Seeking methods to solve $int_{0}^{infty} frac{x - sin(x)}{x^3left(x^2 + 4right)} :dx$ [closed]











up vote
2
down vote

favorite
5












I'm looking for methods to solve the following integral:



$$I = int_{0}^{infty} frac{x - sin(x)}{x^3left(x^2 + 4right)} :dx$$










share|cite|improve this question













closed as off-topic by user302797, user10354138, Rebellos, Shailesh, s.harp Nov 23 at 11:26


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "This question is missing context or other details: Please improve the question by providing additional context, which ideally includes your thoughts on the problem and any attempts you have made to solve it. This information helps others identify where you have difficulties and helps them write answers appropriate to your experience level." – user302797, user10354138, Rebellos, Shailesh

If this question can be reworded to fit the rules in the help center, please edit the question.













  • See here: math.stackexchange.com/questions/2974517/…
    – Zacky
    Nov 19 at 11:27










  • Possible duplicate of Integral $int_0^infty frac{x-sin x}{x^3(x^2+4)} dx$
    – s.harp
    Nov 23 at 11:26















up vote
2
down vote

favorite
5












I'm looking for methods to solve the following integral:



$$I = int_{0}^{infty} frac{x - sin(x)}{x^3left(x^2 + 4right)} :dx$$










share|cite|improve this question













closed as off-topic by user302797, user10354138, Rebellos, Shailesh, s.harp Nov 23 at 11:26


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "This question is missing context or other details: Please improve the question by providing additional context, which ideally includes your thoughts on the problem and any attempts you have made to solve it. This information helps others identify where you have difficulties and helps them write answers appropriate to your experience level." – user302797, user10354138, Rebellos, Shailesh

If this question can be reworded to fit the rules in the help center, please edit the question.













  • See here: math.stackexchange.com/questions/2974517/…
    – Zacky
    Nov 19 at 11:27










  • Possible duplicate of Integral $int_0^infty frac{x-sin x}{x^3(x^2+4)} dx$
    – s.harp
    Nov 23 at 11:26













up vote
2
down vote

favorite
5









up vote
2
down vote

favorite
5






5





I'm looking for methods to solve the following integral:



$$I = int_{0}^{infty} frac{x - sin(x)}{x^3left(x^2 + 4right)} :dx$$










share|cite|improve this question













I'm looking for methods to solve the following integral:



$$I = int_{0}^{infty} frac{x - sin(x)}{x^3left(x^2 + 4right)} :dx$$







integration definite-integrals laplace-transform laplace-method






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Nov 19 at 3:09









DavidG

817514




817514




closed as off-topic by user302797, user10354138, Rebellos, Shailesh, s.harp Nov 23 at 11:26


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "This question is missing context or other details: Please improve the question by providing additional context, which ideally includes your thoughts on the problem and any attempts you have made to solve it. This information helps others identify where you have difficulties and helps them write answers appropriate to your experience level." – user302797, user10354138, Rebellos, Shailesh

If this question can be reworded to fit the rules in the help center, please edit the question.




closed as off-topic by user302797, user10354138, Rebellos, Shailesh, s.harp Nov 23 at 11:26


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "This question is missing context or other details: Please improve the question by providing additional context, which ideally includes your thoughts on the problem and any attempts you have made to solve it. This information helps others identify where you have difficulties and helps them write answers appropriate to your experience level." – user302797, user10354138, Rebellos, Shailesh

If this question can be reworded to fit the rules in the help center, please edit the question.












  • See here: math.stackexchange.com/questions/2974517/…
    – Zacky
    Nov 19 at 11:27










  • Possible duplicate of Integral $int_0^infty frac{x-sin x}{x^3(x^2+4)} dx$
    – s.harp
    Nov 23 at 11:26


















  • See here: math.stackexchange.com/questions/2974517/…
    – Zacky
    Nov 19 at 11:27










  • Possible duplicate of Integral $int_0^infty frac{x-sin x}{x^3(x^2+4)} dx$
    – s.harp
    Nov 23 at 11:26
















See here: math.stackexchange.com/questions/2974517/…
– Zacky
Nov 19 at 11:27




See here: math.stackexchange.com/questions/2974517/…
– Zacky
Nov 19 at 11:27












Possible duplicate of Integral $int_0^infty frac{x-sin x}{x^3(x^2+4)} dx$
– s.harp
Nov 23 at 11:26




Possible duplicate of Integral $int_0^infty frac{x-sin x}{x^3(x^2+4)} dx$
– s.harp
Nov 23 at 11:26










3 Answers
3






active

oldest

votes

















up vote
2
down vote



accepted










Write$$I = int_{0}^{infty} underbrace{frac{x - sin(x)}{x^3left(x^2 + 4right)}}_{:=g(x)} ~mathrm dx=frac 12 int_{-infty}^{infty} g(x) ~mathrm dx.$$
Let $f(z)=dfrac{z+ie^{iz}}{z^3(z^2+4)}$, so $Re f(x)=g(x).$



Take the contour



enter image description here



Then we have two poles ($z=0$ on the contour and $z=2i$ inside the contour),
$$int_{C_R}f(z)~mathrm dz+int_{-R}^R f(z)~mathrm dz=pi i operatorname{Res}_{z=0}f(z)+2pi i operatorname{Res}_{z=2i}f(z).tag{*}$$
By ML lemma,
$$lim_{Rtoinfty}int_{C_R}f(z)~mathrm dz=0.$$
We also calculate the residue of the function at $z=0$ by means of power series:
begin{align*}
f(z)=frac14frac{z+ie^{iz}}{z^3}frac{1}{1-(-frac{z^2}{4})}&=frac14frac1{z^3}left[z+ileft(1+iz-frac{z^2}{2}-frac{iz^3}{6}+cdotsright)right]left(1-frac{z^2}4+cdotsright)\
&=cdots+frac14left(-frac i2-frac i4right)frac 1z+cdots
end{align*}

