Closed form for ${largeint}_0^1frac{ln^4(1+x)ln x}x , dx$











up vote
3
down vote

favorite
4












Can someone compute



$$ int_0^1frac{ln^4(1+x)ln x}x ,dx$$



in closed form?



I conjecture that the answer can be expressed as a polynomial function with rational coefficients in constants of the form $operatorname{Li}_n(x)$ where $n$ is a natural number, $x$ is rational, and $mathrm{Li}_n$ is the $n$th polylogarithm.



The reason for my conjecture is that



$$ int_0^1frac{ln^2(1+x)ln x}x ; dx =frac{pi^4}{24}-frac16ln^42+frac{pi^2}6ln^22-frac72zeta(3)ln2-4operatorname{Li}_4!left(frac12right) $$



and as shown here on Math StackExchange



$$ int_0^1frac{ln^3(1+x)ln x}x ; dx = frac{pi^2}3ln^32-frac25ln^52+frac{pi^2}2zeta(3)+frac{99}{16}zeta(5)-frac{21}4zeta(3)ln^22\-12operatorname{Li}_4left(frac12right)ln2-12operatorname{Li}_5left(frac12right).$$



The Riemann zeta function obeys



$$ zeta_n = operatorname{Li}_n(1) $$



and $pi^{2n}$ is a rational number times $zeta_{2n}$. Also,



$$ operatorname{Li}_1(x) = -ln(1 - x) .$$



So, the two integrals above are polynomials with rational coefficients in constants of the form $operatorname{Li}_n(x)$ where $n$ is a natural number, $x$ is rational, and $mathrm{Li}_n$ is the $n$th polylogarithm. Maybe this pattern continues!



If my conjecture is true, next I'll ask about



$$ int_0^1frac{ln^k(1+x)ln x}x ,dx$$



for $k = 4, 5, 6, dots $










share|cite|improve this question
























  • Your conjecture is based on those two examples? Or do you have more clues to guess the closed form of the integrals you are considering?
    – user37238
    Jun 27 '17 at 13:05










  • We have $$ log^4(1-x)=sum_{ngeq 1}frac{4x^n}{n}left[H_{n-1}^3-3 H_{n-1} H_{n-1}^{(2)}+2 H_{n-1}^{(3)}right] tag{1}$$ hence the given integral equals $$ I=sum_{ngeq 1}frac{4(-1)^{n+1}}{n^3}left[H_{n-1}^3-3 H_{n-1} H_{n-1}^{(2)}+2 H_{n-1}^{(3)}right]tag{2} $$
    – Jack D'Aurizio
    Jun 27 '17 at 13:15










  • Plenty of Euler sums are involved. What is the purpose of reaching a closed form depending on values of $zeta$ at the integers and $text{Li}_n$ at $frac{1}{2}$?
    – Jack D'Aurizio
    Jun 27 '17 at 13:16










  • Might be a fun problem to apply the PSQL algorithm to: crd-legacy.lbl.gov/~dhbailey/dhbpapers/ppslq.pdf
    – user14717
    Jun 27 '17 at 17:24






  • 5




    $$ int_0^1frac{ln^4(1+x)ln x}x ; dx = frac{pi^2}3ln^42-frac{17}{30}ln^62-frac{pi^4}{60}ln^22+frac{26}{315}{pi^6}-2{pi^2}zeta(3)ln2+12(zeta(3))^2+frac{3}{4}zeta(5)ln2-3zeta(3)ln^32-24operatorname{Li}_4left(frac12right)ln^22-72operatorname{Li}_5left(frac12right)ln2-96operatorname{Li}_6left(frac12right)+12S.$$ $$ S=sum^infty_{n=1}frac{H_n}{(n+1)^52^n}=0.017446006115193776854329$$
    – user178256
    Jun 28 '17 at 6:04















up vote
3
down vote

favorite
4












Can someone compute



$$ int_0^1frac{ln^4(1+x)ln x}x ,dx$$



in closed form?



I conjecture that the answer can be expressed as a polynomial function with rational coefficients in constants of the form $operatorname{Li}_n(x)$ where $n$ is a natural number, $x$ is rational, and $mathrm{Li}_n$ is the $n$th polylogarithm.



The reason for my conjecture is that



$$ int_0^1frac{ln^2(1+x)ln x}x ; dx =frac{pi^4}{24}-frac16ln^42+frac{pi^2}6ln^22-frac72zeta(3)ln2-4operatorname{Li}_4!left(frac12right) $$



and as shown here on Math StackExchange



$$ int_0^1frac{ln^3(1+x)ln x}x ; dx = frac{pi^2}3ln^32-frac25ln^52+frac{pi^2}2zeta(3)+frac{99}{16}zeta(5)-frac{21}4zeta(3)ln^22\-12operatorname{Li}_4left(frac12right)ln2-12operatorname{Li}_5left(frac12right).$$



The Riemann zeta function obeys



$$ zeta_n = operatorname{Li}_n(1) $$



and $pi^{2n}$ is a rational number times $zeta_{2n}$. Also,



$$ operatorname{Li}_1(x) = -ln(1 - x) .$$



So, the two integrals above are polynomials with rational coefficients in constants of the form $operatorname{Li}_n(x)$ where $n$ is a natural number, $x$ is rational, and $mathrm{Li}_n$ is the $n$th polylogarithm. Maybe this pattern continues!



If my conjecture is true, next I'll ask about



$$ int_0^1frac{ln^k(1+x)ln x}x ,dx$$



for $k = 4, 5, 6, dots $










share|cite|improve this question
























  • Your conjecture is based on those two examples? Or do you have more clues to guess the closed form of the integrals you are considering?
    – user37238
    Jun 27 '17 at 13:05










  • We have $$ log^4(1-x)=sum_{ngeq 1}frac{4x^n}{n}left[H_{n-1}^3-3 H_{n-1} H_{n-1}^{(2)}+2 H_{n-1}^{(3)}right] tag{1}$$ hence the given integral equals $$ I=sum_{ngeq 1}frac{4(-1)^{n+1}}{n^3}left[H_{n-1}^3-3 H_{n-1} H_{n-1}^{(2)}+2 H_{n-1}^{(3)}right]tag{2} $$
    – Jack D'Aurizio
    Jun 27 '17 at 13:15










  • Plenty of Euler sums are involved. What is the purpose of reaching a closed form depending on values of $zeta$ at the integers and $text{Li}_n$ at $frac{1}{2}$?
    – Jack D'Aurizio
    Jun 27 '17 at 13:16










  • Might be a fun problem to apply the PSQL algorithm to: crd-legacy.lbl.gov/~dhbailey/dhbpapers/ppslq.pdf
    – user14717
    Jun 27 '17 at 17:24






  • 5




    $$ int_0^1frac{ln^4(1+x)ln x}x ; dx = frac{pi^2}3ln^42-frac{17}{30}ln^62-frac{pi^4}{60}ln^22+frac{26}{315}{pi^6}-2{pi^2}zeta(3)ln2+12(zeta(3))^2+frac{3}{4}zeta(5)ln2-3zeta(3)ln^32-24operatorname{Li}_4left(frac12right)ln^22-72operatorname{Li}_5left(frac12right)ln2-96operatorname{Li}_6left(frac12right)+12S.$$ $$ S=sum^infty_{n=1}frac{H_n}{(n+1)^52^n}=0.017446006115193776854329$$
    – user178256
    Jun 28 '17 at 6:04













up vote
3
down vote

favorite
4









up vote
3
down vote

favorite
4






4





Can someone compute



$$ int_0^1frac{ln^4(1+x)ln x}x ,dx$$



in closed form?



I conjecture that the answer can be expressed as a polynomial function with rational coefficients in constants of the form $operatorname{Li}_n(x)$ where $n$ is a natural number, $x$ is rational, and $mathrm{Li}_n$ is the $n$th polylogarithm.



The reason for my conjecture is that



$$ int_0^1frac{ln^2(1+x)ln x}x ; dx =frac{pi^4}{24}-frac16ln^42+frac{pi^2}6ln^22-frac72zeta(3)ln2-4operatorname{Li}_4!left(frac12right) $$



and as shown here on Math StackExchange



$$ int_0^1frac{ln^3(1+x)ln x}x ; dx = frac{pi^2}3ln^32-frac25ln^52+frac{pi^2}2zeta(3)+frac{99}{16}zeta(5)-frac{21}4zeta(3)ln^22\-12operatorname{Li}_4left(frac12right)ln2-12operatorname{Li}_5left(frac12right).$$



The Riemann zeta function obeys



$$ zeta_n = operatorname{Li}_n(1) $$



and $pi^{2n}$ is a rational number times $zeta_{2n}$. Also,



$$ operatorname{Li}_1(x) = -ln(1 - x) .$$



So, the two integrals above are polynomials with rational coefficients in constants of the form $operatorname{Li}_n(x)$ where $n$ is a natural number, $x$ is rational, and $mathrm{Li}_n$ is the $n$th polylogarithm. Maybe this pattern continues!



If my conjecture is true, next I'll ask about



$$ int_0^1frac{ln^k(1+x)ln x}x ,dx$$



for $k = 4, 5, 6, dots $










share|cite|improve this question















Can someone compute



$$ int_0^1frac{ln^4(1+x)ln x}x ,dx$$



in closed form?



I conjecture that the answer can be expressed as a polynomial function with rational coefficients in constants of the form $operatorname{Li}_n(x)$ where $n$ is a natural number, $x$ is rational, and $mathrm{Li}_n$ is the $n$th polylogarithm.



