Seeking methods to solve $int_{0}^{infty} frac{x - sin(x)}{x^3left(x^2 + 4right)} :dx$ [closed]
up vote
2
down vote
favorite
I'm looking for methods to solve the following integral:
$$I = int_{0}^{infty} frac{x - sin(x)}{x^3left(x^2 + 4right)} :dx$$
integration definite-integrals laplace-transform laplace-method
closed as off-topic by user302797, user10354138, Rebellos, Shailesh, s.harp Nov 23 at 11:26
This question appears to be off-topic. The users who voted to close gave this specific reason:
- "This question is missing context or other details: Please improve the question by providing additional context, which ideally includes your thoughts on the problem and any attempts you have made to solve it. This information helps others identify where you have difficulties and helps them write answers appropriate to your experience level." – user302797, user10354138, Rebellos, Shailesh
If this question can be reworded to fit the rules in the help center, please edit the question.
add a comment |
up vote
2
down vote
favorite
I'm looking for methods to solve the following integral:
$$I = int_{0}^{infty} frac{x - sin(x)}{x^3left(x^2 + 4right)} :dx$$
integration definite-integrals laplace-transform laplace-method
closed as off-topic by user302797, user10354138, Rebellos, Shailesh, s.harp Nov 23 at 11:26
This question appears to be off-topic. The users who voted to close gave this specific reason:
- "This question is missing context or other details: Please improve the question by providing additional context, which ideally includes your thoughts on the problem and any attempts you have made to solve it. This information helps others identify where you have difficulties and helps them write answers appropriate to your experience level." – user302797, user10354138, Rebellos, Shailesh
If this question can be reworded to fit the rules in the help center, please edit the question.
See here: math.stackexchange.com/questions/2974517/…
– Zacky
Nov 19 at 11:27
Possible duplicate of Integral $int_0^infty frac{x-sin x}{x^3(x^2+4)} dx$
– s.harp
Nov 23 at 11:26
add a comment |
up vote
2
down vote
favorite
up vote
2
down vote
favorite
I'm looking for methods to solve the following integral:
$$I = int_{0}^{infty} frac{x - sin(x)}{x^3left(x^2 + 4right)} :dx$$
integration definite-integrals laplace-transform laplace-method
I'm looking for methods to solve the following integral:
$$I = int_{0}^{infty} frac{x - sin(x)}{x^3left(x^2 + 4right)} :dx$$
integration definite-integrals laplace-transform laplace-method
integration definite-integrals laplace-transform laplace-method
asked Nov 19 at 3:09
DavidG
817514
817514
closed as off-topic by user302797, user10354138, Rebellos, Shailesh, s.harp Nov 23 at 11:26
This question appears to be off-topic. The users who voted to close gave this specific reason:
- "This question is missing context or other details: Please improve the question by providing additional context, which ideally includes your thoughts on the problem and any attempts you have made to solve it. This information helps others identify where you have difficulties and helps them write answers appropriate to your experience level." – user302797, user10354138, Rebellos, Shailesh
If this question can be reworded to fit the rules in the help center, please edit the question.
closed as off-topic by user302797, user10354138, Rebellos, Shailesh, s.harp Nov 23 at 11:26
This question appears to be off-topic. The users who voted to close gave this specific reason:
- "This question is missing context or other details: Please improve the question by providing additional context, which ideally includes your thoughts on the problem and any attempts you have made to solve it. This information helps others identify where you have difficulties and helps them write answers appropriate to your experience level." – user302797, user10354138, Rebellos, Shailesh
If this question can be reworded to fit the rules in the help center, please edit the question.
See here: math.stackexchange.com/questions/2974517/…
– Zacky
Nov 19 at 11:27
Possible duplicate of Integral $int_0^infty frac{x-sin x}{x^3(x^2+4)} dx$
– s.harp
Nov 23 at 11:26
add a comment |
See here: math.stackexchange.com/questions/2974517/…
– Zacky
Nov 19 at 11:27
Possible duplicate of Integral $int_0^infty frac{x-sin x}{x^3(x^2+4)} dx$
– s.harp
Nov 23 at 11:26
See here: math.stackexchange.com/questions/2974517/…
– Zacky
Nov 19 at 11:27
See here: math.stackexchange.com/questions/2974517/…
– Zacky
Nov 19 at 11:27
Possible duplicate of Integral $int_0^infty frac{x-sin x}{x^3(x^2+4)} dx$
– s.harp
Nov 23 at 11:26
Possible duplicate of Integral $int_0^infty frac{x-sin x}{x^3(x^2+4)} dx$
– s.harp
Nov 23 at 11:26
add a comment |
3 Answers
3
active
oldest
votes
up vote
2
down vote
accepted
Write$$I = int_{0}^{infty} underbrace{frac{x - sin(x)}{x^3left(x^2 + 4right)}}_{:=g(x)} ~mathrm dx=frac 12 int_{-infty}^{infty} g(x) ~mathrm dx.$$
Let $f(z)=dfrac{z+ie^{iz}}{z^3(z^2+4)}$, so $Re f(x)=g(x).$
Take the contour
Then we have two poles ($z=0$ on the contour and $z=2i$ inside the contour),
$$int_{C_R}f(z)~mathrm dz+int_{-R}^R f(z)~mathrm dz=pi i operatorname{Res}_{z=0}f(z)+2pi i operatorname{Res}_{z=2i}f(z).tag{*}$$
By ML lemma,
$$lim_{Rtoinfty}int_{C_R}f(z)~mathrm dz=0.$$
We also calculate the residue of the function at $z=0$ by means of power series:
begin{align*}
f(z)=frac14frac{z+ie^{iz}}{z^3}frac{1}{1-(-frac{z^2}{4})}&=frac14frac1{z^3}left[z+ileft(1+iz-frac{z^2}{2}-frac{iz^3}{6}+cdotsright)right]left(1-frac{z^2}4+cdotsright)\
&=cdots+frac14left(-frac i2-frac i4right)frac 1z+cdots
end{align*}
implies
$$operatorname{Res}_{z=0}f(z)=frac14left(-frac i2-frac i4right)=-frac{3i}{16},$$
and the residue at $z=2i$ is
$$operatorname{Res}_{z=2i}f(z)=lim_{zto 2i}(z-2i)f(z)=frac{(2+e^{-2})i}{32}.$$
Thus, from $(*)$,
$$int_{-infty}^infty f(x) ~mathrm dx =frac{3pi}{16}-frac{(2+e^{-2})pi}{16}=frac{1}{16}(1-e^{-2}).$$
$$therefore I=frac 12 Reint_{-infty}^{infty} g(x) ~mathrm dx=frac{1}{32}(1-e^{-2}).$$
Thanks for your post. Although I did it a long time ago, I've forgotten a lot of my contour integration work. Do you know of any good resources to learn this?