implies
$$operatorname{Res}_{z=0}f(z)=frac14left(-frac i2-frac i4right)=-frac{3i}{16},$$
and the residue at $z=2i$ is
$$operatorname{Res}_{z=2i}f(z)=lim_{zto 2i}(z-2i)f(z)=frac{(2+e^{-2})i}{32}.$$
Thus, from $(*)$,
$$int_{-infty}^infty f(x) ~mathrm dx =frac{3pi}{16}-frac{(2+e^{-2})pi}{16}=frac{1}{16}(1-e^{-2}).$$




$$therefore I=frac 12 Reint_{-infty}^{infty} g(x) ~mathrm dx=frac{1}{32}(1-e^{-2}).$$







share|cite|improve this answer





















  • Thanks for your post. Although I did it a long time ago, I've forgotten a lot of my contour integration work. Do you know of any good resources to learn this?
    – DavidG
    Nov 19 at 5:57


















up vote
6
down vote













My approach:



Let



$$I(t) = int_{0}^{infty} frac{xt - sin(xt)}{x^3left(x^2 + 4right)} :dx$$



Where $I = I(1)$



Taking the first derivative:



$$ frac{dI}{dt} = int_{0}^{infty} frac{x - xcos(xt)}{x^3left(x^2 + 4right)} :dx = int_{0}^{infty} frac{1 - cos(xt)}{x^2left(x^2 + 4right)} :dx$$



Taking the second derivative:



$$ frac{d^2I}{dt^2} = int_{0}^{infty} frac{xsin(xt)}{x^2left(x^2 + 4right)} :dx = int_{0}^{infty} frac{sin(xt)}{xleft(x^2 + 4right)} :dx$$



Now, take the Laplace Transform w.r.t $t$:



begin{align}
mathscr{L}left[ frac{d^2I}{dt^2}right] &= int_{0}^{infty} frac{mathscr{L}left[sin(xt)right]}{xleft(x^2 + 4right)} :dx \
&= int_{0}^{infty} frac{x}{left(s^2 + x^2right)xleft(x^2 + 4right)}:dx \
&= int_{0}^{infty} frac{1}{left(s^2 + x^2right)left(x^2 + 4right)}:dx
end{align}



Applying the Partial Fraction Decomposition we may find the integral



begin{align}
mathscr{L}left[ frac{d^2I}{dt^2}right] &= int_{0}^{infty} frac{1}{left(s^2 + x^2right)left(x^2 + 4right)}:dx \
&= frac{1}{s^2 - 4} int_{0}^{infty} left[frac{1}{x^2 + 4} - frac{1}{x^2 + s^2} right]:dx \
&= frac{1}{s^2 - 4} left[frac{1}{2}arctanleft(frac{x}{2}right) - frac{1}{s}arctanleft(frac{x}{s}right)right]_{0}^{infty} \
&= frac{1}{s^2 - 4} left[frac{1}{2}frac{pi}{2} - frac{1}{s}frac{pi}{2} right] \
&= frac{pi}{4sleft(s + 2right)}
end{align}



We now take the inverse Laplace Transform:



$$ frac{d^2I}{dt^2} = mathscr{L}^{-1}left[frac{pi}{4sleft(s + 2right)} right] = frac{pi}{8}left(1 - e^{-2t} right) $$



We now integrate with respect to $t$:



$$ frac{dI}{dt} = int frac{pi}{8}left(1 - e^{-2t} right):dt = frac{pi}{8}left(t + frac{e^{-2t}}{2} right) + C_1$$



Now



$$ frac{dI}{dt}(0) = int_{0}^{infty} frac{1 - cos(xcdot 0)}{x^2left(x^2 + 4right)} :dx = 0 = frac{pi}{8}left(frac{1}{2} right) + C_1 rightarrow C_1 = -frac{pi}{16}$$



Thus,



$$ frac{dI}{dt} = int frac{pi}{8}left(1 - e^{-2t} right):dt = frac{pi}{8}left(t + frac{e^{-2t}}{2} right) - frac{pi}{16}$$



We now integrate again w.r.t $t$



$$ I(t) = int left[frac{pi}{8}left(t + frac{e^{-2t}}{2} right) - frac{pi}{16} right] :dt = frac{pi}{8}left(frac{t^2}{2} - frac{e^{-2t}}{4} right) - frac{pi}{16}t + C_2 $$



Now



$$I(0) = int_{0}^{infty} frac{xcdot0 - sin(xcdot0)}{x^3left(x^2 + 4right)} :dx = 0 = frac{pi}{8}left( -frac{1}{4} right) + C_2 rightarrow C_2 = frac{pi}{32}$$



And so we arrive at our expression for $I(t)$



$$I(t)= frac{pi}{8}left(frac{t^2}{2} - frac{e^{-2t}}{4} right) - frac{pi}{16}t + frac{pi}{32}$$



Thus,



$$I = I(1) = frac{pi}{8}left(frac{1}{2} - frac{e^{-2}}{4} right) - frac{pi}{16} + frac{pi}{32} = frac{pi}{32}left(1 - e^{-2}right)$$






share|cite|improve this answer





















  • This is a nice solution ! Thanks for providing it. $to +1$
    – Claude Leibovici
    Nov 19 at 4:06