The reason for my conjecture is that



$$ int_0^1frac{ln^2(1+x)ln x}x ; dx =frac{pi^4}{24}-frac16ln^42+frac{pi^2}6ln^22-frac72zeta(3)ln2-4operatorname{Li}_4!left(frac12right) $$



and as shown here on Math StackExchange



$$ int_0^1frac{ln^3(1+x)ln x}x ; dx = frac{pi^2}3ln^32-frac25ln^52+frac{pi^2}2zeta(3)+frac{99}{16}zeta(5)-frac{21}4zeta(3)ln^22\-12operatorname{Li}_4left(frac12right)ln2-12operatorname{Li}_5left(frac12right).$$



The Riemann zeta function obeys



$$ zeta_n = operatorname{Li}_n(1) $$



and $pi^{2n}$ is a rational number times $zeta_{2n}$. Also,



$$ operatorname{Li}_1(x) = -ln(1 - x) .$$



So, the two integrals above are polynomials with rational coefficients in constants of the form $operatorname{Li}_n(x)$ where $n$ is a natural number, $x$ is rational, and $mathrm{Li}_n$ is the $n$th polylogarithm. Maybe this pattern continues!



If my conjecture is true, next I'll ask about



$$ int_0^1frac{ln^k(1+x)ln x}x ,dx$$



for $k = 4, 5, 6, dots $







sequences-and-series definite-integrals closed-form harmonic-numbers polylogarithm






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Aug 31 '17 at 4:43









Lucian

40.9k159130




40.9k159130










asked Jun 27 '17 at 12:54









John Baez

26718




26718












  • Your conjecture is based on those two examples? Or do you have more clues to guess the closed form of the integrals you are considering?
    – user37238
    Jun 27 '17 at 13:05










  • We have $$ log^4(1-x)=sum_{ngeq 1}frac{4x^n}{n}left[H_{n-1}^3-3 H_{n-1} H_{n-1}^{(2)}+2 H_{n-1}^{(3)}right] tag{1}$$ hence the given integral equals $$ I=sum_{ngeq 1}frac{4(-1)^{n+1}}{n^3}left[H_{n-1}^3-3 H_{n-1} H_{n-1}^{(2)}+2 H_{n-1}^{(3)}right]tag{2} $$
    – Jack D'Aurizio
    Jun 27 '17 at 13:15










  • Plenty of Euler sums are involved. What is the purpose of reaching a closed form depending on values of $zeta$ at the integers and $text{Li}_n$ at $frac{1}{2}$?
    – Jack D'Aurizio
    Jun 27 '17 at 13:16










  • Might be a fun problem to apply the PSQL algorithm to: crd-legacy.lbl.gov/~dhbailey/dhbpapers/ppslq.pdf
    – user14717
    Jun 27 '17 at 17:24






  • 5




    $$ int_0^1frac{ln^4(1+x)ln x}x ; dx = frac{pi^2}3ln^42-frac{17}{30}ln^62-frac{pi^4}{60}ln^22+frac{26}{315}{pi^6}-2{pi^2}zeta(3)ln2+12(zeta(3))^2+frac{3}{4}zeta(5)ln2-3zeta(3)ln^32-24operatorname{Li}_4left(frac12right)ln^22-72operatorname{Li}_5left(frac12right)ln2-96operatorname{Li}_6left(frac12right)+12S.$$ $$ S=sum^infty_{n=1}frac{H_n}{(n+1)^52^n}=0.017446006115193776854329$$
    – user178256
    Jun 28 '17 at 6:04


















  • Your conjecture is based on those two examples? Or do you have more clues to guess the closed form of the integrals you are considering?
    – user37238
    Jun 27 '17 at 13:05










  • We have $$ log^4(1-x)=sum_{ngeq 1}frac{4x^n}{n}left[H_{n-1}^3-3 H_{n-1} H_{n-1}^{(2)}+2 H_{n-1}^{(3)}right] tag{1}$$ hence the given integral equals $$ I=sum_{ngeq 1}frac{4(-1)^{n+1}}{n^3}left[H_{n-1}^3-3 H_{n-1} H_{n-1}^{(2)}+2 H_{n-1}^{(3)}right]tag{2} $$
    – Jack D'Aurizio
    Jun 27 '17 at 13:15










  • Plenty of Euler sums are involved. What is the purpose of reaching a closed form depending on values of $zeta$ at the integers and $text{Li}_n$ at $frac{1}{2}$?
    – Jack D'Aurizio
    Jun 27 '17 at 13:16










  • Might be a fun problem to apply the PSQL algorithm to: crd-legacy.lbl.gov/~dhbailey/dhbpapers/ppslq.pdf
    – user14717
    Jun 27 '17 at 17:24






  • 5




    $$ int_0^1frac{ln^4(1+x)ln x}x ; dx = frac{pi^2}3ln^42-frac{17}{30}ln^62-frac{pi^4}{60}ln^22+frac{26}{315}{pi^6}-2{pi^2}zeta(3)ln2+12(zeta(3))^2+frac{3}{4}zeta(5)ln2-3zeta(3)ln^32-24operatorname{Li}_4left(frac12right)ln^22-72operatorname{Li}_5left(frac12right)ln2-96operatorname{Li}_6left(frac12right)+12S.$$ $$ S=sum^infty_{n=1}frac{H_n}{(n+1)^52^n}=0.017446006115193776854329$$
    – user178256
    Jun 28 '17 at 6:04
















Your conjecture is based on those two examples? Or do you have more clues to guess the closed form of the integrals you are considering?
– user37238
Jun 27 '17 at 13:05




Your conjecture is based on those two examples? Or do you have more clues to guess the closed form of the integrals you are considering?
– user37238
Jun 27 '17 at 13:05












We have $$ log^4(1-x)=sum_{ngeq 1}frac{4x^n}{n}left[H_{n-1}^3-3 H_{n-1} H_{n-1}^{(2)}+2 H_{n-1}^{(3)}right] tag{1}$$ hence the given integral equals $$ I=sum_{ngeq 1}frac{4(-1)^{n+1}}{n^3}left[H_{n-1}^3-3 H_{n-1} H_{n-1}^{(2)}+2 H_{n-1}^{(3)}right]tag{2} $$
– Jack D'Aurizio
Jun 27 '17 at 13:15




We have $$ log^4(1-x)=sum_{ngeq 1}frac{4x^n}{n}left[H_{n-1}^3-3 H_{n-1} H_{n-1}^{(2)}+2 H_{n-1}^{(3)}right] tag{1}$$ hence the given integral equals $$ I=sum_{ngeq 1}frac{4(-1)^{n+1}}{n^3}left[H_{n-1}^3-3 H_{n-1} H_{n-1}^{(2)}+2 H_{n-1}^{(3)}right]tag{2} $$
– Jack D'Aurizio
Jun 27 '17 at 13:15












Plenty of Euler sums are involved. What is the purpose of reaching a closed form depending on values of $zeta$ at the integers and $text{Li}_n$ at $frac{1}{2}$?
– Jack D'Aurizio
Jun 27 '17 at 13:16




Plenty of Euler sums are involved. What is the purpose of reaching a closed form depending on values of $zeta$ at the integers and $text{Li}_n$ at $frac{1}{2}$?
– Jack D'Aurizio
Jun 27 '17 at 13:16












Might be a fun problem to apply the PSQL algorithm to: crd-legacy.lbl.gov/~dhbailey/dhbpapers/ppslq.pdf
– user14717
Jun 27 '17 at 17:24




Might be a fun problem to apply the PSQL algorithm to: crd-legacy.lbl.gov/~dhbailey/dhbpapers/ppslq.pdf
– user14717
Jun 27 '17 at 17:24




5




5




$$ int_0^1frac{ln^4(1+x)ln x}x ; dx = frac{pi^2}3ln^42-frac{17}{30}ln^62-frac{pi^4}{60}ln^22+frac{26}{315}{pi^6}-2{pi^2}zeta(3)ln2+12(zeta(3))^2+frac{3}{4}zeta(5)ln2-3zeta(3)ln^32-24operatorname{Li}_4left(frac12right)ln^22-72operatorname{Li}_5left(frac12right)ln2-96operatorname{Li}_6left(frac12right)+12S.$$ $$ S=sum^infty_{n=1}frac{H_n}{(n+1)^52^n}=0.017446006115193776854329$$
– user178256
Jun 28 '17 at 6:04




$$ int_0^1frac{ln^4(1+x)ln x}x ; dx = frac{pi^2}3ln^42-frac{17}{30}ln^62-frac{pi^4}{60}ln^22+frac{26}{315}{pi^6}-2{pi^2}zeta(3)ln2+12(zeta(3))^2+frac{3}{4}zeta(5)ln2-3zeta(3)ln^32-24operatorname{Li}_4left(frac12right)ln^22-72operatorname{Li}_5left(frac12right)ln2-96operatorname{Li}_6left(frac12right)+12S.$$ $$ S=sum^infty_{n=1}frac{H_n}{(n+1)^52^n}=0.017446006115193776854329$$
– user178256
Jun 28 '17 at 6:04










4 Answers
4






active

oldest

votes

















up vote
3
down vote













The Stirling numbers of the first kind $left[ begin{array}{c} n \ k end{array} right]$ are usually defined by: $$ sumlimits_{k=0}^n left[ begin{array}{c} n \ k end{array} right] x^k := x(x+1)…(x+n-1) $$



The definition of $enspaceeta_n(m)enspace$ in $enspace$ Evaluate $int_{0}^{pi }theta ^{3}log^{3}left ( 2sinfrac{theta }{2} right )mathrm{d}theta $ is



$$eta_n(m):=sumlimits_{k=1}^infty frac{(-1)^{k-1}}{k^m}left(frac{n!}{(k-1)!}left[begin{array}{c} k \ n+1 end{array} right]right)$$



with $enspace m>0$, $enspace ninmathbb{N}_0$ , $enspaceeta_0(m)=eta(m)$



and $enspacedisplaystyle frac{1}{(k-1)!} left[ begin{array}{c} k \ {n+1} end{array} right]= sumlimits_{i_1=1}^{k-1}sumlimits_{i_2=i_1+1}^{k-1}…sumlimits_{i_n=i_{n-1}+1}^{k-1}frac{1}{i_1 i_2 … i_n}$ .



To combine this series with the polylogarithm is a separate problem.