– DavidG
Nov 19 at 5:57
add a comment |
up vote
6
down vote
My approach:
Let
$$I(t) = int_{0}^{infty} frac{xt - sin(xt)}{x^3left(x^2 + 4right)} :dx$$
Where $I = I(1)$
Taking the first derivative:
$$ frac{dI}{dt} = int_{0}^{infty} frac{x - xcos(xt)}{x^3left(x^2 + 4right)} :dx = int_{0}^{infty} frac{1 - cos(xt)}{x^2left(x^2 + 4right)} :dx$$
Taking the second derivative:
$$ frac{d^2I}{dt^2} = int_{0}^{infty} frac{xsin(xt)}{x^2left(x^2 + 4right)} :dx = int_{0}^{infty} frac{sin(xt)}{xleft(x^2 + 4right)} :dx$$
Now, take the Laplace Transform w.r.t $t$:
begin{align}
mathscr{L}left[ frac{d^2I}{dt^2}right] &= int_{0}^{infty} frac{mathscr{L}left[sin(xt)right]}{xleft(x^2 + 4right)} :dx \
&= int_{0}^{infty} frac{x}{left(s^2 + x^2right)xleft(x^2 + 4right)}:dx \
&= int_{0}^{infty} frac{1}{left(s^2 + x^2right)left(x^2 + 4right)}:dx
end{align}
Applying the Partial Fraction Decomposition we may find the integral
begin{align}
mathscr{L}left[ frac{d^2I}{dt^2}right] &= int_{0}^{infty} frac{1}{left(s^2 + x^2right)left(x^2 + 4right)}:dx \
&= frac{1}{s^2 - 4} int_{0}^{infty} left[frac{1}{x^2 + 4} - frac{1}{x^2 + s^2} right]:dx \
&= frac{1}{s^2 - 4} left[frac{1}{2}arctanleft(frac{x}{2}right) - frac{1}{s}arctanleft(frac{x}{s}right)right]_{0}^{infty} \
&= frac{1}{s^2 - 4} left[frac{1}{2}frac{pi}{2} - frac{1}{s}frac{pi}{2} right] \
&= frac{pi}{4sleft(s + 2right)}
end{align}
We now take the inverse Laplace Transform:
$$ frac{d^2I}{dt^2} = mathscr{L}^{-1}left[frac{pi}{4sleft(s + 2right)} right] = frac{pi}{8}left(1 - e^{-2t} right) $$
We now integrate with respect to $t$:
$$ frac{dI}{dt} = int frac{pi}{8}left(1 - e^{-2t} right):dt = frac{pi}{8}left(t + frac{e^{-2t}}{2} right) + C_1$$
Now
$$ frac{dI}{dt}(0) = int_{0}^{infty} frac{1 - cos(xcdot 0)}{x^2left(x^2 + 4right)} :dx = 0 = frac{pi}{8}left(frac{1}{2} right) + C_1 rightarrow C_1 = -frac{pi}{16}$$
Thus,
$$ frac{dI}{dt} = int frac{pi}{8}left(1 - e^{-2t} right):dt = frac{pi}{8}left(t + frac{e^{-2t}}{2} right) - frac{pi}{16}$$
We now integrate again w.r.t $t$
$$ I(t) = int left[frac{pi}{8}left(t + frac{e^{-2t}}{2} right) - frac{pi}{16} right] :dt = frac{pi}{8}left(frac{t^2}{2} - frac{e^{-2t}}{4} right) - frac{pi}{16}t + C_2 $$
Now
$$I(0) = int_{0}^{infty} frac{xcdot0 - sin(xcdot0)}{x^3left(x^2 + 4right)} :dx = 0 = frac{pi}{8}left( -frac{1}{4} right) + C_2 rightarrow C_2 = frac{pi}{32}$$
And so we arrive at our expression for $I(t)$
$$I(t)= frac{pi}{8}left(frac{t^2}{2} - frac{e^{-2t}}{4} right) - frac{pi}{16}t + frac{pi}{32}$$
Thus,
$$I = I(1) = frac{pi}{8}left(frac{1}{2} - frac{e^{-2}}{4} right) - frac{pi}{16} + frac{pi}{32} = frac{pi}{32}left(1 - e^{-2}right)$$
This is a nice solution ! Thanks for providing it. $to +1$
– Claude Leibovici
Nov 19 at 4:06
@ClaudeLeibovici - No worries! I'm glad you like it :-)
– DavidG
Nov 19 at 4:13
add a comment |
up vote
2
down vote
Using the expansion near $x=0$,
$$
frac1{{x^3left(x^2+4right)}}=frac1{4x^3}-frac1{16x}+O(1)
$$
and the contours
$$
gamma^+=[-R-i,R-i]cup Re^{i[0,pi]}-i
$$
which contains $0$ and $2i$, and
$$
gamma^-=[-R-i,R-i]cup Re^{-i[0,pi]}-i
$$
which contains $-2i$, we get
$$
begin{align}
int_0^inftyfrac{x-sin(x)}{x^3left(x^2+4right)},mathrm{d}x
&=frac12int_{-infty-i}^{infty-i}frac{x-sin(x)}{x^3left(x^2+4right)},mathrm{d}x\