  • @ClaudeLeibovici - No worries! I'm glad you like it :-)
    – DavidG
    Nov 19 at 4:13


















up vote
2
down vote













Using the expansion near $x=0$,
$$
frac1{{x^3left(x^2+4right)}}=frac1{4x^3}-frac1{16x}+O(1)
$$

and the contours
$$
gamma^+=[-R-i,R-i]cup Re^{i[0,pi]}-i
$$

which contains $0$ and $2i$, and
$$
gamma^-=[-R-i,R-i]cup Re^{-i[0,pi]}-i
$$

which contains $-2i$, we get
$$
begin{align}
int_0^inftyfrac{x-sin(x)}{x^3left(x^2+4right)},mathrm{d}x
&=frac12int_{-infty-i}^{infty-i}frac{x-sin(x)}{x^3left(x^2+4right)},mathrm{d}x\
&=color{#C00}{frac12int_{gamma^+}frac{x-frac{e^{ix}}{2i}}{x^3left(x^2+4right)},mathrm{d}x}\
&color{#090}{+frac12int_{gamma^-}frac{frac{e^{-ix}}{2i}}{x^3left(x^2+4right)},mathrm{d}x}\
&=color{#C00}{underbrace{quadfrac{3pi}{32}quad}_{x=0}underbrace{-frac{4+e^{-2}}{64}pi}_{x=2i}}color{#090}{underbrace{ -frac{e^{-2}}{64}pi }_{x=-2i}}\
&=frac{1-e^{-2}}{32}pi
end{align}
$$






share|cite|improve this answer




























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    2
    down vote



    accepted










    Write$$I = int_{0}^{infty} underbrace{frac{x - sin(x)}{x^3left(x^2 + 4right)}}_{:=g(x)} ~mathrm dx=frac 12 int_{-infty}^{infty} g(x) ~mathrm dx.$$
    Let $f(z)=dfrac{z+ie^{iz}}{z^3(z^2+4)}$, so $Re f(x)=g(x).$



    Take the contour



    enter image description here



    Then we have two poles ($z=0$ on the contour and $z=2i$ inside the contour),
    $$int_{C_R}f(z)~mathrm dz+int_{-R}^R f(z)~mathrm dz=pi i operatorname{Res}_{z=0}f(z)+2pi i operatorname{Res}_{z=2i}f(z).tag{*}$$
    By ML lemma,
    $$lim_{Rtoinfty}int_{C_R}f(z)~mathrm dz=0.$$
    We also calculate the residue of the function at $z=0$ by means of power series:
    begin{align*}
    f(z)=frac14frac{z+ie^{iz}}{z^3}frac{1}{1-(-frac{z^2}{4})}&=frac14frac1{z^3}left[z+ileft(1+iz-frac{z^2}{2}-frac{iz^3}{6}+cdotsright)right]left(1-frac{z^2}4+cdotsright)\
    &=cdots+frac14left(-frac i2-frac i4right)frac 1z+cdots
    end{align*}

    implies
    $$operatorname{Res}_{z=0}f(z)=frac14left(-frac i2-frac i4right)=-frac{3i}{16},$$
    and the residue at $z=2i$ is
    $$operatorname{Res}_{z=2i}f(z)=lim_{zto 2i}(z-2i)f(z)=frac{(2+e^{-2})i}{32}.$$
    Thus, from $(*)$,
    $$int_{-infty}^infty f(x) ~mathrm dx =frac{3pi}{16}-frac{(2+e^{-2})pi}{16}=frac{1}{16}(1-e^{-2}).$$




    $$therefore I=frac 12 Reint_{-infty}^{infty} g(x) ~mathrm dx=frac{1}{32}(1-e^{-2}).$$







    share|cite|improve this answer





















    • Thanks for your post. Although I did it a long time ago, I've forgotten a lot of my contour integration work. Do you know of any good resources to learn this?
      – DavidG
      Nov 19 at 5:57















    up vote
    2
    down vote



    accepted










    Write$$I = int_{0}^{infty} underbrace{frac{x - sin(x)}{x^3left(x^2 + 4right)}}_{:=g(x)} ~mathrm dx=frac 12 int_{-infty}^{infty} g(x) ~mathrm dx.$$
    Let $f(z)=dfrac{z+ie^{iz}}{z^3(z^2+4)}$, so $Re f(x)=g(x).$



    Take the contour



    enter image description here



    Then we have two poles ($z=0$ on the contour and $z=2i$ inside the contour),
    $$int_{C_R}f(z)~mathrm dz+int_{-R}^R f(z)~mathrm dz=pi i operatorname{Res}_{z=0}f(z)+2pi i operatorname{Res}_{z=2i}f(z).tag{*}$$
    By ML lemma,
    $$lim_{Rtoinfty}int_{C_R}f(z)~mathrm dz=0.$$
    We also calculate the residue of the function at $z=0$ by means of power series:
    begin{align*}
    f(z)=frac14frac{z+ie^{iz}}{z^3}frac{1}{1-(-frac{z^2}{4})}&=frac14frac1{z^3}left[z+ileft(1+iz-frac{z^2}{2}-frac{iz^3}{6}+cdotsright)right]left(1-frac{z^2}4+cdotsright)\
    &=cdots+frac14left(-frac i2-frac i4right)frac 1z+cdots
    end{align*}

    implies
    $$operatorname{Res}_{z=0}f(z)=frac14left(-frac i2-frac i4right)=-frac{3i}{16},$$
    and the residue at $z=2i$ is
    $$operatorname{Res}_{z=2i}f(z)=lim_{zto 2i}(z-2i)f(z)=frac{(2+e^{-2})i}{32}.$$
    Thus, from $(*)$,
    $$int_{-infty}^infty f(x) ~mathrm dx =frac{3pi}{16}-frac{(2+e^{-2})pi}{16}=frac{1}{16}(1-e^{-2}).$$




    $$therefore I=frac 12 Reint_{-infty}^{infty} g(x) ~mathrm dx=frac{1}{32}(1-e^{-2}).$$







    share|cite|improve this answer





















    • Thanks for your post. Although I did it a long time ago, I've forgotten a lot of my contour integration work. Do you know of any good resources to learn this?
      – DavidG
      Nov 19 at 5:57













    up vote
    2
    down vote



    accepted







    up vote
    2
    down vote



    accepted






    Write$$I = int_{0}^{infty} underbrace{frac{x - sin(x)}{x^3left(x^2 + 4right)}}_{:=g(x)} ~mathrm dx=frac 12 int_{-infty}^{infty} g(x) ~mathrm dx.$$
    Let $f(z)=dfrac{z+ie^{iz}}{z^3(z^2+4)}$, so $Re f(x)=g(x).$