Now we can write:



$displaystyle sumlimits_{k=1}^infty frac{z^k}{k!}intlimits_0^1 frac{ln^k(1+x)ln x}{x} dx = intlimits_0^1 frac{((1+x)^z-1)ln x}{x} dx = - sumlimits_{k=1}^infty binom z k frac{1}{k^2}$



$hspace{5.3cm}displaystyle = - sumlimits_{k=1}^infty z^k sumlimits_{v=k}^infty frac{(-1)^{k-v}}{v^2 v!} left[ begin{array}{c} v \ k end{array} right]= sumlimits_{k=1}^infty frac{(-z)^k}{(k-1)!} mu_{k-1}(3)$



It follows
$$intlimits_0^1 frac{ln^k(1+x)ln x}{x} dx = (-1)^k,k,mu_{k-1}(3)$$
for $kinmathbb{N}$ .






share|cite|improve this answer






























    up vote
    2
    down vote













    It's not a complete answer but it is too lengthy for a comment.



    @user14717:
    Program GP PARI contains a routine to perform something like PSQL stuff.



    Here a script



    p 200



    A1=Pi^6



    A2=Pi^4*log(2)^2



    A3=Pi^2*log(2)^4



    A4=polylog(6,1/2)



    A5=polylog(5,1/2)*log(2)



    A6=polylog(4,1/2)*log(2)^2



    A7=polylog(3,1/2)*log(2)^3



    A8=polylog(2,1/2)*log(2)^4



    A9=log(2)^6



    A10=zeta(3)*log(2)^3



    A11=zeta(5)*log(2)



    A12=zeta(3)^2



    A13=Pi^2*log(2)*zeta(3)



    A14=polylog(3,1/2)*Pi^2*log(2)



    A15=polylog(4,1/2)*Pi^2



    A16=polylog(3,1/2)^2



    A17=polylog(2,1/2)^2*log(2)^2



    A18=polylog(2,1/2)^2*Pi^2



    A19=polylog(2,1/2)^3



    A20=polylog(2,1/2)*Pi^2*log(2)^2



    A21=polylog(2,1/2)*Pi^4



    A22=polylog(3,1/2)*zeta(3)



    J=intnum(x=0,1,log(1+x)^4*log(x)/x)



    lindep([J,A1,A2,A4,A5,A6,A7,A8,A9,A11,A12,A13,A15,A22])



    Last command returns an integer relation of Ai's equals to 0.
    Notice that some Ai's are linearly dependant on integers.



    Anyway i wasn't able to find out such integer relation using these constants.






    share|cite|improve this answer




























      up vote
      1
      down vote













      I am very skeptical as to whether the conjecture is true (except of course when $k=2,3$). Let me explain why.
      Note that the following identity holds:
      begin{eqnarray}
      &&-2intlimits_0^1 frac{log(1+x)^k}{x} log(x) dx=\
      &&imath pi sumlimits_{l=1}^{k+1} (-1)^l k_{(l-1)} (Li_l(2)-Li_{k+1}(1)1_{l=k+1}) log[2]^{k+1-l}+\
      &&sumlimits_{l=2}^k (-1)^{l-1} k_{(l-1)} intlimits_1^2 frac{Li_{l}(x)}{1-x} [log(x)]^{k+1-l} dx+\
      &&(-1)^{k+1} k! intlimits_0^1 frac{Li_{k+1}(1+x)-Li_{k+1}(1)}{x} dx
      end{eqnarray}
      The identity above comes from the knowledge of the anti-derivative of the fraction in the integrand and from integrating by parts once.
      Now, if we take a look at the last integral above we can actualy write down the antiderivative. We have:
      begin{eqnarray}
      &&int frac{Li_{k+1}(1+x)-Li_{k+1}(1)}{x} dx=\
      &&left{
      begin{array}{rr}
      sumlimits_{l=1}^{k/2} (-1)^l Li_l(1+x) Li_{k+2-l}(1+x) + (-1)^{k/2+1} frac{1}{2} [Li_{k/2+1}(1+x)]^2 - Li_{k+1}(1) log(x)& mbox{if $k$ is even}\
      sumlimits_{l=1}^{(k+1)/2} (-1)^l Li_l(1+x) Li_{k+2-l}(1+x) + (-1)^{(k+1)/2+1} int frac{[Li_{(k+1)/2}(1+x)]^2}{1+x} dx - Li_{k+1}(1) log(x)& mbox{if $k$ is odd}
      end{array}
      right.
      end{eqnarray}
      As we can see it is only when $k$ is even that the result reduces to poly-logarithms only otherwise a new unknown antiderivative involving a square of a polylogarithm remains. As a matter of fact it is not difficult to see that by integrating by parts and changing and swapping order of integration appropriately all the remaining integrals in the third line from the top in the first formula above reduce to poly-logarithms and following quantities:
      begin{equation}
      S^{(2,p)}_q := intlimits_1^2 frac{[Li_q(x)]^2}{x}cdot [log(x)]^p dx
      end{equation}
      where $pge1$ and $qge 1$.



      Let us now take $k=4$ as an example. Here the integrals in question read:
      begin{eqnarray}
      intlimits_1^2 frac{Li_2(x)}{1-x} cdot [log(x)]^3 dx &=& -frac{3}{2} text{Li}_2(2){}^2 log ^2(2)-i pi text{Li}_2(2) log ^3(2) + 3 S^{(2,1)}_2 - S^{(2,3)}_1\
      intlimits_1^2 frac{Li_3(x)}{1-x} cdot [log(x)]^2 dx &=& text{Li}_3(2){}^2-2 text{Li}_2(2) text{Li}_3(2) log (2)-zeta (3)^2-frac{1}{32} left(pi ^4+28 i pi zeta (3)right) log ^2(2) + 3 S^{(2,1)}_2\
      intlimits_1^2 frac{Li_4(x)}{1-x} cdot [log(x)]^1 dx &=& text{Li}_3(2){}^2-frac{pi ^2 text{Li}_4(2)}{4}-text{Li}_2(2) text{Li}_3(2) log (2)-zeta (3)^2+frac{pi ^6}{540} + S^{(2,1)}_2\
      intlimits_0^1 frac{Li_5(1+x)-Li_5(1)}{x} &=& frac{1}{2} left(-text{Li}_3(2){}^2+2 text{Li}_2(2) text{Li}_4(2)+zeta (3)^2right)+i pi (text{Li}_5(2)-zeta (5))-frac{pi ^6}{540}
      end{eqnarray}
      Now, when we bring everything together the quantities $S^{(2,1)}_2$ miraculously cancel out and then by substituting $xleftarrow 1/x$ in the quantity $S^{(2,3)}_1$ we obtain the following result:
      begin{eqnarray}
      &&intlimits_0^1 frac{[log(1+x)]^4}{x} cdot log(x) dx =\
      &&-log (2) left(96 text{Li}_5left(frac{1}{2}right)+48 text{Li}_4left(frac{1}{2}right) log (2)+14 zeta (3) log ^2(2)+log ^5(2)right)+\
      &&-96 text{Li}_6left(frac{1}{2}right)+frac{32 pi ^6}{315}+pi ^2 log ^4(2)+2 intlimits_{1/2}^1 frac{[log(1-x)]^2}{x} cdot [log(x)]^3 dx=\
      &&12 left(zeta (3)^2-10 text{Li}_6left(frac{1}{2}right)right)+frac{3}{4} log (2) left(zeta (5)-96 text{Li}_5left(frac{1}{2}right)right)-24 text{Li}_4left(frac{1}{2}right) log ^2(2)+frac{1}{3} pi ^2
      left(log ^4(2)-6 zeta (3) log (2)right)-3 zeta (3) log ^3(2)+frac{26 pi ^6}{315}-frac{17 log ^6(2)}{30}-frac{1}{60} pi ^4 log ^2(2) + 24 {bf H}^{(1)}_5(1/2)
      end{eqnarray}
      where in the last line we expressed the remaining integral through Euler sums and used the following results:
      begin{eqnarray}
      {bf H}^{(1)}_2(1/2) &=& zeta (3)-frac{1}{12} pi ^2 log (2)\
      {bf H}^{(1)}_3(1/2) &=& text{Li}_4left(frac{1}{2}right)-frac{1}{8} zeta (3) log (2)+frac{pi ^4}{720}+frac{log ^4(2)}{24}\
      {bf H}^{(1)}_4(1/2) &=& 2 text{Li}_5left(frac{1}{2}right)+text{Li}_4left(frac{1}{2}right) log (2)+frac{zeta (5)}{32}-frac{1}{36} pi ^2 left(3 zeta (3)+log ^3(2)right)+frac{1}{2} zeta (3) log ^2(2)+frac{log
      ^5(2)}{40}-frac{1}{720} pi ^4 log (2)
      end{eqnarray}
      Now, the question whether ${bf H}^{(1)}_5(1/2)$ is expressible in terms of poly-logarithms is most likely answered negatively. Indeed I used the web interface http://wayback.cecm.sfu.ca/cgi-bin/EZFace/zetaform.cgi to find possible linear dependencies. The code



      lindep([ zp(2,6)+zp(2,5,1), z(6), z(3)*z(3), z(3)*z(2)*log(2), z(3)*log(2)^3, z(2)*log(2)^4, z(2)^2*log(2)^2, z(5)*log(2), log(2)^6, zp(2,4)*log(2)^2, zp(2,5)*log(2), zp(2,6)])


      being run for two different number of digits of precision gives completely different results which suggests that such linear dependency most likely does not exist.






