Dirichlet series of convolution of conditionally convergent Dirichlet series is not necessarily convergent












0












$begingroup$


In Montgomery and Vaughan's Multiplicative Number Theory I. Classical Theory, they claim the statement in this question's title, using the example $$ alpha(s) = sum_{n=1}^infty (-1)^{n-1}n^{-s} $$ as the conditionally convergent series, for $0< sigma < 1$, and state that the Dirichlet series of $alpha(s)^2$ has abscissa of convergence $1/4$. However, I cannot see why the abscissa of convergence is $1/4$.










share|cite|improve this question









$endgroup$












  • $begingroup$
    Do you mean $sum_{s=1}^infty{alpha^2(s)}$?
    $endgroup$
    – Mostafa Ayaz
    Jan 6 at 9:59










  • $begingroup$
    No, I mean the Dirichlet series $$sum_{n=1}^infty c(n)n^{-s},$$ where $$c(n)=sum_{d|n} (-1)^{d+n/d}$$ is the Dirichlet convolution of $(-1)^{n-1}$ with itself.
    $endgroup$
    – 1000teslas
    Jan 7 at 4:45


















0












$begingroup$


In Montgomery and Vaughan's Multiplicative Number Theory I. Classical Theory, they claim the statement in this question's title, using the example $$ alpha(s) = sum_{n=1}^infty (-1)^{n-1}n^{-s} $$ as the conditionally convergent series, for $0< sigma < 1$, and state that the Dirichlet series of $alpha(s)^2$ has abscissa of convergence $1/4$. However, I cannot see why the abscissa of convergence is $1/4$.










share|cite|improve this question









$endgroup$












  • $begingroup$
    Do you mean $sum_{s=1}^infty{alpha^2(s)}$?
    $endgroup$
    – Mostafa Ayaz
    Jan 6 at 9:59










  • $begingroup$
    No, I mean the Dirichlet series $$sum_{n=1}^infty c(n)n^{-s},$$ where $$c(n)=sum_{d|n} (-1)^{d+n/d}$$ is the Dirichlet convolution of $(-1)^{n-1}$ with itself.
    $endgroup$
    – 1000teslas
    Jan 7 at 4:45
















0












0








0





$begingroup$


In Montgomery and Vaughan's Multiplicative Number Theory I. Classical Theory, they claim the statement in this question's title, using the example $$ alpha(s) = sum_{n=1}^infty (-1)^{n-1}n^{-s} $$ as the conditionally convergent series, for $0< sigma < 1$, and state that the Dirichlet series of $alpha(s)^2$ has abscissa of convergence $1/4$. However, I cannot see why the abscissa of convergence is $1/4$.










share|cite|improve this question









$endgroup$




In Montgomery and Vaughan's Multiplicative Number Theory I. Classical Theory, they claim the statement in this question's title, using the example $$ alpha(s) = sum_{n=1}^infty (-1)^{n-1}n^{-s} $$ as the conditionally convergent series, for $0< sigma < 1$, and state that the Dirichlet series of $alpha(s)^2$ has abscissa of convergence $1/4$. However, I cannot see why the abscissa of convergence is $1/4$.







sequences-and-series convergence






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 6 at 8:10









1000teslas1000teslas

1




1












  • $begingroup$
    Do you mean $sum_{s=1}^infty{alpha^2(s)}$?
    $endgroup$
    – Mostafa Ayaz
    Jan 6 at 9:59










  • $begingroup$
    No, I mean the Dirichlet series $$sum_{n=1}^infty c(n)n^{-s},$$ where $$c(n)=sum_{d|n} (-1)^{d+n/d}$$ is the Dirichlet convolution of $(-1)^{n-1}$ with itself.
    $endgroup$
    – 1000teslas
    Jan 7 at 4:45




















  • $begingroup$
    Do you mean $sum_{s=1}^infty{alpha^2(s)}$?
    $endgroup$
    – Mostafa Ayaz
    Jan 6 at 9:59










  • $begingroup$
    No, I mean the Dirichlet series $$sum_{n=1}^infty c(n)n^{-s},$$ where $$c(n)=sum_{d|n} (-1)^{d+n/d}$$ is the Dirichlet convolution of $(-1)^{n-1}$ with itself.
    $endgroup$
    – 1000teslas
    Jan 7 at 4:45


















$begingroup$
Do you mean $sum_{s=1}^infty{alpha^2(s)}$?
$endgroup$
– Mostafa Ayaz
Jan 6 at 9:59




$begingroup$
Do you mean $sum_{s=1}^infty{alpha^2(s)}$?
$endgroup$
– Mostafa Ayaz
Jan 6 at 9:59












$begingroup$
No, I mean the Dirichlet series $$sum_{n=1}^infty c(n)n^{-s},$$ where $$c(n)=sum_{d|n} (-1)^{d+n/d}$$ is the Dirichlet convolution of $(-1)^{n-1}$ with itself.
$endgroup$
– 1000teslas
Jan 7 at 4:45






$begingroup$
No, I mean the Dirichlet series $$sum_{n=1}^infty c(n)n^{-s},$$ where $$c(n)=sum_{d|n} (-1)^{d+n/d}$$ is the Dirichlet convolution of $(-1)^{n-1}$ with itself.
$endgroup$
– 1000teslas
Jan 7 at 4:45












0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063601%2fdirichlet-series-of-convolution-of-conditionally-convergent-dirichlet-series-is%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063601%2fdirichlet-series-of-convolution-of-conditionally-convergent-dirichlet-series-is%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Quarter-circle Tiles

build a pushdown automaton that recognizes the reverse language of a given pushdown automaton?

Mont Emei