&=color{#C00}{frac12int_{gamma^+}frac{x-frac{e^{ix}}{2i}}{x^3left(x^2+4right)},mathrm{d}x}\
&color{#090}{+frac12int_{gamma^-}frac{frac{e^{-ix}}{2i}}{x^3left(x^2+4right)},mathrm{d}x}\
&=color{#C00}{underbrace{quadfrac{3pi}{32}quad}_{x=0}underbrace{-frac{4+e^{-2}}{64}pi}_{x=2i}}color{#090}{underbrace{ -frac{e^{-2}}{64}pi }_{x=-2i}}\
&=frac{1-e^{-2}}{32}pi
end{align}
$$
add a comment |
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
accepted
Write$$I = int_{0}^{infty} underbrace{frac{x - sin(x)}{x^3left(x^2 + 4right)}}_{:=g(x)} ~mathrm dx=frac 12 int_{-infty}^{infty} g(x) ~mathrm dx.$$
Let $f(z)=dfrac{z+ie^{iz}}{z^3(z^2+4)}$, so $Re f(x)=g(x).$
Take the contour
Then we have two poles ($z=0$ on the contour and $z=2i$ inside the contour),
$$int_{C_R}f(z)~mathrm dz+int_{-R}^R f(z)~mathrm dz=pi i operatorname{Res}_{z=0}f(z)+2pi i operatorname{Res}_{z=2i}f(z).tag{*}$$
By ML lemma,
$$lim_{Rtoinfty}int_{C_R}f(z)~mathrm dz=0.$$
We also calculate the residue of the function at $z=0$ by means of power series:
begin{align*}
f(z)=frac14frac{z+ie^{iz}}{z^3}frac{1}{1-(-frac{z^2}{4})}&=frac14frac1{z^3}left[z+ileft(1+iz-frac{z^2}{2}-frac{iz^3}{6}+cdotsright)right]left(1-frac{z^2}4+cdotsright)\
&=cdots+frac14left(-frac i2-frac i4right)frac 1z+cdots
end{align*}
implies
$$operatorname{Res}_{z=0}f(z)=frac14left(-frac i2-frac i4right)=-frac{3i}{16},$$
and the residue at $z=2i$ is
$$operatorname{Res}_{z=2i}f(z)=lim_{zto 2i}(z-2i)f(z)=frac{(2+e^{-2})i}{32}.$$
Thus, from $(*)$,
$$int_{-infty}^infty f(x) ~mathrm dx =frac{3pi}{16}-frac{(2+e^{-2})pi}{16}=frac{1}{16}(1-e^{-2}).$$
$$therefore I=frac 12 Reint_{-infty}^{infty} g(x) ~mathrm dx=frac{1}{32}(1-e^{-2}).$$
Thanks for your post. Although I did it a long time ago, I've forgotten a lot of my contour integration work. Do you know of any good resources to learn this?
– DavidG
Nov 19 at 5:57
add a comment |
up vote
2
down vote
accepted
Write$$I = int_{0}^{infty} underbrace{frac{x - sin(x)}{x^3left(x^2 + 4right)}}_{:=g(x)} ~mathrm dx=frac 12 int_{-infty}^{infty} g(x) ~mathrm dx.$$
Let $f(z)=dfrac{z+ie^{iz}}{z^3(z^2+4)}$, so $Re f(x)=g(x).$
Take the contour
Then we have two poles ($z=0$ on the contour and $z=2i$ inside the contour),
$$int_{C_R}f(z)~mathrm dz+int_{-R}^R f(z)~mathrm dz=pi i operatorname{Res}_{z=0}f(z)+2pi i operatorname{Res}_{z=2i}f(z).tag{*}$$
By ML lemma,
$$lim_{Rtoinfty}int_{C_R}f(z)~mathrm dz=0.$$
We also calculate the residue of the function at $z=0$ by means of power series:
begin{align*}
f(z)=frac14frac{z+ie^{iz}}{z^3}frac{1}{1-(-frac{z^2}{4})}&=frac14frac1{z^3}left[z+ileft(1+iz-frac{z^2}{2}-frac{iz^3}{6}+cdotsright)right]left(1-frac{z^2}4+cdotsright)\
&=cdots+frac14left(-frac i2-frac i4right)frac 1z+cdots
end{align*}
implies
$$operatorname{Res}_{z=0}f(z)=frac14left(-frac i2-frac i4right)=-frac{3i}{16},$$
and the residue at $z=2i$ is
$$operatorname{Res}_{z=2i}f(z)=lim_{zto 2i}(z-2i)f(z)=frac{(2+e^{-2})i}{32}.$$
Thus, from $(*)$,
$$int_{-infty}^infty f(x) ~mathrm dx =frac{3pi}{16}-frac{(2+e^{-2})pi}{16}=frac{1}{16}(1-e^{-2}).$$
$$therefore I=frac 12 Reint_{-infty}^{infty} g(x) ~mathrm dx=frac{1}{32}(1-e^{-2}).$$
Thanks for your post. Although I did it a long time ago, I've forgotten a lot of my contour integration work. Do you know of any good resources to learn this?