      share|cite|improve this answer






























        up vote
        0
        down vote













        $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
        newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
        newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
        newcommand{dd}{mathrm{d}}
        newcommand{ds}[1]{displaystyle{#1}}
        newcommand{expo}[1]{,mathrm{e}^{#1},}
        newcommand{ic}{mathrm{i}}
        newcommand{mc}[1]{mathcal{#1}}
        newcommand{mrm}[1]{mathrm{#1}}
        newcommand{pars}[1]{left(,{#1},right)}
        newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
        newcommand{root}[2]{,sqrt[#1]{,{#2},},}
        newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
        newcommand{verts}[1]{leftvert,{#1},rightvert}$
        begin{align}
        &bbox[#ffd,10px]{ds{%
        int_{0}^{1}{ln^{4}pars{1 + x}lnpars{x} over x},dd x}}
        ,,,stackrel{1 + x mapsto x}{=},,,
        int_{1}^{2}{ln^{4}pars{x}lnpars{x - 1} over x - 1},dd x
        \[5mm] stackrel{x mapsto 1/x}{=},,,&
        int_{1}^{1/2}{ln^{4}pars{1/x}lnpars{1/x - 1} over 1/x - 1}
        ,pars{-,{dd x over x^{2}}} =
        int_{1/2}^{1}{ln^{4}pars{x}lnpars{1 - x} - ln^{5}pars{x} over
        xpars{1 - x}},dd x
        \[1cm] = &
        underbrace{int_{1/2}^{1}{ln^{4}pars{x}lnpars{1 - x} over x},dd x}
        _{ds{mc{I}_{1}}} -
        underbrace{int_{1/2}^{1}{ln^{5}pars{x} over x},dd x}
        _{ds{= -,{ln^{6}pars{2} over 6}}} +
        underbrace{int_{1/2}^{1}{ln^{4}pars{x}lnpars{1 - x} over 1 - x},dd x}
        _{ds{mc{I}_{2}}}
        \[1mm] &
        -int_{1/2}^{1}{ln^{5}pars{x} over 1 - x},dd x
        label{1}tag{1}
        end{align}
        Note that
        begin{align}
        int_{1/2}^{1}{ln^{5}pars{x} over 1 - x},dd x & =
        -ln^{6}pars{2} +
        5int_{1/2}^{1}{ln^{4}pars{x}lnpars{1 - x} over x},dd x =
        -ln^{6}pars{2} + 5,mc{I}_{1}
        end{align}
        such that eqref{1} becomes
        begin{equation}
        bbx{bbox[#ffd,10px]{ds{%
        int_{0}^{1}{ln^{4}pars{1 + x}lnpars{x} over x},dd x}} =
        {7ln^{6}pars{2} over 6} - 4,mc{I}_{1} + mc{I}_{2}}label{2}tag{2}
        end{equation}




        $ds{Hugemc{I}_{1}: ?}$.
        begin{align}
        mc{I}_{1} & equiv
        int_{1/2}^{1}{ln^{4}pars{x}lnpars{1 - x} over x},dd x =
        -int_{1/2}^{1}mrm{Li}_{2}'pars{x}ln^{4}pars{x},dd x
        \[5mm] & =
        mrm{Li}_{2}pars{1 over 2}ln^{4}pars{2} +
        4int_{1/2}^{1}mrm{Li}_{3}'pars{x}ln^{3}pars{x},dd x
        \[5mm] & =
        mrm{Li}_{2}pars{1 over 2}ln^{4}pars{2} +
        4,mrm{Li}_{3}pars{1 over 2}ln^{3}pars{2} -
        12int_{1/2}^{1}mrm{Li}_{4}'pars{x}ln^{2}pars{x},dd x
        \[5mm] & =
        mrm{Li}_{2}pars{1 over 2}ln^{4}pars{2} +
        4,mrm{Li}_{3}pars{1 over 2}ln^{3}pars{2} +
        12,mrm{Li}_{4}pars{1 over 2}ln^{2}pars{2} +
        24int_{1/2}^{1}mrm{Li}_{5}'pars{x}lnpars{x},dd x
        \[1cm] & =
        mrm{Li}_{2}pars{1 over 2}ln^{4}pars{2} +
        4,mrm{Li}_{3}pars{1 over 2}ln^{3}pars{2} +
        12,mrm{Li}_{4}pars{1 over 2}ln^{2}pars{2} +
        24,mrm{Li}_{5}pars{1 over 2}lnpars{2}
        \[1mm] & - 24int_{1/2}^{1}mrm{Li}_{6}'pars{x},dd x
        \[1cm] & =
        mrm{Li}_{2}pars{1 over 2}ln^{4}pars{2} +
        4,mrm{Li}_{3}pars{1 over 2}ln^{3}pars{2} +
        12,mrm{Li}_{4}pars{1 over 2}ln^{2}pars{2} +
        24,mrm{Li}_{5}pars{1 over 2}lnpars{2}
        \[1mm] & -24,mrm{Li}_{6}pars{1} + 24,mrm{Li}_{6}pars{1 over 2}
        end{align}


        Note that
        $ds{mrm{Li}_{2}pars{1 over 2} = {pi^{2} over 12} -
        {ln^{2}pars{2} over 2}}$ and
        $ds{mrm{Li}_{3}pars{1 over 2} = {ln^{3}pars{2} over 6} -
        {pi^{2}lnpars{2} over 12} + {7zetapars{3} over 8}}$. Moreover,
        $ds{vphantom{Huge A}mrm{Li}_{6}pars{1} = zetapars{6} =
        {pi^{6} over 945}}$.




        Then,
        $$
        begin{array}{|rcl|}hline mbox{}&&\
        ds{quadmc{I}_{1}} & ds{equiv} &
        ds{int_{1/2}^{1}{ln^{4}pars{x}lnpars{1 - x} over x},dd x}
        \[5mm] & ds{=} &
        ds{-,{8pi^{6} over 315} - {pi^{2}ln^{4}pars{2} over 4} +
        {ln^{6}pars{2} over 6} + 12ln^{2}pars{2},mrm{Li}_{4}pars{1 over 2} +
        24lnpars{2},mrm{Li}_{5}pars{1 over 2}quad}
        \[1mm] &&
        ds{%
        + 24,mrm{Li}_{6}pars{1 over 2} + {7ln^{3}pars{2},zetapars{3} over 2}
        approx -0.0269}
        \ mbox{}&&
        \ hline
        end{array}
        $$




        $ds{Hugemc{I}_{2}: ?}$. This one isn't trivial at all. An attempt is given by
        begin{align}
        mc{I}_{2} & equiv
        int_{1/2}^{1}{ln^{4}pars{x}lnpars{1 - x} over 1 - x},dd x
        ,,,stackrel{x mapsto 1 - x}{=},,,
        int_{0}^{1/2}{ln^{4}pars{1 - x}lnpars{x} over x},dd x
        \[5mm] & =
        left.partiald[4]{}{mu}partiald{}{nu}
        int_{0}^{1/2}bracks{pars{1 - x}^{mu} - 1}x^{nu - 1}
        ,dd x,rightvert_{ mu = 0,, nu = 0^{+}}
        \[5mm] & =
        partiald[4]{}{mu}partiald{}{nu}
        bracks{int_{0}^{1/2}pars{1 - x}^{mu},x^{nu - 1}
        ,dd x - {1 over 2^{nu}nu}}_{ mu = 0,, nu = 0^{+}}
        \[5mm] & =
        partiald[4]{}{mu}partiald{}{nu}
        bracks{mrm{B}pars{{1 over 2},nu,1 + mu} - {1 over 2^{nu}nu}}_{ mu = 0,, nu = 0^{+}}
        end{align}


        $ds{mrm{B}}$ is the Incomplete Beta Function. It'll continue$ldots$







        share|cite|improve this answer





















          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2338068%2fclosed-form-for-large-int-01-frac-ln41x-ln-xx-dx%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          4 Answers
          4






          active

          oldest

          votes








          4 Answers
          4






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          3
          down vote













          The Stirling numbers of the first kind $left[ begin{array}{c} n \ k end{array} right]$ are usually defined by: $$ sumlimits_{k=0}^n left[ begin{array}{c} n \ k end{array} right] x^k := x(x+1)…(x+n-1) $$



          The definition of $enspaceeta_n(m)enspace$ in $enspace$ Evaluate $int_{0}^{pi }theta ^{3}log^{3}left ( 2sinfrac{theta }{2} right )mathrm{d}theta $ is



          $$eta_n(m):=sumlimits_{k=1}^infty frac{(-1)^{k-1}}{k^m}left(frac{n!}{(k-1)!}left[begin{array}{c} k \ n+1 end{array} right]right)$$



          with $enspace m>0$, $enspace ninmathbb{N}_0$ , $enspaceeta_0(m)=eta(m)$



          and $enspacedisplaystyle frac{1}{(k-1)!} left[ begin{array}{c} k \ {n+1} end{array} right]= sumlimits_{i_1=1}^{k-1}sumlimits_{i_2=i_1+1}^{k-1}…sumlimits_{i_n=i_{n-1}+1}^{k-1}frac{1}{i_1 i_2 … i_n}$ .



          To combine this series with the polylogarithm is a separate problem.



          Now we can write:



          $displaystyle sumlimits_{k=1}^infty frac{z^k}{k!}intlimits_0^1 frac{ln^k(1+x)ln x}{x} dx = intlimits_0^1 frac{((1+x)^z-1)ln x}{x} dx = - sumlimits_{k=1}^infty binom z k frac{1}{k^2}$



          $hspace{5.3cm}displaystyle = - sumlimits_{k=1}^infty z^k sumlimits_{v=k}^infty frac{(-1)^{k-v}}{v^2 v!} left[ begin{array}{c} v \ k end{array} right]= sumlimits_{k=1}^infty frac{(-z)^k}{(k-1)!} mu_{k-1}(3)$



          It follows
          $$intlimits_0^1 frac{ln^k(1+x)ln x}{x} dx = (-1)^k,k,mu_{k-1}(3)$$
          for $kinmathbb{N}$ .






          share|cite|improve this answer



























            up vote
            3
            down vote













            The Stirling numbers of the first kind $left[ begin{array}{c} n \ k end{array} right]$ are usually defined by: $$ sumlimits_{k=0}^n left[ begin{array}{c} n \ k end{array} right] x^k := x(x+1)…(x+n-1) $$



            The definition of $enspaceeta_n(m)enspace$ in $enspace$ Evaluate $int_{0}^{pi }theta ^{3}log^{3}left ( 2sinfrac{theta }{2} right )mathrm{d}theta $ is



            $$eta_n(m):=sumlimits_{k=1}^infty frac{(-1)^{k-1}}{k^m}left(frac{n!}{(k-1)!}left[begin{array}{c} k \ n+1 end{array} right]right)$$



            with $enspace m>0$, $enspace ninmathbb{N}_0$ , $enspaceeta_0(m)=eta(m)$



            and $enspacedisplaystyle frac{1}{(k-1)!} left[ begin{array}{c} k \ {n+1} end{array} right]= sumlimits_{i_1=1}^{k-1}sumlimits_{i_2=i_1+1}^{k-1}…sumlimits_{i_n=i_{n-1}+1}^{k-1}frac{1}{i_1 i_2 … i_n}$ .



