$ . I used the limit-convergence test
$lim_{nto infty} frac{(2+n^4)^beta}{n^lambda((n+1)^{2/3} + (n(n+1))^{1/3} + n^{2/3})^alpha}=l$ and now I would have to chose $lambda$ so that $0lt l lt infty$. My problem comes now. If i choose $lambda= 4beta-frac{2}{3}alpha$ the limit shoud be finite and bigger than $0$. So now, would it be correct to say that if $-1 gt 4beta-frac{2}{3}alpha$ the series is convergent? If it is not correct, how should the problem be done? Thanks in advance.










share|cite|improve this question









$endgroup$












  • $begingroup$
    @Clayton $a=sqrt[3]{n+1}$ and $b=sqrt[3]{n}$
    $endgroup$
    – Andarrkor
    Dec 24 '18 at 20:57


















0












$begingroup$


I am trying to analyze the convergence/divergence of:
$sum_{n=0}^infty (sqrt[3]{n+1} - sqrt[3]{n})^alpha (2+n^4)^beta$
depending on $alpha$ and $beta$. This is how far I have gone:
First i have changed it a bit using $(a^3-b^3)=(a-b)(a^2+ab+b^2)$ and i have studied this: $sum_{n=0}^infty frac{(2+n^4)^beta}{((n+1)^{2/3} + (n(n+1))^{1/3} + n^{2/3})^alpha}$ . I used the limit-convergence test
$lim_{nto infty} frac{(2+n^4)^beta}{n^lambda((n+1)^{2/3} + (n(n+1))^{1/3} + n^{2/3})^alpha}=l$ and now I would have to chose $lambda$ so that $0lt l lt infty$. My problem comes now. If i choose $lambda= 4beta-frac{2}{3}alpha$ the limit shoud be finite and bigger than $0$. So now, would it be correct to say that if $-1 gt 4beta-frac{2}{3}alpha$ the series is convergent? If it is not correct, how should the problem be done? Thanks in advance.










share|cite|improve this question









$endgroup$












  • $begingroup$
    @Clayton $a=sqrt[3]{n+1}$ and $b=sqrt[3]{n}$
    $endgroup$
    – Andarrkor
    Dec 24 '18 at 20:57
















0












0








0





$begingroup$


I am trying to analyze the convergence/divergence of:
$sum_{n=0}^infty (sqrt[3]{n+1} - sqrt[3]{n})^alpha (2+n^4)^beta$
depending on $alpha$ and $beta$. This is how far I have gone:
First i have changed it a bit using $(a^3-b^3)=(a-b)(a^2+ab+b^2)$ and i have studied this: $sum_{n=0}^infty frac{(2+n^4)^beta}{((n+1)^{2/3} + (n(n+1))^{1/3} + n^{2/3})^alpha}$ . I used the limit-convergence test
$lim_{nto infty} frac{(2+n^4)^beta}{n^lambda((n+1)^{2/3} + (n(n+1))^{1/3} + n^{2/3})^alpha}=l$ and now I would have to chose $lambda$ so that $0lt l lt infty$. My problem comes now. If i choose $lambda= 4beta-frac{2}{3}alpha$ the limit shoud be finite and bigger than $0$. So now, would it be correct to say that if $-1 gt 4beta-frac{2}{3}alpha$ the series is convergent? If it is not correct, how should the problem be done? Thanks in advance.










share|cite|improve this question









$endgroup$




I am trying to analyze the convergence/divergence of:
$sum_{n=0}^infty (sqrt[3]{n+1} - sqrt[3]{n})^alpha (2+n^4)^beta$
depending on $alpha$ and $beta$. This is how far I have gone:
First i have changed it a bit using $(a^3-b^3)=(a-b)(a^2+ab+b^2)$ and i have studied this: $sum_{n=0}^infty frac{(2+n^4)^beta}{((n+1)^{2/3} + (n(n+1))^{1/3} + n^{2/3})^alpha}$ . I used the limit-convergence test
$lim_{nto infty} frac{(2+n^4)^beta}{n^lambda((n+1)^{2/3} + (n(n+1))^{1/3} + n^{2/3})^alpha}=l$ and now I would have to chose $lambda$ so that $0lt l lt infty$. My problem comes now. If i choose $lambda= 4beta-frac{2}{3}alpha$ the limit shoud be finite and bigger than $0$. So now, would it be correct to say that if $-1 gt 4beta-frac{2}{3}alpha$ the series is convergent? If it is not correct, how should the problem be done? Thanks in advance.







sequences-and-series






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 24 '18 at 20:20









AndarrkorAndarrkor

496




496












  • $begingroup$
    @Clayton $a=sqrt[3]{n+1}$ and $b=sqrt[3]{n}$
    $endgroup$
    – Andarrkor
    Dec 24 '18 at 20:57




















  • $begingroup$
    @Clayton $a=sqrt[3]{n+1}$ and $b=sqrt[3]{n}$
    $endgroup$
    – Andarrkor
    Dec 24 '18 at 20:57


















$begingroup$
@Clayton $a=sqrt[3]{n+1}$ and $b=sqrt[3]{n}$
$endgroup$
– Andarrkor
Dec 24 '18 at 20:57