– DavidG
Nov 19 at 5:57
add a comment |
up vote
2
down vote
accepted
up vote
2
down vote
accepted
Write$$I = int_{0}^{infty} underbrace{frac{x - sin(x)}{x^3left(x^2 + 4right)}}_{:=g(x)} ~mathrm dx=frac 12 int_{-infty}^{infty} g(x) ~mathrm dx.$$
Let $f(z)=dfrac{z+ie^{iz}}{z^3(z^2+4)}$, so $Re f(x)=g(x).$
Take the contour
Then we have two poles ($z=0$ on the contour and $z=2i$ inside the contour),
$$int_{C_R}f(z)~mathrm dz+int_{-R}^R f(z)~mathrm dz=pi i operatorname{Res}_{z=0}f(z)+2pi i operatorname{Res}_{z=2i}f(z).tag{*}$$
By ML lemma,
$$lim_{Rtoinfty}int_{C_R}f(z)~mathrm dz=0.$$
We also calculate the residue of the function at $z=0$ by means of power series:
begin{align*}
f(z)=frac14frac{z+ie^{iz}}{z^3}frac{1}{1-(-frac{z^2}{4})}&=frac14frac1{z^3}left[z+ileft(1+iz-frac{z^2}{2}-frac{iz^3}{6}+cdotsright)right]left(1-frac{z^2}4+cdotsright)\
&=cdots+frac14left(-frac i2-frac i4right)frac 1z+cdots
end{align*}
implies
$$operatorname{Res}_{z=0}f(z)=frac14left(-frac i2-frac i4right)=-frac{3i}{16},$$
and the residue at $z=2i$ is
$$operatorname{Res}_{z=2i}f(z)=lim_{zto 2i}(z-2i)f(z)=frac{(2+e^{-2})i}{32}.$$
Thus, from $(*)$,
$$int_{-infty}^infty f(x) ~mathrm dx =frac{3pi}{16}-frac{(2+e^{-2})pi}{16}=frac{1}{16}(1-e^{-2}).$$
$$therefore I=frac 12 Reint_{-infty}^{infty} g(x) ~mathrm dx=frac{1}{32}(1-e^{-2}).$$
Write$$I = int_{0}^{infty} underbrace{frac{x - sin(x)}{x^3left(x^2 + 4right)}}_{:=g(x)} ~mathrm dx=frac 12 int_{-infty}^{infty} g(x) ~mathrm dx.$$
Let $f(z)=dfrac{z+ie^{iz}}{z^3(z^2+4)}$, so $Re f(x)=g(x).$
Take the contour
Then we have two poles ($z=0$ on the contour and $z=2i$ inside the contour),
$$int_{C_R}f(z)~mathrm dz+int_{-R}^R f(z)~mathrm dz=pi i operatorname{Res}_{z=0}f(z)+2pi i operatorname{Res}_{z=2i}f(z).tag{*}$$
By ML lemma,
$$lim_{Rtoinfty}int_{C_R}f(z)~mathrm dz=0.$$
We also calculate the residue of the function at $z=0$ by means of power series:
begin{align*}
f(z)=frac14frac{z+ie^{iz}}{z^3}frac{1}{1-(-frac{z^2}{4})}&=frac14frac1{z^3}left[z+ileft(1+iz-frac{z^2}{2}-frac{iz^3}{6}+cdotsright)right]left(1-frac{z^2}4+cdotsright)\
&=cdots+frac14left(-frac i2-frac i4right)frac 1z+cdots
end{align*}
implies
$$operatorname{Res}_{z=0}f(z)=frac14left(-frac i2-frac i4right)=-frac{3i}{16},$$
and the residue at $z=2i$ is
$$operatorname{Res}_{z=2i}f(z)=lim_{zto 2i}(z-2i)f(z)=frac{(2+e^{-2})i}{32}.$$
Thus, from $(*)$,
$$int_{-infty}^infty f(x) ~mathrm dx =frac{3pi}{16}-frac{(2+e^{-2})pi}{16}=frac{1}{16}(1-e^{-2}).$$
$$therefore I=frac 12 Reint_{-infty}^{infty} g(x) ~mathrm dx=frac{1}{32}(1-e^{-2}).$$
answered Nov 19 at 5:39
Tianlalu
2,854832
2,854832
Thanks for your post. Although I did it a long time ago, I've forgotten a lot of my contour integration work. Do you know of any good resources to learn this?
– DavidG
Nov 19 at 5:57
add a comment |
Thanks for your post. Although I did it a long time ago, I've forgotten a lot of my contour integration work. Do you know of any good resources to learn this?
– DavidG
Nov 19 at 5:57
Thanks for your post. Although I did it a long time ago, I've forgotten a lot of my contour integration work. Do you know of any good resources to learn this?
– DavidG
Nov 19 at 5:57
Thanks for your post. Although I did it a long time ago, I've forgotten a lot of my contour integration work. Do you know of any good resources to learn this?