            To combine this series with the polylogarithm is a separate problem.



            Now we can write:



            $displaystyle sumlimits_{k=1}^infty frac{z^k}{k!}intlimits_0^1 frac{ln^k(1+x)ln x}{x} dx = intlimits_0^1 frac{((1+x)^z-1)ln x}{x} dx = - sumlimits_{k=1}^infty binom z k frac{1}{k^2}$



            $hspace{5.3cm}displaystyle = - sumlimits_{k=1}^infty z^k sumlimits_{v=k}^infty frac{(-1)^{k-v}}{v^2 v!} left[ begin{array}{c} v \ k end{array} right]= sumlimits_{k=1}^infty frac{(-z)^k}{(k-1)!} mu_{k-1}(3)$



            It follows
            $$intlimits_0^1 frac{ln^k(1+x)ln x}{x} dx = (-1)^k,k,mu_{k-1}(3)$$
            for $kinmathbb{N}$ .






            share|cite|improve this answer

























              up vote
              3
              down vote










              up vote
              3
              down vote









              The Stirling numbers of the first kind $left[ begin{array}{c} n \ k end{array} right]$ are usually defined by: $$ sumlimits_{k=0}^n left[ begin{array}{c} n \ k end{array} right] x^k := x(x+1)…(x+n-1) $$



              The definition of $enspaceeta_n(m)enspace$ in $enspace$ Evaluate $int_{0}^{pi }theta ^{3}log^{3}left ( 2sinfrac{theta }{2} right )mathrm{d}theta $ is



              $$eta_n(m):=sumlimits_{k=1}^infty frac{(-1)^{k-1}}{k^m}left(frac{n!}{(k-1)!}left[begin{array}{c} k \ n+1 end{array} right]right)$$



              with $enspace m>0$, $enspace ninmathbb{N}_0$ , $enspaceeta_0(m)=eta(m)$



              and $enspacedisplaystyle frac{1}{(k-1)!} left[ begin{array}{c} k \ {n+1} end{array} right]= sumlimits_{i_1=1}^{k-1}sumlimits_{i_2=i_1+1}^{k-1}…sumlimits_{i_n=i_{n-1}+1}^{k-1}frac{1}{i_1 i_2 … i_n}$ .



              To combine this series with the polylogarithm is a separate problem.



              Now we can write:



              $displaystyle sumlimits_{k=1}^infty frac{z^k}{k!}intlimits_0^1 frac{ln^k(1+x)ln x}{x} dx = intlimits_0^1 frac{((1+x)^z-1)ln x}{x} dx = - sumlimits_{k=1}^infty binom z k frac{1}{k^2}$



              $hspace{5.3cm}displaystyle = - sumlimits_{k=1}^infty z^k sumlimits_{v=k}^infty frac{(-1)^{k-v}}{v^2 v!} left[ begin{array}{c} v \ k end{array} right]= sumlimits_{k=1}^infty frac{(-z)^k}{(k-1)!} mu_{k-1}(3)$



              It follows
              $$intlimits_0^1 frac{ln^k(1+x)ln x}{x} dx = (-1)^k,k,mu_{k-1}(3)$$
              for $kinmathbb{N}$ .






              share|cite|improve this answer














              The Stirling numbers of the first kind $left[ begin{array}{c} n \ k end{array} right]$ are usually defined by: $$ sumlimits_{k=0}^n left[ begin{array}{c} n \ k end{array} right] x^k := x(x+1)…(x+n-1) $$



              The definition of $enspaceeta_n(m)enspace$ in $enspace$ Evaluate $int_{0}^{pi }theta ^{3}log^{3}left ( 2sinfrac{theta }{2} right )mathrm{d}theta $ is



              $$eta_n(m):=sumlimits_{k=1}^infty frac{(-1)^{k-1}}{k^m}left(frac{n!}{(k-1)!}left[begin{array}{c} k \ n+1 end{array} right]right)$$



              with $enspace m>0$, $enspace ninmathbb{N}_0$ , $enspaceeta_0(m)=eta(m)$



              and $enspacedisplaystyle frac{1}{(k-1)!} left[ begin{array}{c} k \ {n+1} end{array} right]= sumlimits_{i_1=1}^{k-1}sumlimits_{i_2=i_1+1}^{k-1}…sumlimits_{i_n=i_{n-1}+1}^{k-1}frac{1}{i_1 i_2 … i_n}$ .



              To combine this series with the polylogarithm is a separate problem.



              Now we can write:



              $displaystyle sumlimits_{k=1}^infty frac{z^k}{k!}intlimits_0^1 frac{ln^k(1+x)ln x}{x} dx = intlimits_0^1 frac{((1+x)^z-1)ln x}{x} dx = - sumlimits_{k=1}^infty binom z k frac{1}{k^2}$



              $hspace{5.3cm}displaystyle = - sumlimits_{k=1}^infty z^k sumlimits_{v=k}^infty frac{(-1)^{k-v}}{v^2 v!} left[ begin{array}{c} v \ k end{array} right]= sumlimits_{k=1}^infty frac{(-z)^k}{(k-1)!} mu_{k-1}(3)$



              It follows
              $$intlimits_0^1 frac{ln^k(1+x)ln x}{x} dx = (-1)^k,k,mu_{k-1}(3)$$
              for $kinmathbb{N}$ .







              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited Nov 21 at 12:08

























              answered Jun 28 '17 at 9:26









              user90369

              8,173925




              8,173925






















                  up vote
                  2
                  down vote













                  It's not a complete answer but it is too lengthy for a comment.



                  @user14717:
                  Program GP PARI contains a routine to perform something like PSQL stuff.



                  Here a script



                  p 200



                  A1=Pi^6



                  A2=Pi^4*log(2)^2



                  A3=Pi^2*log(2)^4



                  A4=polylog(6,1/2)



                  A5=polylog(5,1/2)*log(2)



                  A6=polylog(4,1/2)*log(2)^2



                  A7=polylog(3,1/2)*log(2)^3



                  A8=polylog(2,1/2)*log(2)^4



                  A9=log(2)^6



                  A10=zeta(3)*log(2)^3



                  A11=zeta(5)*log(2)



                  A12=zeta(3)^2



                  A13=Pi^2*log(2)*zeta(3)



                  A14=polylog(3,1/2)*Pi^2*log(2)



                  A15=polylog(4,1/2)*Pi^2



                  A16=polylog(3,1/2)^2



                  A17=polylog(2,1/2)^2*log(2)^2



                  A18=polylog(2,1/2)^2*Pi^2



                  A19=polylog(2,1/2)^3



                  A20=polylog(2,1/2)*Pi^2*log(2)^2



                  A21=polylog(2,1/2)*Pi^4



                  A22=polylog(3,1/2)*zeta(3)



                  J=intnum(x=0,1,log(1+x)^4*log(x)/x)



                  lindep([J,A1,A2,A4,A5,A6,A7,A8,A9,A11,A12,A13,A15,A22])



                  Last command returns an integer relation of Ai's equals to 0.
                  Notice that some Ai's are linearly dependant on integers.



                  Anyway i wasn't able to find out such integer relation using these constants.






                  share|cite|improve this answer

























                    up vote
                    2
                    down vote













                    It's not a complete answer but it is too lengthy for a comment.



                    @user14717:
                    Program GP PARI contains a routine to perform something like PSQL stuff.



                    Here a script



                    p 200



                    A1=Pi^6



                    A2=Pi^4*log(2)^2



                    A3=Pi^2*log(2)^4



                    A4=polylog(6,1/2)



                    A5=polylog(5,1/2)*log(2)



                    A6=polylog(4,1/2)*log(2)^2



                    A7=polylog(3,1/2)*log(2)^3



                    A8=polylog(2,1/2)*log(2)^4



                    A9=log(2)^6



                    A10=zeta(3)*log(2)^3



                    A11=zeta(5)*log(2)



                    A12=zeta(3)^2



                    A13=Pi^2*log(2)*zeta(3)



                    A14=polylog(3,1/2)*Pi^2*log(2)



                    A15=polylog(4,1/2)*Pi^2



                    A16=polylog(3,1/2)^2



                    A17=polylog(2,1/2)^2*log(2)^2



                    A18=polylog(2,1/2)^2*Pi^2



                    A19=polylog(2,1/2)^3



                    A20=polylog(2,1/2)*Pi^2*log(2)^2



                    A21=polylog(2,1/2)*Pi^4



                    A22=polylog(3,1/2)*zeta(3)



                    J=intnum(x=0,1,log(1+x)^4*log(x)/x)



                    lindep([J,A1,A2,A4,A5,A6,A7,A8,A9,A11,A12,A13,A15,A22])



                    Last command returns an integer relation of Ai's equals to 0.
                    Notice that some Ai's are linearly dependant on integers.



                    Anyway i wasn't able to find out such integer relation using these constants.






                    share|cite|improve this answer























                      up vote
                      2
                      down vote










                      up vote
                      2
                      down vote









                      It's not a complete answer but it is too lengthy for a comment.



                      @user14717:
                      Program GP PARI contains a routine to perform something like PSQL stuff.