$begingroup$
@Clayton $a=sqrt[3]{n+1}$ and $b=sqrt[3]{n}$
$endgroup$
– Andarrkor
Dec 24 '18 at 20:57












1 Answer
1






active

oldest

votes


















1












$begingroup$

It's much simpler using equivalents





  • $sqrt[3]{n+1}-sqrt[3]{n}=sqrt[3]{n}Bigl(sqrt[3]{1+dfrac 1n}-1Bigr)=sqrt[3]{n}dfrac1{3n}=dfrac1{3n^{tfrac23}}$, so
    $$bigl(sqrt[3]{n+1} - sqrt[3]{n}bigr)^alphasim_{infty}dfrac1{3^alpha,n^{tfrac{2alpha}3}}.$$


  • $(2+n^4)^beta sim_infty n^{4beta}.$
    Therefore,
    $$bigl(sqrt[3]{n+1} - sqrt[3]{n}bigr)^alpha (2+n^4)^betasim_infty dfrac1{3^alpha,n^{tfrac{2alpha}3-4beta}}$$
    and the latter, which is a $p$-series, converges if and only if $;dfrac{2alpha}3-4beta>1$.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3051599%2fsum-n-0-infty-sqrt3n1-sqrt3n-alpha-2n4-beta-convergen%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    It's much simpler using equivalents





    • $sqrt[3]{n+1}-sqrt[3]{n}=sqrt[3]{n}Bigl(sqrt[3]{1+dfrac 1n}-1Bigr)=sqrt[3]{n}dfrac1{3n}=dfrac1{3n^{tfrac23}}$, so
      $$bigl(sqrt[3]{n+1} - sqrt[3]{n}bigr)^alphasim_{infty}dfrac1{3^alpha,n^{tfrac{2alpha}3}}.$$


    • $(2+n^4)^beta sim_infty n^{4beta}.$
      Therefore,
      $$bigl(sqrt[3]{n+1} - sqrt[3]{n}bigr)^alpha (2+n^4)^betasim_infty dfrac1{3^alpha,n^{tfrac{2alpha}3-4beta}}$$
      and the latter, which is a $p$-series, converges if and only if $;dfrac{2alpha}3-4beta>1$.






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      It's much simpler using equivalents





      • $sqrt[3]{n+1}-sqrt[3]{n}=sqrt[3]{n}Bigl(sqrt[3]{1+dfrac 1n}-1Bigr)=sqrt[3]{n}dfrac1{3n}=dfrac1{3n^{tfrac23}}$, so
        $$bigl(sqrt[3]{n+1} - sqrt[3]{n}bigr)^alphasim_{infty}dfrac1{3^alpha,n^{tfrac{2alpha}3}}.$$


      • $(2+n^4)^beta sim_infty n^{4beta}.$
        Therefore,
        $$bigl(sqrt[3]{n+1} - sqrt[3]{n}bigr)^alpha (2+n^4)^betasim_infty dfrac1{3^alpha,n^{tfrac{2alpha}3-4beta}}$$
        and the latter, which is a $p$-series, converges if and only if $;dfrac{2alpha}3-4beta>1$.






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        It's much simpler using equivalents





        • $sqrt[3]{n+1}-sqrt[3]{n}=sqrt[3]{n}Bigl(sqrt[3]{1+dfrac 1n}-1Bigr)=sqrt[3]{n}dfrac1{3n}=dfrac1{3n^{tfrac23}}$, so
          $$bigl(sqrt[3]{n+1} - sqrt[3]{n}bigr)^alphasim_{infty}dfrac1{3^alpha,n^{tfrac{2alpha}3}}.$$


        • $(2+n^4)^beta sim_infty n^{4beta}.$
          Therefore,
          $$bigl(sqrt[3]{n+1} - sqrt[3]{n}bigr)^alpha (2+n^4)^betasim_infty dfrac1{3^alpha,n^{tfrac{2alpha}3-4beta}}$$
          and the latter, which is a $p$-series, converges if and only if $;dfrac{2alpha}3-4beta>1$.






        share|cite|improve this answer









        $endgroup$



        It's much simpler using equivalents





        • $sqrt[3]{n+1}-sqrt[3]{n}=sqrt[3]{n}Bigl(sqrt[3]{1+dfrac 1n}-1Bigr)=sqrt[3]{n}dfrac1{3n}=dfrac1{3n^{tfrac23}}$, so
          $$bigl(sqrt[3]{n+1} - sqrt[3]{n}bigr)^alphasim_{infty}dfrac1{3^alpha,n^{tfrac{2alpha}3}}.$$


        • $(2+n^4)^beta sim_infty n^{4beta}.$
          Therefore,
          $$bigl(sqrt[3]{n+1} - sqrt[3]{n}bigr)^alpha (2+n^4)^betasim_infty dfrac1{3^alpha,n^{tfrac{2alpha}3-4beta}}$$
          and the latter, which is a $p$-series, converges if and only if $;dfrac{2alpha}3-4beta>1$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 24 '18 at 21:26









        BernardBernard

        121k740116




        121k740116






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3051599%2fsum-n-0-infty-sqrt3n1-sqrt3n-alpha-2n4-beta-convergen%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Ellipse (mathématiques)

            Quarter-circle Tiles

            Mont Emei