– DavidG
Nov 19 at 5:57
add a comment |
up vote
6
down vote
My approach:
Let
$$I(t) = int_{0}^{infty} frac{xt - sin(xt)}{x^3left(x^2 + 4right)} :dx$$
Where $I = I(1)$
Taking the first derivative:
$$ frac{dI}{dt} = int_{0}^{infty} frac{x - xcos(xt)}{x^3left(x^2 + 4right)} :dx = int_{0}^{infty} frac{1 - cos(xt)}{x^2left(x^2 + 4right)} :dx$$
Taking the second derivative:
$$ frac{d^2I}{dt^2} = int_{0}^{infty} frac{xsin(xt)}{x^2left(x^2 + 4right)} :dx = int_{0}^{infty} frac{sin(xt)}{xleft(x^2 + 4right)} :dx$$
Now, take the Laplace Transform w.r.t $t$:
begin{align}
mathscr{L}left[ frac{d^2I}{dt^2}right] &= int_{0}^{infty} frac{mathscr{L}left[sin(xt)right]}{xleft(x^2 + 4right)} :dx \
&= int_{0}^{infty} frac{x}{left(s^2 + x^2right)xleft(x^2 + 4right)}:dx \
&= int_{0}^{infty} frac{1}{left(s^2 + x^2right)left(x^2 + 4right)}:dx
end{align}
Applying the Partial Fraction Decomposition we may find the integral
begin{align}
mathscr{L}left[ frac{d^2I}{dt^2}right] &= int_{0}^{infty} frac{1}{left(s^2 + x^2right)left(x^2 + 4right)}:dx \
&= frac{1}{s^2 - 4} int_{0}^{infty} left[frac{1}{x^2 + 4} - frac{1}{x^2 + s^2} right]:dx \
&= frac{1}{s^2 - 4} left[frac{1}{2}arctanleft(frac{x}{2}right) - frac{1}{s}arctanleft(frac{x}{s}right)right]_{0}^{infty} \
&= frac{1}{s^2 - 4} left[frac{1}{2}frac{pi}{2} - frac{1}{s}frac{pi}{2} right] \
&= frac{pi}{4sleft(s + 2right)}
end{align}
We now take the inverse Laplace Transform:
$$ frac{d^2I}{dt^2} = mathscr{L}^{-1}left[frac{pi}{4sleft(s + 2right)} right] = frac{pi}{8}left(1 - e^{-2t} right) $$
We now integrate with respect to $t$:
$$ frac{dI}{dt} = int frac{pi}{8}left(1 - e^{-2t} right):dt = frac{pi}{8}left(t + frac{e^{-2t}}{2} right) + C_1$$
Now
$$ frac{dI}{dt}(0) = int_{0}^{infty} frac{1 - cos(xcdot 0)}{x^2left(x^2 + 4right)} :dx = 0 = frac{pi}{8}left(frac{1}{2} right) + C_1 rightarrow C_1 = -frac{pi}{16}$$
Thus,
$$ frac{dI}{dt} = int frac{pi}{8}left(1 - e^{-2t} right):dt = frac{pi}{8}left(t + frac{e^{-2t}}{2} right) - frac{pi}{16}$$
We now integrate again w.r.t $t$
$$ I(t) = int left[frac{pi}{8}left(t + frac{e^{-2t}}{2} right) - frac{pi}{16} right] :dt = frac{pi}{8}left(frac{t^2}{2} - frac{e^{-2t}}{4} right) - frac{pi}{16}t + C_2 $$
Now
$$I(0) = int_{0}^{infty} frac{xcdot0 - sin(xcdot0)}{x^3left(x^2 + 4right)} :dx = 0 = frac{pi}{8}left( -frac{1}{4} right) + C_2 rightarrow C_2 = frac{pi}{32}$$
And so we arrive at our expression for $I(t)$
$$I(t)= frac{pi}{8}left(frac{t^2}{2} - frac{e^{-2t}}{4} right) - frac{pi}{16}t + frac{pi}{32}$$
Thus,
$$I = I(1) = frac{pi}{8}left(frac{1}{2} - frac{e^{-2}}{4} right) - frac{pi}{16} + frac{pi}{32} = frac{pi}{32}left(1 - e^{-2}right)$$
This is a nice solution ! Thanks for providing it. $to +1$
– Claude Leibovici
Nov 19 at 4:06
@ClaudeLeibovici - No worries! I'm glad you like it :-)
– DavidG
Nov 19 at 4:13
add a comment |
up vote
6
down vote
My approach:
Let
$$I(t) = int_{0}^{infty} frac{xt - sin(xt)}{x^3left(x^2 + 4right)} :dx$$
Where $I = I(1)$
Taking the first derivative:
$$ frac{dI}{dt} = int_{0}^{infty} frac{x - xcos(xt)}{x^3left(x^2 + 4right)} :dx = int_{0}^{infty} frac{1 - cos(xt)}{x^2left(x^2 + 4right)} :dx$$
Taking the second derivative:
$$ frac{d^2I}{dt^2} = int_{0}^{infty} frac{xsin(xt)}{x^2left(x^2 + 4right)} :dx = int_{0}^{infty} frac{sin(xt)}{xleft(x^2 + 4right)} :dx$$
Now, take the Laplace Transform w.r.t $t$:
begin{align}
mathscr{L}left[ frac{d^2I}{dt^2}right] &= int_{0}^{infty} frac{mathscr{L}left[sin(xt)right]}{xleft(x^2 + 4right)} :dx \
&= int_{0}^{infty} frac{x}{left(s^2 + x^2right)xleft(x^2 + 4right)}:dx \
&= int_{0}^{infty} frac{1}{left(s^2 + x^2right)left(x^2 + 4right)}:dx
end{align}
Applying the Partial Fraction Decomposition we may find the integral
begin{align}
mathscr{L}left[ frac{d^2I}{dt^2}right] &= int_{0}^{infty} frac{1}{left(s^2 + x^2right)left(x^2 + 4right)}:dx \