                      Here a script



                      p 200



                      A1=Pi^6



                      A2=Pi^4*log(2)^2



                      A3=Pi^2*log(2)^4



                      A4=polylog(6,1/2)



                      A5=polylog(5,1/2)*log(2)



                      A6=polylog(4,1/2)*log(2)^2



                      A7=polylog(3,1/2)*log(2)^3



                      A8=polylog(2,1/2)*log(2)^4



                      A9=log(2)^6



                      A10=zeta(3)*log(2)^3



                      A11=zeta(5)*log(2)



                      A12=zeta(3)^2



                      A13=Pi^2*log(2)*zeta(3)



                      A14=polylog(3,1/2)*Pi^2*log(2)



                      A15=polylog(4,1/2)*Pi^2



                      A16=polylog(3,1/2)^2



                      A17=polylog(2,1/2)^2*log(2)^2



                      A18=polylog(2,1/2)^2*Pi^2



                      A19=polylog(2,1/2)^3



                      A20=polylog(2,1/2)*Pi^2*log(2)^2



                      A21=polylog(2,1/2)*Pi^4



                      A22=polylog(3,1/2)*zeta(3)



                      J=intnum(x=0,1,log(1+x)^4*log(x)/x)



                      lindep([J,A1,A2,A4,A5,A6,A7,A8,A9,A11,A12,A13,A15,A22])



                      Last command returns an integer relation of Ai's equals to 0.
                      Notice that some Ai's are linearly dependant on integers.



                      Anyway i wasn't able to find out such integer relation using these constants.






                      share|cite|improve this answer












                      It's not a complete answer but it is too lengthy for a comment.



                      @user14717:
                      Program GP PARI contains a routine to perform something like PSQL stuff.



                      Here a script



                      p 200



                      A1=Pi^6



                      A2=Pi^4*log(2)^2



                      A3=Pi^2*log(2)^4



                      A4=polylog(6,1/2)



                      A5=polylog(5,1/2)*log(2)



                      A6=polylog(4,1/2)*log(2)^2



                      A7=polylog(3,1/2)*log(2)^3



                      A8=polylog(2,1/2)*log(2)^4



                      A9=log(2)^6



                      A10=zeta(3)*log(2)^3



                      A11=zeta(5)*log(2)



                      A12=zeta(3)^2



                      A13=Pi^2*log(2)*zeta(3)



                      A14=polylog(3,1/2)*Pi^2*log(2)



                      A15=polylog(4,1/2)*Pi^2



                      A16=polylog(3,1/2)^2



                      A17=polylog(2,1/2)^2*log(2)^2



                      A18=polylog(2,1/2)^2*Pi^2



                      A19=polylog(2,1/2)^3



                      A20=polylog(2,1/2)*Pi^2*log(2)^2



                      A21=polylog(2,1/2)*Pi^4



                      A22=polylog(3,1/2)*zeta(3)



                      J=intnum(x=0,1,log(1+x)^4*log(x)/x)



                      lindep([J,A1,A2,A4,A5,A6,A7,A8,A9,A11,A12,A13,A15,A22])



                      Last command returns an integer relation of Ai's equals to 0.
                      Notice that some Ai's are linearly dependant on integers.



                      Anyway i wasn't able to find out such integer relation using these constants.







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered Jun 29 '17 at 19:11









                      FDP

                      4,47411221




                      4,47411221






















                          up vote
                          1
                          down vote













                          I am very skeptical as to whether the conjecture is true (except of course when $k=2,3$). Let me explain why.
                          Note that the following identity holds:
                          begin{eqnarray}
                          &&-2intlimits_0^1 frac{log(1+x)^k}{x} log(x) dx=\
                          &&imath pi sumlimits_{l=1}^{k+1} (-1)^l k_{(l-1)} (Li_l(2)-Li_{k+1}(1)1_{l=k+1}) log[2]^{k+1-l}+\
                          &&sumlimits_{l=2}^k (-1)^{l-1} k_{(l-1)} intlimits_1^2 frac{Li_{l}(x)}{1-x} [log(x)]^{k+1-l} dx+\
                          &&(-1)^{k+1} k! intlimits_0^1 frac{Li_{k+1}(1+x)-Li_{k+1}(1)}{x} dx
                          end{eqnarray}
                          The identity above comes from the knowledge of the anti-derivative of the fraction in the integrand and from integrating by parts once.
                          Now, if we take a look at the last integral above we can actualy write down the antiderivative. We have:
                          begin{eqnarray}
                          &&int frac{Li_{k+1}(1+x)-Li_{k+1}(1)}{x} dx=\
                          &&left{
                          begin{array}{rr}
                          sumlimits_{l=1}^{k/2} (-1)^l Li_l(1+x) Li_{k+2-l}(1+x) + (-1)^{k/2+1} frac{1}{2} [Li_{k/2+1}(1+x)]^2 - Li_{k+1}(1) log(x)& mbox{if $k$ is even}\
                          sumlimits_{l=1}^{(k+1)/2} (-1)^l Li_l(1+x) Li_{k+2-l}(1+x) + (-1)^{(k+1)/2+1} int frac{[Li_{(k+1)/2}(1+x)]^2}{1+x} dx - Li_{k+1}(1) log(x)& mbox{if $k$ is odd}
                          end{array}
                          right.
                          end{eqnarray}
                          As we can see it is only when $k$ is even that the result reduces to poly-logarithms only otherwise a new unknown antiderivative involving a square of a polylogarithm remains. As a matter of fact it is not difficult to see that by integrating by parts and changing and swapping order of integration appropriately all the remaining integrals in the third line from the top in the first formula above reduce to poly-logarithms and following quantities:
                          begin{equation}
                          S^{(2,p)}_q := intlimits_1^2 frac{[Li_q(x)]^2}{x}cdot [log(x)]^p dx
                          end{equation}
                          where $pge1$ and $qge 1$.



                          Let us now take $k=4$ as an example. Here the integrals in question read:
                          begin{eqnarray}
                          intlimits_1^2 frac{Li_2(x)}{1-x} cdot [log(x)]^3 dx &=& -frac{3}{2} text{Li}_2(2){}^2 log ^2(2)-i pi text{Li}_2(2) log ^3(2) + 3 S^{(2,1)}_2 - S^{(2,3)}_1\
                          intlimits_1^2 frac{Li_3(x)}{1-x} cdot [log(x)]^2 dx &=& text{Li}_3(2){}^2-2 text{Li}_2(2) text{Li}_3(2) log (2)-zeta (3)^2-frac{1}{32} left(pi ^4+28 i pi zeta (3)right) log ^2(2) + 3 S^{(2,1)}_2\
                          intlimits_1^2 frac{Li_4(x)}{1-x} cdot [log(x)]^1 dx &=& text{Li}_3(2){}^2-frac{pi ^2 text{Li}_4(2)}{4}-text{Li}_2(2) text{Li}_3(2) log (2)-zeta (3)^2+frac{pi ^6}{540} + S^{(2,1)}_2\
                          intlimits_0^1 frac{Li_5(1+x)-Li_5(1)}{x} &=& frac{1}{2} left(-text{Li}_3(2){}^2+2 text{Li}_2(2) text{Li}_4(2)+zeta (3)^2right)+i pi (text{Li}_5(2)-zeta (5))-frac{pi ^6}{540}
                          end{eqnarray}
                          Now, when we bring everything together the quantities $S^{(2,1)}_2$ miraculously cancel out and then by substituting $xleftarrow 1/x$ in the quantity $S^{(2,3)}_1$ we obtain the following result:
                          begin{eqnarray}
                          &&intlimits_0^1 frac{[log(1+x)]^4}{x} cdot log(x) dx =\
                          &&-log (2) left(96 text{Li}_5left(frac{1}{2}right)+48 text{Li}_4left(frac{1}{2}right) log (2)+14 zeta (3) log ^2(2)+log ^5(2)right)+\
                          &&-96 text{Li}_6left(frac{1}{2}right)+frac{32 pi ^6}{315}+pi ^2 log ^4(2)+2 intlimits_{1/2}^1 frac{[log(1-x)]^2}{x} cdot [log(x)]^3 dx=\
                          &&12 left(zeta (3)^2-10 text{Li}_6left(frac{1}{2}right)right)+frac{3}{4} log (2) left(zeta (5)-96 text{Li}_5left(frac{1}{2}right)right)-24 text{Li}_4left(frac{1}{2}right) log ^2(2)+frac{1}{3} pi ^2
                          left(log ^4(2)-6 zeta (3) log (2)right)-3 zeta (3) log ^3(2)+frac{26 pi ^6}{315}-frac{17 log ^6(2)}{30}-frac{1}{60} pi ^4 log ^2(2) + 24 {bf H}^{(1)}_5(1/2)
                          end{eqnarray}
                          where in the last line we expressed the remaining integral through Euler sums and used the following results:
                          begin{eqnarray}
                          {bf H}^{(1)}_2(1/2) &=& zeta (3)-frac{1}{12} pi ^2 log (2)\
                          {bf H}^{(1)}_3(1/2) &=& text{Li}_4left(frac{1}{2}right)-frac{1}{8} zeta (3) log (2)+frac{pi ^4}{720}+frac{log ^4(2)}{24}\
                          {bf H}^{(1)}_4(1/2) &=& 2 text{Li}_5left(frac{1}{2}right)+text{Li}_4left(frac{1}{2}right) log (2)+frac{zeta (5)}{32}-frac{1}{36} pi ^2 left(3 zeta (3)+log ^3(2)right)+frac{1}{2} zeta (3) log ^2(2)+frac{log
                          ^5(2)}{40}-frac{1}{720} pi ^4 log (2)
                          end{eqnarray}
                          Now, the question whether ${bf H}^{(1)}_5(1/2)$ is expressible in terms of poly-logarithms is most likely answered negatively. Indeed I used the web interface http://wayback.cecm.sfu.ca/cgi-bin/EZFace/zetaform.cgi to find possible linear dependencies. The code



                          lindep([ zp(2,6)+zp(2,5,1), z(6), z(3)*z(3), z(3)*z(2)*log(2), z(3)*log(2)^3, z(2)*log(2)^4, z(2)^2*log(2)^2, z(5)*log(2), log(2)^6, zp(2,4)*log(2)^2, zp(2,5)*log(2), zp(2,6)])


                          being run for two different number of digits of precision gives completely different results which suggests that such linear dependency most likely does not exist.