    Take the contour



    enter image description here



    Then we have two poles ($z=0$ on the contour and $z=2i$ inside the contour),
    $$int_{C_R}f(z)~mathrm dz+int_{-R}^R f(z)~mathrm dz=pi i operatorname{Res}_{z=0}f(z)+2pi i operatorname{Res}_{z=2i}f(z).tag{*}$$
    By ML lemma,
    $$lim_{Rtoinfty}int_{C_R}f(z)~mathrm dz=0.$$
    We also calculate the residue of the function at $z=0$ by means of power series:
    begin{align*}
    f(z)=frac14frac{z+ie^{iz}}{z^3}frac{1}{1-(-frac{z^2}{4})}&=frac14frac1{z^3}left[z+ileft(1+iz-frac{z^2}{2}-frac{iz^3}{6}+cdotsright)right]left(1-frac{z^2}4+cdotsright)\
    &=cdots+frac14left(-frac i2-frac i4right)frac 1z+cdots
    end{align*}

    implies
    $$operatorname{Res}_{z=0}f(z)=frac14left(-frac i2-frac i4right)=-frac{3i}{16},$$
    and the residue at $z=2i$ is
    $$operatorname{Res}_{z=2i}f(z)=lim_{zto 2i}(z-2i)f(z)=frac{(2+e^{-2})i}{32}.$$
    Thus, from $(*)$,
    $$int_{-infty}^infty f(x) ~mathrm dx =frac{3pi}{16}-frac{(2+e^{-2})pi}{16}=frac{1}{16}(1-e^{-2}).$$




    $$therefore I=frac 12 Reint_{-infty}^{infty} g(x) ~mathrm dx=frac{1}{32}(1-e^{-2}).$$







    share|cite|improve this answer












    Write$$I = int_{0}^{infty} underbrace{frac{x - sin(x)}{x^3left(x^2 + 4right)}}_{:=g(x)} ~mathrm dx=frac 12 int_{-infty}^{infty} g(x) ~mathrm dx.$$
    Let $f(z)=dfrac{z+ie^{iz}}{z^3(z^2+4)}$, so $Re f(x)=g(x).$



    Take the contour



    enter image description here



    Then we have two poles ($z=0$ on the contour and $z=2i$ inside the contour),
    $$int_{C_R}f(z)~mathrm dz+int_{-R}^R f(z)~mathrm dz=pi i operatorname{Res}_{z=0}f(z)+2pi i operatorname{Res}_{z=2i}f(z).tag{*}$$
    By ML lemma,
    $$lim_{Rtoinfty}int_{C_R}f(z)~mathrm dz=0.$$
    We also calculate the residue of the function at $z=0$ by means of power series:
    begin{align*}
    f(z)=frac14frac{z+ie^{iz}}{z^3}frac{1}{1-(-frac{z^2}{4})}&=frac14frac1{z^3}left[z+ileft(1+iz-frac{z^2}{2}-frac{iz^3}{6}+cdotsright)right]left(1-frac{z^2}4+cdotsright)\
    &=cdots+frac14left(-frac i2-frac i4right)frac 1z+cdots
    end{align*}

    implies
    $$operatorname{Res}_{z=0}f(z)=frac14left(-frac i2-frac i4right)=-frac{3i}{16},$$
    and the residue at $z=2i$ is
    $$operatorname{Res}_{z=2i}f(z)=lim_{zto 2i}(z-2i)f(z)=frac{(2+e^{-2})i}{32}.$$
    Thus, from $(*)$,
    $$int_{-infty}^infty f(x) ~mathrm dx =frac{3pi}{16}-frac{(2+e^{-2})pi}{16}=frac{1}{16}(1-e^{-2}).$$




    $$therefore I=frac 12 Reint_{-infty}^{infty} g(x) ~mathrm dx=frac{1}{32}(1-e^{-2}).$$








    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Nov 19 at 5:39









    Tianlalu

    2,854832




    2,854832












    • Thanks for your post. Although I did it a long time ago, I've forgotten a lot of my contour integration work. Do you know of any good resources to learn this?
      – DavidG
      Nov 19 at 5:57


















    • Thanks for your post. Although I did it a long time ago, I've forgotten a lot of my contour integration work. Do you know of any good resources to learn this?
      – DavidG
      Nov 19 at 5:57
















    Thanks for your post. Although I did it a long time ago, I've forgotten a lot of my contour integration work. Do you know of any good resources to learn this?
    – DavidG
    Nov 19 at 5:57




    Thanks for your post. Although I did it a long time ago, I've forgotten a lot of my contour integration work. Do you know of any good resources to learn this?
    – DavidG
    Nov 19 at 5:57










    up vote
    6
    down vote













    My approach:



    Let



    $$I(t) = int_{0}^{infty} frac{xt - sin(xt)}{x^3left(x^2 + 4right)} :dx$$



    Where $I = I(1)$



    Taking the first derivative:



    $$ frac{dI}{dt} = int_{0}^{infty} frac{x - xcos(xt)}{x^3left(x^2 + 4right)} :dx = int_{0}^{infty} frac{1 - cos(xt)}{x^2left(x^2 + 4right)} :dx$$



    Taking the second derivative:



    $$ frac{d^2I}{dt^2} = int_{0}^{infty} frac{xsin(xt)}{x^2left(x^2 + 4right)} :dx = int_{0}^{infty} frac{sin(xt)}{xleft(x^2 + 4right)} :dx$$



    Now, take the Laplace Transform w.r.t $t$:



    begin{align}
    mathscr{L}left[ frac{d^2I}{dt^2}right] &= int_{0}^{infty} frac{mathscr{L}left[sin(xt)right]}{xleft(x^2 + 4right)} :dx \
    &= int_{0}^{infty} frac{x}{left(s^2 + x^2right)xleft(x^2 + 4right)}:dx \
    &= int_{0}^{infty} frac{1}{left(s^2 + x^2right)left(x^2 + 4right)}:dx
    end{align}