&= frac{1}{s^2 - 4} int_{0}^{infty} left[frac{1}{x^2 + 4} - frac{1}{x^2 + s^2} right]:dx \
&= frac{1}{s^2 - 4} left[frac{1}{2}arctanleft(frac{x}{2}right) - frac{1}{s}arctanleft(frac{x}{s}right)right]_{0}^{infty} \
&= frac{1}{s^2 - 4} left[frac{1}{2}frac{pi}{2} - frac{1}{s}frac{pi}{2} right] \
&= frac{pi}{4sleft(s + 2right)}
end{align}
We now take the inverse Laplace Transform:
$$ frac{d^2I}{dt^2} = mathscr{L}^{-1}left[frac{pi}{4sleft(s + 2right)} right] = frac{pi}{8}left(1 - e^{-2t} right) $$
We now integrate with respect to $t$:
$$ frac{dI}{dt} = int frac{pi}{8}left(1 - e^{-2t} right):dt = frac{pi}{8}left(t + frac{e^{-2t}}{2} right) + C_1$$
Now
$$ frac{dI}{dt}(0) = int_{0}^{infty} frac{1 - cos(xcdot 0)}{x^2left(x^2 + 4right)} :dx = 0 = frac{pi}{8}left(frac{1}{2} right) + C_1 rightarrow C_1 = -frac{pi}{16}$$
Thus,
$$ frac{dI}{dt} = int frac{pi}{8}left(1 - e^{-2t} right):dt = frac{pi}{8}left(t + frac{e^{-2t}}{2} right) - frac{pi}{16}$$
We now integrate again w.r.t $t$
$$ I(t) = int left[frac{pi}{8}left(t + frac{e^{-2t}}{2} right) - frac{pi}{16} right] :dt = frac{pi}{8}left(frac{t^2}{2} - frac{e^{-2t}}{4} right) - frac{pi}{16}t + C_2 $$
Now
$$I(0) = int_{0}^{infty} frac{xcdot0 - sin(xcdot0)}{x^3left(x^2 + 4right)} :dx = 0 = frac{pi}{8}left( -frac{1}{4} right) + C_2 rightarrow C_2 = frac{pi}{32}$$
And so we arrive at our expression for $I(t)$
$$I(t)= frac{pi}{8}left(frac{t^2}{2} - frac{e^{-2t}}{4} right) - frac{pi}{16}t + frac{pi}{32}$$
Thus,
$$I = I(1) = frac{pi}{8}left(frac{1}{2} - frac{e^{-2}}{4} right) - frac{pi}{16} + frac{pi}{32} = frac{pi}{32}left(1 - e^{-2}right)$$
This is a nice solution ! Thanks for providing it. $to +1$
– Claude Leibovici
Nov 19 at 4:06
@ClaudeLeibovici - No worries! I'm glad you like it :-)
– DavidG
Nov 19 at 4:13
add a comment |
up vote
6
down vote
up vote
6
down vote
My approach:
Let
$$I(t) = int_{0}^{infty} frac{xt - sin(xt)}{x^3left(x^2 + 4right)} :dx$$
Where $I = I(1)$
Taking the first derivative:
$$ frac{dI}{dt} = int_{0}^{infty} frac{x - xcos(xt)}{x^3left(x^2 + 4right)} :dx = int_{0}^{infty} frac{1 - cos(xt)}{x^2left(x^2 + 4right)} :dx$$
Taking the second derivative:
$$ frac{d^2I}{dt^2} = int_{0}^{infty} frac{xsin(xt)}{x^2left(x^2 + 4right)} :dx = int_{0}^{infty} frac{sin(xt)}{xleft(x^2 + 4right)} :dx$$
Now, take the Laplace Transform w.r.t $t$:
begin{align}
mathscr{L}left[ frac{d^2I}{dt^2}right] &= int_{0}^{infty} frac{mathscr{L}left[sin(xt)right]}{xleft(x^2 + 4right)} :dx \
&= int_{0}^{infty} frac{x}{left(s^2 + x^2right)xleft(x^2 + 4right)}:dx \
&= int_{0}^{infty} frac{1}{left(s^2 + x^2right)left(x^2 + 4right)}:dx
end{align}
Applying the Partial Fraction Decomposition we may find the integral
begin{align}
mathscr{L}left[ frac{d^2I}{dt^2}right] &= int_{0}^{infty} frac{1}{left(s^2 + x^2right)left(x^2 + 4right)}:dx \
&= frac{1}{s^2 - 4} int_{0}^{infty} left[frac{1}{x^2 + 4} - frac{1}{x^2 + s^2} right]:dx \
&= frac{1}{s^2 - 4} left[frac{1}{2}arctanleft(frac{x}{2}right) - frac{1}{s}arctanleft(frac{x}{s}right)right]_{0}^{infty} \
&= frac{1}{s^2 - 4} left[frac{1}{2}frac{pi}{2} - frac{1}{s}frac{pi}{2} right] \
&= frac{pi}{4sleft(s + 2right)}
end{align}
We now take the inverse Laplace Transform:
$$ frac{d^2I}{dt^2} = mathscr{L}^{-1}left[frac{pi}{4sleft(s + 2right)} right] = frac{pi}{8}left(1 - e^{-2t} right) $$
We now integrate with respect to $t$:
$$ frac{dI}{dt} = int frac{pi}{8}left(1 - e^{-2t} right):dt = frac{pi}{8}left(t + frac{e^{-2t}}{2} right) + C_1$$
Now
$$ frac{dI}{dt}(0) = int_{0}^{infty} frac{1 - cos(xcdot 0)}{x^2left(x^2 + 4right)} :dx = 0 = frac{pi}{8}left(frac{1}{2} right) + C_1 rightarrow C_1 = -frac{pi}{16}$$
Thus,
$$ frac{dI}{dt} = int frac{pi}{8}left(1 - e^{-2t} right):dt = frac{pi}{8}left(t + frac{e^{-2t}}{2} right) - frac{pi}{16}$$