                          share|cite|improve this answer



























                            up vote
                            1
                            down vote













                            I am very skeptical as to whether the conjecture is true (except of course when $k=2,3$). Let me explain why.
                            Note that the following identity holds:
                            begin{eqnarray}
                            &&-2intlimits_0^1 frac{log(1+x)^k}{x} log(x) dx=\
                            &&imath pi sumlimits_{l=1}^{k+1} (-1)^l k_{(l-1)} (Li_l(2)-Li_{k+1}(1)1_{l=k+1}) log[2]^{k+1-l}+\
                            &&sumlimits_{l=2}^k (-1)^{l-1} k_{(l-1)} intlimits_1^2 frac{Li_{l}(x)}{1-x} [log(x)]^{k+1-l} dx+\
                            &&(-1)^{k+1} k! intlimits_0^1 frac{Li_{k+1}(1+x)-Li_{k+1}(1)}{x} dx
                            end{eqnarray}
                            The identity above comes from the knowledge of the anti-derivative of the fraction in the integrand and from integrating by parts once.
                            Now, if we take a look at the last integral above we can actualy write down the antiderivative. We have:
                            begin{eqnarray}
                            &&int frac{Li_{k+1}(1+x)-Li_{k+1}(1)}{x} dx=\
                            &&left{
                            begin{array}{rr}
                            sumlimits_{l=1}^{k/2} (-1)^l Li_l(1+x) Li_{k+2-l}(1+x) + (-1)^{k/2+1} frac{1}{2} [Li_{k/2+1}(1+x)]^2 - Li_{k+1}(1) log(x)& mbox{if $k$ is even}\
                            sumlimits_{l=1}^{(k+1)/2} (-1)^l Li_l(1+x) Li_{k+2-l}(1+x) + (-1)^{(k+1)/2+1} int frac{[Li_{(k+1)/2}(1+x)]^2}{1+x} dx - Li_{k+1}(1) log(x)& mbox{if $k$ is odd}
                            end{array}
                            right.
                            end{eqnarray}
                            As we can see it is only when $k$ is even that the result reduces to poly-logarithms only otherwise a new unknown antiderivative involving a square of a polylogarithm remains. As a matter of fact it is not difficult to see that by integrating by parts and changing and swapping order of integration appropriately all the remaining integrals in the third line from the top in the first formula above reduce to poly-logarithms and following quantities:
                            begin{equation}
                            S^{(2,p)}_q := intlimits_1^2 frac{[Li_q(x)]^2}{x}cdot [log(x)]^p dx
                            end{equation}
                            where $pge1$ and $qge 1$.



                            Let us now take $k=4$ as an example. Here the integrals in question read:
                            begin{eqnarray}
                            intlimits_1^2 frac{Li_2(x)}{1-x} cdot [log(x)]^3 dx &=& -frac{3}{2} text{Li}_2(2){}^2 log ^2(2)-i pi text{Li}_2(2) log ^3(2) + 3 S^{(2,1)}_2 - S^{(2,3)}_1\
                            intlimits_1^2 frac{Li_3(x)}{1-x} cdot [log(x)]^2 dx &=& text{Li}_3(2){}^2-2 text{Li}_2(2) text{Li}_3(2) log (2)-zeta (3)^2-frac{1}{32} left(pi ^4+28 i pi zeta (3)right) log ^2(2) + 3 S^{(2,1)}_2\
                            intlimits_1^2 frac{Li_4(x)}{1-x} cdot [log(x)]^1 dx &=& text{Li}_3(2){}^2-frac{pi ^2 text{Li}_4(2)}{4}-text{Li}_2(2) text{Li}_3(2) log (2)-zeta (3)^2+frac{pi ^6}{540} + S^{(2,1)}_2\
                            intlimits_0^1 frac{Li_5(1+x)-Li_5(1)}{x} &=& frac{1}{2} left(-text{Li}_3(2){}^2+2 text{Li}_2(2) text{Li}_4(2)+zeta (3)^2right)+i pi (text{Li}_5(2)-zeta (5))-frac{pi ^6}{540}
                            end{eqnarray}
                            Now, when we bring everything together the quantities $S^{(2,1)}_2$ miraculously cancel out and then by substituting $xleftarrow 1/x$ in the quantity $S^{(2,3)}_1$ we obtain the following result:
                            begin{eqnarray}
                            &&intlimits_0^1 frac{[log(1+x)]^4}{x} cdot log(x) dx =\
                            &&-log (2) left(96 text{Li}_5left(frac{1}{2}right)+48 text{Li}_4left(frac{1}{2}right) log (2)+14 zeta (3) log ^2(2)+log ^5(2)right)+\
                            &&-96 text{Li}_6left(frac{1}{2}right)+frac{32 pi ^6}{315}+pi ^2 log ^4(2)+2 intlimits_{1/2}^1 frac{[log(1-x)]^2}{x} cdot [log(x)]^3 dx=\
                            &&12 left(zeta (3)^2-10 text{Li}_6left(frac{1}{2}right)right)+frac{3}{4} log (2) left(zeta (5)-96 text{Li}_5left(frac{1}{2}right)right)-24 text{Li}_4left(frac{1}{2}right) log ^2(2)+frac{1}{3} pi ^2
                            left(log ^4(2)-6 zeta (3) log (2)right)-3 zeta (3) log ^3(2)+frac{26 pi ^6}{315}-frac{17 log ^6(2)}{30}-frac{1}{60} pi ^4 log ^2(2) + 24 {bf H}^{(1)}_5(1/2)
                            end{eqnarray}
                            where in the last line we expressed the remaining integral through Euler sums and used the following results:
                            begin{eqnarray}
                            {bf H}^{(1)}_2(1/2) &=& zeta (3)-frac{1}{12} pi ^2 log (2)\
                            {bf H}^{(1)}_3(1/2) &=& text{Li}_4left(frac{1}{2}right)-frac{1}{8} zeta (3) log (2)+frac{pi ^4}{720}+frac{log ^4(2)}{24}\
                            {bf H}^{(1)}_4(1/2) &=& 2 text{Li}_5left(frac{1}{2}right)+text{Li}_4left(frac{1}{2}right) log (2)+frac{zeta (5)}{32}-frac{1}{36} pi ^2 left(3 zeta (3)+log ^3(2)right)+frac{1}{2} zeta (3) log ^2(2)+frac{log
                            ^5(2)}{40}-frac{1}{720} pi ^4 log (2)
                            end{eqnarray}
                            Now, the question whether ${bf H}^{(1)}_5(1/2)$ is expressible in terms of poly-logarithms is most likely answered negatively. Indeed I used the web interface http://wayback.cecm.sfu.ca/cgi-bin/EZFace/zetaform.cgi to find possible linear dependencies. The code



                            lindep([ zp(2,6)+zp(2,5,1), z(6), z(3)*z(3), z(3)*z(2)*log(2), z(3)*log(2)^3, z(2)*log(2)^4, z(2)^2*log(2)^2, z(5)*log(2), log(2)^6, zp(2,4)*log(2)^2, zp(2,5)*log(2), zp(2,6)])


                            being run for two different number of digits of precision gives completely different results which suggests that such linear dependency most likely does not exist.






                            share|cite|improve this answer

























                              up vote
                              1
                              down vote










                              up vote
                              1
                              down vote









                              I am very skeptical as to whether the conjecture is true (except of course when $k=2,3$). Let me explain why.
                              Note that the following identity holds:
                              begin{eqnarray}
                              &&-2intlimits_0^1 frac{log(1+x)^k}{x} log(x) dx=\
                              &&imath pi sumlimits_{l=1}^{k+1} (-1)^l k_{(l-1)} (Li_l(2)-Li_{k+1}(1)1_{l=k+1}) log[2]^{k+1-l}+\
                              &&sumlimits_{l=2}^k (-1)^{l-1} k_{(l-1)} intlimits_1^2 frac{Li_{l}(x)}{1-x} [log(x)]^{k+1-l} dx+\
                              &&(-1)^{k+1} k! intlimits_0^1 frac{Li_{k+1}(1+x)-Li_{k+1}(1)}{x} dx
                              end{eqnarray}
                              The identity above comes from the knowledge of the anti-derivative of the fraction in the integrand and from integrating by parts once.
                              Now, if we take a look at the last integral above we can actualy write down the antiderivative. We have:
                              begin{eqnarray}
                              &&int frac{Li_{k+1}(1+x)-Li_{k+1}(1)}{x} dx=\
                              &&left{
                              begin{array}{rr}
                              sumlimits_{l=1}^{k/2} (-1)^l Li_l(1+x) Li_{k+2-l}(1+x) + (-1)^{k/2+1} frac{1}{2} [Li_{k/2+1}(1+x)]^2 - Li_{k+1}(1) log(x)& mbox{if $k$ is even}\
                              sumlimits_{l=1}^{(k+1)/2} (-1)^l Li_l(1+x) Li_{k+2-l}(1+x) + (-1)^{(k+1)/2+1} int frac{[Li_{(k+1)/2}(1+x)]^2}{1+x} dx - Li_{k+1}(1) log(x)& mbox{if $k$ is odd}
                              end{array}
                              right.
                              end{eqnarray}
                              As we can see it is only when $k$ is even that the result reduces to poly-logarithms only otherwise a new unknown antiderivative involving a square of a polylogarithm remains. As a matter of fact it is not difficult to see that by integrating by parts and changing and swapping order of integration appropriately all the remaining integrals in the third line from the top in the first formula above reduce to poly-logarithms and following quantities:
                              begin{equation}
                              S^{(2,p)}_q := intlimits_1^2 frac{[Li_q(x)]^2}{x}cdot [log(x)]^p dx
                              end{equation}
                              where $pge1$ and $qge 1$.