    Applying the Partial Fraction Decomposition we may find the integral



    begin{align}
    mathscr{L}left[ frac{d^2I}{dt^2}right] &= int_{0}^{infty} frac{1}{left(s^2 + x^2right)left(x^2 + 4right)}:dx \
    &= frac{1}{s^2 - 4} int_{0}^{infty} left[frac{1}{x^2 + 4} - frac{1}{x^2 + s^2} right]:dx \
    &= frac{1}{s^2 - 4} left[frac{1}{2}arctanleft(frac{x}{2}right) - frac{1}{s}arctanleft(frac{x}{s}right)right]_{0}^{infty} \
    &= frac{1}{s^2 - 4} left[frac{1}{2}frac{pi}{2} - frac{1}{s}frac{pi}{2} right] \
    &= frac{pi}{4sleft(s + 2right)}
    end{align}



    We now take the inverse Laplace Transform:



    $$ frac{d^2I}{dt^2} = mathscr{L}^{-1}left[frac{pi}{4sleft(s + 2right)} right] = frac{pi}{8}left(1 - e^{-2t} right) $$



    We now integrate with respect to $t$:



    $$ frac{dI}{dt} = int frac{pi}{8}left(1 - e^{-2t} right):dt = frac{pi}{8}left(t + frac{e^{-2t}}{2} right) + C_1$$



    Now



    $$ frac{dI}{dt}(0) = int_{0}^{infty} frac{1 - cos(xcdot 0)}{x^2left(x^2 + 4right)} :dx = 0 = frac{pi}{8}left(frac{1}{2} right) + C_1 rightarrow C_1 = -frac{pi}{16}$$



    Thus,



    $$ frac{dI}{dt} = int frac{pi}{8}left(1 - e^{-2t} right):dt = frac{pi}{8}left(t + frac{e^{-2t}}{2} right) - frac{pi}{16}$$



    We now integrate again w.r.t $t$



    $$ I(t) = int left[frac{pi}{8}left(t + frac{e^{-2t}}{2} right) - frac{pi}{16} right] :dt = frac{pi}{8}left(frac{t^2}{2} - frac{e^{-2t}}{4} right) - frac{pi}{16}t + C_2 $$



    Now



    $$I(0) = int_{0}^{infty} frac{xcdot0 - sin(xcdot0)}{x^3left(x^2 + 4right)} :dx = 0 = frac{pi}{8}left( -frac{1}{4} right) + C_2 rightarrow C_2 = frac{pi}{32}$$



    And so we arrive at our expression for $I(t)$



    $$I(t)= frac{pi}{8}left(frac{t^2}{2} - frac{e^{-2t}}{4} right) - frac{pi}{16}t + frac{pi}{32}$$



    Thus,



    $$I = I(1) = frac{pi}{8}left(frac{1}{2} - frac{e^{-2}}{4} right) - frac{pi}{16} + frac{pi}{32} = frac{pi}{32}left(1 - e^{-2}right)$$






    share|cite|improve this answer





















    • This is a nice solution ! Thanks for providing it. $to +1$
      – Claude Leibovici
      Nov 19 at 4:06










    • @ClaudeLeibovici - No worries! I'm glad you like it :-)
      – DavidG
      Nov 19 at 4:13















    up vote
    6
    down vote













    My approach:



    Let



    $$I(t) = int_{0}^{infty} frac{xt - sin(xt)}{x^3left(x^2 + 4right)} :dx$$



    Where $I = I(1)$



    Taking the first derivative:



    $$ frac{dI}{dt} = int_{0}^{infty} frac{x - xcos(xt)}{x^3left(x^2 + 4right)} :dx = int_{0}^{infty} frac{1 - cos(xt)}{x^2left(x^2 + 4right)} :dx$$



    Taking the second derivative:



    $$ frac{d^2I}{dt^2} = int_{0}^{infty} frac{xsin(xt)}{x^2left(x^2 + 4right)} :dx = int_{0}^{infty} frac{sin(xt)}{xleft(x^2 + 4right)} :dx$$



    Now, take the Laplace Transform w.r.t $t$:



    begin{align}
    mathscr{L}left[ frac{d^2I}{dt^2}right] &= int_{0}^{infty} frac{mathscr{L}left[sin(xt)right]}{xleft(x^2 + 4right)} :dx \
    &= int_{0}^{infty} frac{x}{left(s^2 + x^2right)xleft(x^2 + 4right)}:dx \
    &= int_{0}^{infty} frac{1}{left(s^2 + x^2right)left(x^2 + 4right)}:dx
    end{align}



    Applying the Partial Fraction Decomposition we may find the integral



    begin{align}
    mathscr{L}left[ frac{d^2I}{dt^2}right] &= int_{0}^{infty} frac{1}{left(s^2 + x^2right)left(x^2 + 4right)}:dx \
    &= frac{1}{s^2 - 4} int_{0}^{infty} left[frac{1}{x^2 + 4} - frac{1}{x^2 + s^2} right]:dx \
    &= frac{1}{s^2 - 4} left[frac{1}{2}arctanleft(frac{x}{2}right) - frac{1}{s}arctanleft(frac{x}{s}right)right]_{0}^{infty} \
    &= frac{1}{s^2 - 4} left[frac{1}{2}frac{pi}{2} - frac{1}{s}frac{pi}{2} right] \
    &= frac{pi}{4sleft(s + 2right)}
    end{align}



    We now take the inverse Laplace Transform:



    $$ frac{d^2I}{dt^2} = mathscr{L}^{-1}left[frac{pi}{4sleft(s + 2right)} right] = frac{pi}{8}left(1 - e^{-2t} right) $$