We now integrate again w.r.t $t$
$$ I(t) = int left[frac{pi}{8}left(t + frac{e^{-2t}}{2} right) - frac{pi}{16} right] :dt = frac{pi}{8}left(frac{t^2}{2} - frac{e^{-2t}}{4} right) - frac{pi}{16}t + C_2 $$
Now
$$I(0) = int_{0}^{infty} frac{xcdot0 - sin(xcdot0)}{x^3left(x^2 + 4right)} :dx = 0 = frac{pi}{8}left( -frac{1}{4} right) + C_2 rightarrow C_2 = frac{pi}{32}$$
And so we arrive at our expression for $I(t)$
$$I(t)= frac{pi}{8}left(frac{t^2}{2} - frac{e^{-2t}}{4} right) - frac{pi}{16}t + frac{pi}{32}$$
Thus,
$$I = I(1) = frac{pi}{8}left(frac{1}{2} - frac{e^{-2}}{4} right) - frac{pi}{16} + frac{pi}{32} = frac{pi}{32}left(1 - e^{-2}right)$$
My approach:
Let
$$I(t) = int_{0}^{infty} frac{xt - sin(xt)}{x^3left(x^2 + 4right)} :dx$$
Where $I = I(1)$
Taking the first derivative:
$$ frac{dI}{dt} = int_{0}^{infty} frac{x - xcos(xt)}{x^3left(x^2 + 4right)} :dx = int_{0}^{infty} frac{1 - cos(xt)}{x^2left(x^2 + 4right)} :dx$$
Taking the second derivative:
$$ frac{d^2I}{dt^2} = int_{0}^{infty} frac{xsin(xt)}{x^2left(x^2 + 4right)} :dx = int_{0}^{infty} frac{sin(xt)}{xleft(x^2 + 4right)} :dx$$
Now, take the Laplace Transform w.r.t $t$:
begin{align}
mathscr{L}left[ frac{d^2I}{dt^2}right] &= int_{0}^{infty} frac{mathscr{L}left[sin(xt)right]}{xleft(x^2 + 4right)} :dx \
&= int_{0}^{infty} frac{x}{left(s^2 + x^2right)xleft(x^2 + 4right)}:dx \
&= int_{0}^{infty} frac{1}{left(s^2 + x^2right)left(x^2 + 4right)}:dx
end{align}
Applying the Partial Fraction Decomposition we may find the integral
begin{align}
mathscr{L}left[ frac{d^2I}{dt^2}right] &= int_{0}^{infty} frac{1}{left(s^2 + x^2right)left(x^2 + 4right)}:dx \
&= frac{1}{s^2 - 4} int_{0}^{infty} left[frac{1}{x^2 + 4} - frac{1}{x^2 + s^2} right]:dx \
&= frac{1}{s^2 - 4} left[frac{1}{2}arctanleft(frac{x}{2}right) - frac{1}{s}arctanleft(frac{x}{s}right)right]_{0}^{infty} \
&= frac{1}{s^2 - 4} left[frac{1}{2}frac{pi}{2} - frac{1}{s}frac{pi}{2} right] \
&= frac{pi}{4sleft(s + 2right)}
end{align}
We now take the inverse Laplace Transform:
$$ frac{d^2I}{dt^2} = mathscr{L}^{-1}left[frac{pi}{4sleft(s + 2right)} right] = frac{pi}{8}left(1 - e^{-2t} right) $$
We now integrate with respect to $t$:
$$ frac{dI}{dt} = int frac{pi}{8}left(1 - e^{-2t} right):dt = frac{pi}{8}left(t + frac{e^{-2t}}{2} right) + C_1$$
Now
$$ frac{dI}{dt}(0) = int_{0}^{infty} frac{1 - cos(xcdot 0)}{x^2left(x^2 + 4right)} :dx = 0 = frac{pi}{8}left(frac{1}{2} right) + C_1 rightarrow C_1 = -frac{pi}{16}$$
Thus,
$$ frac{dI}{dt} = int frac{pi}{8}left(1 - e^{-2t} right):dt = frac{pi}{8}left(t + frac{e^{-2t}}{2} right) - frac{pi}{16}$$
We now integrate again w.r.t $t$
$$ I(t) = int left[frac{pi}{8}left(t + frac{e^{-2t}}{2} right) - frac{pi}{16} right] :dt = frac{pi}{8}left(frac{t^2}{2} - frac{e^{-2t}}{4} right) - frac{pi}{16}t + C_2 $$
Now
$$I(0) = int_{0}^{infty} frac{xcdot0 - sin(xcdot0)}{x^3left(x^2 + 4right)} :dx = 0 = frac{pi}{8}left( -frac{1}{4} right) + C_2 rightarrow C_2 = frac{pi}{32}$$
And so we arrive at our expression for $I(t)$
$$I(t)= frac{pi}{8}left(frac{t^2}{2} - frac{e^{-2t}}{4} right) - frac{pi}{16}t + frac{pi}{32}$$
Thus,
$$I = I(1) = frac{pi}{8}left(frac{1}{2} - frac{e^{-2}}{4} right) - frac{pi}{16} + frac{pi}{32} = frac{pi}{32}left(1 - e^{-2}right)$$
answered Nov 19 at 3:09
DavidG
817514
817514
This is a nice solution ! Thanks for providing it. $to +1$
– Claude Leibovici
Nov 19 at 4:06
@ClaudeLeibovici - No worries! I'm glad you like it :-)
– DavidG
Nov 19 at 4:13
add a comment |
This is a nice solution ! Thanks for providing it. $to +1$
– Claude Leibovici
Nov 19 at 4:06
@ClaudeLeibovici - No worries! I'm glad you like it :-)
– DavidG
Nov 19 at 4:13
This is a nice solution ! Thanks for providing it. $to +1$
– Claude Leibovici
Nov 19 at 4:06