    We now integrate with respect to $t$:



    $$ frac{dI}{dt} = int frac{pi}{8}left(1 - e^{-2t} right):dt = frac{pi}{8}left(t + frac{e^{-2t}}{2} right) + C_1$$



    Now



    $$ frac{dI}{dt}(0) = int_{0}^{infty} frac{1 - cos(xcdot 0)}{x^2left(x^2 + 4right)} :dx = 0 = frac{pi}{8}left(frac{1}{2} right) + C_1 rightarrow C_1 = -frac{pi}{16}$$



    Thus,



    $$ frac{dI}{dt} = int frac{pi}{8}left(1 - e^{-2t} right):dt = frac{pi}{8}left(t + frac{e^{-2t}}{2} right) - frac{pi}{16}$$



    We now integrate again w.r.t $t$



    $$ I(t) = int left[frac{pi}{8}left(t + frac{e^{-2t}}{2} right) - frac{pi}{16} right] :dt = frac{pi}{8}left(frac{t^2}{2} - frac{e^{-2t}}{4} right) - frac{pi}{16}t + C_2 $$



    Now



    $$I(0) = int_{0}^{infty} frac{xcdot0 - sin(xcdot0)}{x^3left(x^2 + 4right)} :dx = 0 = frac{pi}{8}left( -frac{1}{4} right) + C_2 rightarrow C_2 = frac{pi}{32}$$



    And so we arrive at our expression for $I(t)$



    $$I(t)= frac{pi}{8}left(frac{t^2}{2} - frac{e^{-2t}}{4} right) - frac{pi}{16}t + frac{pi}{32}$$



    Thus,



    $$I = I(1) = frac{pi}{8}left(frac{1}{2} - frac{e^{-2}}{4} right) - frac{pi}{16} + frac{pi}{32} = frac{pi}{32}left(1 - e^{-2}right)$$






    share|cite|improve this answer





















    • This is a nice solution ! Thanks for providing it. $to +1$
      – Claude Leibovici
      Nov 19 at 4:06










    • @ClaudeLeibovici - No worries! I'm glad you like it :-)
      – DavidG
      Nov 19 at 4:13













    up vote
    6
    down vote










    up vote
    6
    down vote









    My approach:



    Let



    $$I(t) = int_{0}^{infty} frac{xt - sin(xt)}{x^3left(x^2 + 4right)} :dx$$



    Where $I = I(1)$



    Taking the first derivative:



    $$ frac{dI}{dt} = int_{0}^{infty} frac{x - xcos(xt)}{x^3left(x^2 + 4right)} :dx = int_{0}^{infty} frac{1 - cos(xt)}{x^2left(x^2 + 4right)} :dx$$



    Taking the second derivative:



    $$ frac{d^2I}{dt^2} = int_{0}^{infty} frac{xsin(xt)}{x^2left(x^2 + 4right)} :dx = int_{0}^{infty} frac{sin(xt)}{xleft(x^2 + 4right)} :dx$$



    Now, take the Laplace Transform w.r.t $t$:



    begin{align}
    mathscr{L}left[ frac{d^2I}{dt^2}right] &= int_{0}^{infty} frac{mathscr{L}left[sin(xt)right]}{xleft(x^2 + 4right)} :dx \
    &= int_{0}^{infty} frac{x}{left(s^2 + x^2right)xleft(x^2 + 4right)}:dx \
    &= int_{0}^{infty} frac{1}{left(s^2 + x^2right)left(x^2 + 4right)}:dx
    end{align}



    Applying the Partial Fraction Decomposition we may find the integral



    begin{align}
    mathscr{L}left[ frac{d^2I}{dt^2}right] &= int_{0}^{infty} frac{1}{left(s^2 + x^2right)left(x^2 + 4right)}:dx \
    &= frac{1}{s^2 - 4} int_{0}^{infty} left[frac{1}{x^2 + 4} - frac{1}{x^2 + s^2} right]:dx \
    &= frac{1}{s^2 - 4} left[frac{1}{2}arctanleft(frac{x}{2}right) - frac{1}{s}arctanleft(frac{x}{s}right)right]_{0}^{infty} \
    &= frac{1}{s^2 - 4} left[frac{1}{2}frac{pi}{2} - frac{1}{s}frac{pi}{2} right] \
    &= frac{pi}{4sleft(s + 2right)}
    end{align}



    We now take the inverse Laplace Transform:



    $$ frac{d^2I}{dt^2} = mathscr{L}^{-1}left[frac{pi}{4sleft(s + 2right)} right] = frac{pi}{8}left(1 - e^{-2t} right) $$



    We now integrate with respect to $t$:



    $$ frac{dI}{dt} = int frac{pi}{8}left(1 - e^{-2t} right):dt = frac{pi}{8}left(t + frac{e^{-2t}}{2} right) + C_1$$



    Now



    $$ frac{dI}{dt}(0) = int_{0}^{infty} frac{1 - cos(xcdot 0)}{x^2left(x^2 + 4right)} :dx = 0 = frac{pi}{8}left(frac{1}{2} right) + C_1 rightarrow C_1 = -frac{pi}{16}$$



    Thus,



    $$ frac{dI}{dt} = int frac{pi}{8}left(1 - e^{-2t} right):dt = frac{pi}{8}left(t + frac{e^{-2t}}{2} right) - frac{pi}{16}$$



    We now integrate again w.r.t $t$



    $$ I(t) = int left[frac{pi}{8}left(t + frac{e^{-2t}}{2} right) - frac{pi}{16} right] :dt = frac{pi}{8}left(frac{t^2}{2} - frac{e^{-2t}}{4} right) - frac{pi}{16}t + C_2 $$



    Now



    $$I(0) = int_{0}^{infty} frac{xcdot0 - sin(xcdot0)}{x^3left(x^2 + 4right)} :dx = 0 = frac{pi}{8}left( -frac{1}{4} right) + C_2 rightarrow C_2 = frac{pi}{32}$$



    And so we arrive at our expression for $I(t)$



    $$I(t)= frac{pi}{8}left(frac{t^2}{2} - frac{e^{-2t}}{4} right) - frac{pi}{16}t + frac{pi}{32}$$



    Thus,



    $$I = I(1) = frac{pi}{8}left(frac{1}{2} - frac{e^{-2}}{4} right) - frac{pi}{16} + frac{pi}{32} = frac{pi}{32}left(1 - e^{-2}right)$$






    share|cite|improve this answer












    My approach:



    Let



    $$I(t) = int_{0}^{infty} frac{xt - sin(xt)}{x^3left(x^2 + 4right)} :dx$$



    Where $I = I(1)$



    Taking the first derivative:



    $$ frac{dI}{dt} = int_{0}^{infty} frac{x - xcos(xt)}{x^3left(x^2 + 4right)} :dx = int_{0}^{infty} frac{1 - cos(xt)}{x^2left(x^2 + 4right)} :dx$$



    Taking the second derivative:



    $$ frac{d^2I}{dt^2} = int_{0}^{infty} frac{xsin(xt)}{x^2left(x^2 + 4right)} :dx = int_{0}^{infty} frac{sin(xt)}{xleft(x^2 + 4right)} :dx$$



    Now, take the Laplace Transform w.r.t $t$:



    begin{align}
    mathscr{L}left[ frac{d^2I}{dt^2}right] &= int_{0}^{infty} frac{mathscr{L}left[sin(xt)right]}{xleft(x^2 + 4right)} :dx \
    &= int_{0}^{infty} frac{x}{left(s^2 + x^2right)xleft(x^2 + 4right)}:dx \
    &= int_{0}^{infty} frac{1}{left(s^2 + x^2right)left(x^2 + 4right)}:dx
    end{align}



    Applying the Partial Fraction Decomposition we may find the integral



    begin{align}
    mathscr{L}left[ frac{d^2I}{dt^2}right] &= int_{0}^{infty} frac{1}{left(s^2 + x^2right)left(x^2 + 4right)}:dx \
    &= frac{1}{s^2 - 4} int_{0}^{infty} left[frac{1}{x^2 + 4} - frac{1}{x^2 + s^2} right]:dx \
    &= frac{1}{s^2 - 4} left[frac{1}{2}arctanleft(frac{x}{2}right) - frac{1}{s}arctanleft(frac{x}{s}right)right]_{0}^{infty} \
    &= frac{1}{s^2 - 4} left[frac{1}{2}frac{pi}{2} - frac{1}{s}frac{pi}{2} right] \
    &= frac{pi}{4sleft(s + 2right)}
    end{align}



    We now take the inverse Laplace Transform:



    $$ frac{d^2I}{dt^2} = mathscr{L}^{-1}left[frac{pi}{4sleft(s + 2right)} right] = frac{pi}{8}left(1 - e^{-2t} right) $$



    We now integrate with respect to $t$:



    $$ frac{dI}{dt} = int frac{pi}{8}left(1 - e^{-2t} right):dt = frac{pi}{8}left(t + frac{e^{-2t}}{2} right) + C_1$$



    Now



    $$ frac{dI}{dt}(0) = int_{0}^{infty} frac{1 - cos(xcdot 0)}{x^2left(x^2 + 4right)} :dx = 0 = frac{pi}{8}left(frac{1}{2} right) + C_1 rightarrow C_1 = -frac{pi}{16}$$



    Thus,



    $$ frac{dI}{dt} = int frac{pi}{8}left(1 - e^{-2t} right):dt = frac{pi}{8}left(t + frac{e^{-2t}}{2} right) - frac{pi}{16}$$



    We now integrate again w.r.t $t$



    $$ I(t) = int left[frac{pi}{8}left(t + frac{e^{-2t}}{2} right) - frac{pi}{16} right] :dt = frac{pi}{8}left(frac{t^2}{2} - frac{e^{-2t}}{4} right) - frac{pi}{16}t + C_2 $$



    Now



    $$I(0) = int_{0}^{infty} frac{xcdot0 - sin(xcdot0)}{x^3left(x^2 + 4right)} :dx = 0 = frac{pi}{8}left( -frac{1}{4} right) + C_2 rightarrow C_2 = frac{pi}{32}$$



    And so we arrive at our expression for $I(t)$



    $$I(t)= frac{pi}{8}left(frac{t^2}{2} - frac{e^{-2t}}{4} right) - frac{pi}{16}t + frac{pi}{32}$$



    Thus,



    $$I = I(1) = frac{pi}{8}left(frac{1}{2} - frac{e^{-2}}{4} right) - frac{pi}{16} + frac{pi}{32} = frac{pi}{32}left(1 - e^{-2}right)$$







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Nov 19 at 3:09









    DavidG

    817514




    817514












    • This is a nice solution ! Thanks for providing it. $to +1$
      – Claude Leibovici
      Nov 19 at 4:06










    • @ClaudeLeibovici - No worries! I'm glad you like it :-)
      – DavidG
      Nov 19 at 4:13


















    • This is a nice solution ! Thanks for providing it. $to +1$
      – Claude Leibovici
      Nov 19 at 4:06










    • @ClaudeLeibovici - No worries! I'm glad you like it :-)
      – DavidG
      Nov 19 at 4:13
















    This is a nice solution ! Thanks for providing it. $to +1$
    – Claude Leibovici
    Nov 19 at 4:06




    This is a nice solution ! Thanks for providing it. $to +1$
    – Claude Leibovici
    Nov 19 at 4:06












    @ClaudeLeibovici - No worries! I'm glad you like it :-)
    – DavidG
    Nov 19 at 4:13