This is a nice solution ! Thanks for providing it. $to +1$
– Claude Leibovici
Nov 19 at 4:06
@ClaudeLeibovici - No worries! I'm glad you like it :-)
– DavidG
Nov 19 at 4:13
@ClaudeLeibovici - No worries! I'm glad you like it :-)
– DavidG
Nov 19 at 4:13
add a comment |
up vote
2
down vote
Using the expansion near $x=0$,
$$
frac1{{x^3left(x^2+4right)}}=frac1{4x^3}-frac1{16x}+O(1)
$$
and the contours
$$
gamma^+=[-R-i,R-i]cup Re^{i[0,pi]}-i
$$
which contains $0$ and $2i$, and
$$
gamma^-=[-R-i,R-i]cup Re^{-i[0,pi]}-i
$$
which contains $-2i$, we get
$$
begin{align}
int_0^inftyfrac{x-sin(x)}{x^3left(x^2+4right)},mathrm{d}x
&=frac12int_{-infty-i}^{infty-i}frac{x-sin(x)}{x^3left(x^2+4right)},mathrm{d}x\
&=color{#C00}{frac12int_{gamma^+}frac{x-frac{e^{ix}}{2i}}{x^3left(x^2+4right)},mathrm{d}x}\
&color{#090}{+frac12int_{gamma^-}frac{frac{e^{-ix}}{2i}}{x^3left(x^2+4right)},mathrm{d}x}\
&=color{#C00}{underbrace{quadfrac{3pi}{32}quad}_{x=0}underbrace{-frac{4+e^{-2}}{64}pi}_{x=2i}}color{#090}{underbrace{ -frac{e^{-2}}{64}pi }_{x=-2i}}\
&=frac{1-e^{-2}}{32}pi
end{align}
$$
add a comment |
up vote
2
down vote
Using the expansion near $x=0$,
$$
frac1{{x^3left(x^2+4right)}}=frac1{4x^3}-frac1{16x}+O(1)
$$
and the contours
$$
gamma^+=[-R-i,R-i]cup Re^{i[0,pi]}-i
$$
which contains $0$ and $2i$, and
$$
gamma^-=[-R-i,R-i]cup Re^{-i[0,pi]}-i
$$
which contains $-2i$, we get
$$
begin{align}
int_0^inftyfrac{x-sin(x)}{x^3left(x^2+4right)},mathrm{d}x
&=frac12int_{-infty-i}^{infty-i}frac{x-sin(x)}{x^3left(x^2+4right)},mathrm{d}x\
&=color{#C00}{frac12int_{gamma^+}frac{x-frac{e^{ix}}{2i}}{x^3left(x^2+4right)},mathrm{d}x}\
&color{#090}{+frac12int_{gamma^-}frac{frac{e^{-ix}}{2i}}{x^3left(x^2+4right)},mathrm{d}x}\
&=color{#C00}{underbrace{quadfrac{3pi}{32}quad}_{x=0}underbrace{-frac{4+e^{-2}}{64}pi}_{x=2i}}color{#090}{underbrace{ -frac{e^{-2}}{64}pi }_{x=-2i}}\
&=frac{1-e^{-2}}{32}pi
end{align}
$$
add a comment |
up vote
2
down vote
up vote
2
down vote
Using the expansion near $x=0$,
$$
frac1{{x^3left(x^2+4right)}}=frac1{4x^3}-frac1{16x}+O(1)
$$
and the contours
$$
gamma^+=[-R-i,R-i]cup Re^{i[0,pi]}-i
$$
which contains $0$ and $2i$, and
$$
gamma^-=[-R-i,R-i]cup Re^{-i[0,pi]}-i
$$
which contains $-2i$, we get
$$
begin{align}
int_0^inftyfrac{x-sin(x)}{x^3left(x^2+4right)},mathrm{d}x
&=frac12int_{-infty-i}^{infty-i}frac{x-sin(x)}{x^3left(x^2+4right)},mathrm{d}x\
&=color{#C00}{frac12int_{gamma^+}frac{x-frac{e^{ix}}{2i}}{x^3left(x^2+4right)},mathrm{d}x}\
&color{#090}{+frac12int_{gamma^-}frac{frac{e^{-ix}}{2i}}{x^3left(x^2+4right)},mathrm{d}x}\
&=color{#C00}{underbrace{quadfrac{3pi}{32}quad}_{x=0}underbrace{-frac{4+e^{-2}}{64}pi}_{x=2i}}color{#090}{underbrace{ -frac{e^{-2}}{64}pi }_{x=-2i}}\
&=frac{1-e^{-2}}{32}pi
end{align}
$$
Using the expansion near $x=0$,
$$
frac1{{x^3left(x^2+4right)}}=frac1{4x^3}-frac1{16x}+O(1)
$$
and the contours
$$
gamma^+=[-R-i,R-i]cup Re^{i[0,pi]}-i
$$
which contains $0$ and $2i$, and
$$
gamma^-=[-R-i,R-i]cup Re^{-i[0,pi]}-i
$$
which contains $-2i$, we get
$$
begin{align}
int_0^inftyfrac{x-sin(x)}{x^3left(x^2+4right)},mathrm{d}x
&=frac12int_{-infty-i}^{infty-i}frac{x-sin(x)}{x^3left(x^2+4right)},mathrm{d}x\
&=color{#C00}{frac12int_{gamma^+}frac{x-frac{e^{ix}}{2i}}{x^3left(x^2+4right)},mathrm{d}x}\
&color{#090}{+frac12int_{gamma^-}frac{frac{e^{-ix}}{2i}}{x^3left(x^2+4right)},mathrm{d}x}\
&=color{#C00}{underbrace{quadfrac{3pi}{32}quad}_{x=0}underbrace{-frac{4+e^{-2}}{64}pi}_{x=2i}}color{#090}{underbrace{ -frac{e^{-2}}{64}pi }_{x=-2i}}\
&=frac{1-e^{-2}}{32}pi
end{align}
$$
answered Nov 19 at 6:36
robjohn♦
263k27301622
263k27301622
add a comment |
add a comment |
See here: math.stackexchange.com/questions/2974517/…
– Zacky
Nov 19 at 11:27
Possible duplicate of Integral $int_0^infty frac{x-sin x}{x^3(x^2+4)} dx$
– s.harp
Nov 23 at 11:26