    @ClaudeLeibovici - No worries! I'm glad you like it :-)
    – DavidG
    Nov 19 at 4:13










    up vote
    2
    down vote













    Using the expansion near $x=0$,
    $$
    frac1{{x^3left(x^2+4right)}}=frac1{4x^3}-frac1{16x}+O(1)
    $$

    and the contours
    $$
    gamma^+=[-R-i,R-i]cup Re^{i[0,pi]}-i
    $$

    which contains $0$ and $2i$, and
    $$
    gamma^-=[-R-i,R-i]cup Re^{-i[0,pi]}-i
    $$

    which contains $-2i$, we get
    $$
    begin{align}
    int_0^inftyfrac{x-sin(x)}{x^3left(x^2+4right)},mathrm{d}x
    &=frac12int_{-infty-i}^{infty-i}frac{x-sin(x)}{x^3left(x^2+4right)},mathrm{d}x\
    &=color{#C00}{frac12int_{gamma^+}frac{x-frac{e^{ix}}{2i}}{x^3left(x^2+4right)},mathrm{d}x}\
    &color{#090}{+frac12int_{gamma^-}frac{frac{e^{-ix}}{2i}}{x^3left(x^2+4right)},mathrm{d}x}\
    &=color{#C00}{underbrace{quadfrac{3pi}{32}quad}_{x=0}underbrace{-frac{4+e^{-2}}{64}pi}_{x=2i}}color{#090}{underbrace{ -frac{e^{-2}}{64}pi }_{x=-2i}}\
    &=frac{1-e^{-2}}{32}pi
    end{align}
    $$






    share|cite|improve this answer

























      up vote
      2
      down vote













      Using the expansion near $x=0$,
      $$
      frac1{{x^3left(x^2+4right)}}=frac1{4x^3}-frac1{16x}+O(1)
      $$

      and the contours
      $$
      gamma^+=[-R-i,R-i]cup Re^{i[0,pi]}-i
      $$

      which contains $0$ and $2i$, and
      $$
      gamma^-=[-R-i,R-i]cup Re^{-i[0,pi]}-i
      $$

      which contains $-2i$, we get
      $$
      begin{align}
      int_0^inftyfrac{x-sin(x)}{x^3left(x^2+4right)},mathrm{d}x
      &=frac12int_{-infty-i}^{infty-i}frac{x-sin(x)}{x^3left(x^2+4right)},mathrm{d}x\
      &=color{#C00}{frac12int_{gamma^+}frac{x-frac{e^{ix}}{2i}}{x^3left(x^2+4right)},mathrm{d}x}\
      &color{#090}{+frac12int_{gamma^-}frac{frac{e^{-ix}}{2i}}{x^3left(x^2+4right)},mathrm{d}x}\
      &=color{#C00}{underbrace{quadfrac{3pi}{32}quad}_{x=0}underbrace{-frac{4+e^{-2}}{64}pi}_{x=2i}}color{#090}{underbrace{ -frac{e^{-2}}{64}pi }_{x=-2i}}\
      &=frac{1-e^{-2}}{32}pi
      end{align}
      $$






      share|cite|improve this answer























        up vote
        2
        down vote










        up vote
        2
        down vote









        Using the expansion near $x=0$,
        $$
        frac1{{x^3left(x^2+4right)}}=frac1{4x^3}-frac1{16x}+O(1)
        $$

        and the contours
        $$
        gamma^+=[-R-i,R-i]cup Re^{i[0,pi]}-i
        $$

        which contains $0$ and $2i$, and
        $$
        gamma^-=[-R-i,R-i]cup Re^{-i[0,pi]}-i
        $$

        which contains $-2i$, we get
        $$
        begin{align}
        int_0^inftyfrac{x-sin(x)}{x^3left(x^2+4right)},mathrm{d}x
        &=frac12int_{-infty-i}^{infty-i}frac{x-sin(x)}{x^3left(x^2+4right)},mathrm{d}x\
        &=color{#C00}{frac12int_{gamma^+}frac{x-frac{e^{ix}}{2i}}{x^3left(x^2+4right)},mathrm{d}x}\
        &color{#090}{+frac12int_{gamma^-}frac{frac{e^{-ix}}{2i}}{x^3left(x^2+4right)},mathrm{d}x}\
        &=color{#C00}{underbrace{quadfrac{3pi}{32}quad}_{x=0}underbrace{-frac{4+e^{-2}}{64}pi}_{x=2i}}color{#090}{underbrace{ -frac{e^{-2}}{64}pi }_{x=-2i}}\
        &=frac{1-e^{-2}}{32}pi
        end{align}
        $$






        share|cite|improve this answer












        Using the expansion near $x=0$,
        $$
        frac1{{x^3left(x^2+4right)}}=frac1{4x^3}-frac1{16x}+O(1)
        $$

        and the contours
        $$
        gamma^+=[-R-i,R-i]cup Re^{i[0,pi]}-i
        $$

        which contains $0$ and $2i$, and
        $$
        gamma^-=[-R-i,R-i]cup Re^{-i[0,pi]}-i
        $$

        which contains $-2i$, we get
        $$
        begin{align}
        int_0^inftyfrac{x-sin(x)}{x^3left(x^2+4right)},mathrm{d}x
        &=frac12int_{-infty-i}^{infty-i}frac{x-sin(x)}{x^3left(x^2+4right)},mathrm{d}x\
        &=color{#C00}{frac12int_{gamma^+}frac{x-frac{e^{ix}}{2i}}{x^3left(x^2+4right)},mathrm{d}x}\
        &color{#090}{+frac12int_{gamma^-}frac{frac{e^{-ix}}{2i}}{x^3left(x^2+4right)},mathrm{d}x}\
        &=color{#C00}{underbrace{quadfrac{3pi}{32}quad}_{x=0}underbrace{-frac{4+e^{-2}}{64}pi}_{x=2i}}color{#090}{underbrace{ -frac{e^{-2}}{64}pi }_{x=-2i}}\
        &=frac{1-e^{-2}}{32}pi
        end{align}
        $$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Nov 19 at 6:36









        robjohn

        263k27301622




        263k27301622















            Popular posts from this blog

            Ellipse (mathématiques)

            Quarter-circle Tiles

            Mont Emei