                              Let us now take $k=4$ as an example. Here the integrals in question read:
                              begin{eqnarray}
                              intlimits_1^2 frac{Li_2(x)}{1-x} cdot [log(x)]^3 dx &=& -frac{3}{2} text{Li}_2(2){}^2 log ^2(2)-i pi text{Li}_2(2) log ^3(2) + 3 S^{(2,1)}_2 - S^{(2,3)}_1\
                              intlimits_1^2 frac{Li_3(x)}{1-x} cdot [log(x)]^2 dx &=& text{Li}_3(2){}^2-2 text{Li}_2(2) text{Li}_3(2) log (2)-zeta (3)^2-frac{1}{32} left(pi ^4+28 i pi zeta (3)right) log ^2(2) + 3 S^{(2,1)}_2\
                              intlimits_1^2 frac{Li_4(x)}{1-x} cdot [log(x)]^1 dx &=& text{Li}_3(2){}^2-frac{pi ^2 text{Li}_4(2)}{4}-text{Li}_2(2) text{Li}_3(2) log (2)-zeta (3)^2+frac{pi ^6}{540} + S^{(2,1)}_2\
                              intlimits_0^1 frac{Li_5(1+x)-Li_5(1)}{x} &=& frac{1}{2} left(-text{Li}_3(2){}^2+2 text{Li}_2(2) text{Li}_4(2)+zeta (3)^2right)+i pi (text{Li}_5(2)-zeta (5))-frac{pi ^6}{540}
                              end{eqnarray}
                              Now, when we bring everything together the quantities $S^{(2,1)}_2$ miraculously cancel out and then by substituting $xleftarrow 1/x$ in the quantity $S^{(2,3)}_1$ we obtain the following result:
                              begin{eqnarray}
                              &&intlimits_0^1 frac{[log(1+x)]^4}{x} cdot log(x) dx =\
                              &&-log (2) left(96 text{Li}_5left(frac{1}{2}right)+48 text{Li}_4left(frac{1}{2}right) log (2)+14 zeta (3) log ^2(2)+log ^5(2)right)+\
                              &&-96 text{Li}_6left(frac{1}{2}right)+frac{32 pi ^6}{315}+pi ^2 log ^4(2)+2 intlimits_{1/2}^1 frac{[log(1-x)]^2}{x} cdot [log(x)]^3 dx=\
                              &&12 left(zeta (3)^2-10 text{Li}_6left(frac{1}{2}right)right)+frac{3}{4} log (2) left(zeta (5)-96 text{Li}_5left(frac{1}{2}right)right)-24 text{Li}_4left(frac{1}{2}right) log ^2(2)+frac{1}{3} pi ^2
                              left(log ^4(2)-6 zeta (3) log (2)right)-3 zeta (3) log ^3(2)+frac{26 pi ^6}{315}-frac{17 log ^6(2)}{30}-frac{1}{60} pi ^4 log ^2(2) + 24 {bf H}^{(1)}_5(1/2)
                              end{eqnarray}
                              where in the last line we expressed the remaining integral through Euler sums and used the following results:
                              begin{eqnarray}
                              {bf H}^{(1)}_2(1/2) &=& zeta (3)-frac{1}{12} pi ^2 log (2)\
                              {bf H}^{(1)}_3(1/2) &=& text{Li}_4left(frac{1}{2}right)-frac{1}{8} zeta (3) log (2)+frac{pi ^4}{720}+frac{log ^4(2)}{24}\
                              {bf H}^{(1)}_4(1/2) &=& 2 text{Li}_5left(frac{1}{2}right)+text{Li}_4left(frac{1}{2}right) log (2)+frac{zeta (5)}{32}-frac{1}{36} pi ^2 left(3 zeta (3)+log ^3(2)right)+frac{1}{2} zeta (3) log ^2(2)+frac{log
                              ^5(2)}{40}-frac{1}{720} pi ^4 log (2)
                              end{eqnarray}
                              Now, the question whether ${bf H}^{(1)}_5(1/2)$ is expressible in terms of poly-logarithms is most likely answered negatively. Indeed I used the web interface http://wayback.cecm.sfu.ca/cgi-bin/EZFace/zetaform.cgi to find possible linear dependencies. The code



                              lindep([ zp(2,6)+zp(2,5,1), z(6), z(3)*z(3), z(3)*z(2)*log(2), z(3)*log(2)^3, z(2)*log(2)^4, z(2)^2*log(2)^2, z(5)*log(2), log(2)^6, zp(2,4)*log(2)^2, zp(2,5)*log(2), zp(2,6)])


                              being run for two different number of digits of precision gives completely different results which suggests that such linear dependency most likely does not exist.






                              share|cite|improve this answer














                              I am very skeptical as to whether the conjecture is true (except of course when $k=2,3$). Let me explain why.
                              Note that the following identity holds:
                              begin{eqnarray}
                              &&-2intlimits_0^1 frac{log(1+x)^k}{x} log(x) dx=\
                              &&imath pi sumlimits_{l=1}^{k+1} (-1)^l k_{(l-1)} (Li_l(2)-Li_{k+1}(1)1_{l=k+1}) log[2]^{k+1-l}+\
                              &&sumlimits_{l=2}^k (-1)^{l-1} k_{(l-1)} intlimits_1^2 frac{Li_{l}(x)}{1-x} [log(x)]^{k+1-l} dx+\
                              &&(-1)^{k+1} k! intlimits_0^1 frac{Li_{k+1}(1+x)-Li_{k+1}(1)}{x} dx
                              end{eqnarray}
                              The identity above comes from the knowledge of the anti-derivative of the fraction in the integrand and from integrating by parts once.
                              Now, if we take a look at the last integral above we can actualy write down the antiderivative. We have:
                              begin{eqnarray}
                              &&int frac{Li_{k+1}(1+x)-Li_{k+1}(1)}{x} dx=\
                              &&left{
                              begin{array}{rr}
                              sumlimits_{l=1}^{k/2} (-1)^l Li_l(1+x) Li_{k+2-l}(1+x) + (-1)^{k/2+1} frac{1}{2} [Li_{k/2+1}(1+x)]^2 - Li_{k+1}(1) log(x)& mbox{if $k$ is even}\
                              sumlimits_{l=1}^{(k+1)/2} (-1)^l Li_l(1+x) Li_{k+2-l}(1+x) + (-1)^{(k+1)/2+1} int frac{[Li_{(k+1)/2}(1+x)]^2}{1+x} dx - Li_{k+1}(1) log(x)& mbox{if $k$ is odd}
                              end{array}
                              right.
                              end{eqnarray}
                              As we can see it is only when $k$ is even that the result reduces to poly-logarithms only otherwise a new unknown antiderivative involving a square of a polylogarithm remains. As a matter of fact it is not difficult to see that by integrating by parts and changing and swapping order of integration appropriately all the remaining integrals in the third line from the top in the first formula above reduce to poly-logarithms and following quantities:
                              begin{equation}
                              S^{(2,p)}_q := intlimits_1^2 frac{[Li_q(x)]^2}{x}cdot [log(x)]^p dx
                              end{equation}
                              where $pge1$ and $qge 1$.



                              Let us now take $k=4$ as an example. Here the integrals in question read:
                              begin{eqnarray}
                              intlimits_1^2 frac{Li_2(x)}{1-x} cdot [log(x)]^3 dx &=& -frac{3}{2} text{Li}_2(2){}^2 log ^2(2)-i pi text{Li}_2(2) log ^3(2) + 3 S^{(2,1)}_2 - S^{(2,3)}_1\
                              intlimits_1^2 frac{Li_3(x)}{1-x} cdot [log(x)]^2 dx &=& text{Li}_3(2){}^2-2 text{Li}_2(2) text{Li}_3(2) log (2)-zeta (3)^2-frac{1}{32} left(pi ^4+28 i pi zeta (3)right) log ^2(2) + 3 S^{(2,1)}_2\
                              intlimits_1^2 frac{Li_4(x)}{1-x} cdot [log(x)]^1 dx &=& text{Li}_3(2){}^2-frac{pi ^2 text{Li}_4(2)}{4}-text{Li}_2(2) text{Li}_3(2) log (2)-zeta (3)^2+frac{pi ^6}{540} + S^{(2,1)}_2\
                              intlimits_0^1 frac{Li_5(1+x)-Li_5(1)}{x} &=& frac{1}{2} left(-text{Li}_3(2){}^2+2 text{Li}_2(2) text{Li}_4(2)+zeta (3)^2right)+i pi (text{Li}_5(2)-zeta (5))-frac{pi ^6}{540}
                              end{eqnarray}
                              Now, when we bring everything together the quantities $S^{(2,1)}_2$ miraculously cancel out and then by substituting $xleftarrow 1/x$ in the quantity $S^{(2,3)}_1$ we obtain the following result:
                              begin{eqnarray}
                              &&intlimits_0^1 frac{[log(1+x)]^4}{x} cdot log(x) dx =\
                              &&-log (2) left(96 text{Li}_5left(frac{1}{2}right)+48 text{Li}_4left(frac{1}{2}right) log (2)+14 zeta (3) log ^2(2)+log ^5(2)right)+\
                              &&-96 text{Li}_6left(frac{1}{2}right)+frac{32 pi ^6}{315}+pi ^2 log ^4(2)+2 intlimits_{1/2}^1 frac{[log(1-x)]^2}{x} cdot [log(x)]^3 dx=\
                              &&12 left(zeta (3)^2-10 text{Li}_6left(frac{1}{2}right)right)+frac{3}{4} log (2) left(zeta (5)-96 text{Li}_5left(frac{1}{2}right)right)-24 text{Li}_4left(frac{1}{2}right) log ^2(2)+frac{1}{3} pi ^2
                              left(log ^4(2)-6 zeta (3) log (2)right)-3 zeta (3) log ^3(2)+frac{26 pi ^6}{315}-frac{17 log ^6(2)}{30}-frac{1}{60} pi ^4 log ^2(2) + 24 {bf H}^{(1)}_5(1/2)
                              end{eqnarray}
                              where in the last line we expressed the remaining integral through Euler sums and used the following results:
                              begin{eqnarray}
                              {bf H}^{(1)}_2(1/2) &=& zeta (3)-frac{1}{12} pi ^2 log (2)\
                              {bf H}^{(1)}_3(1/2) &=& text{Li}_4left(frac{1}{2}right)-frac{1}{8} zeta (3) log (2)+frac{pi ^4}{720}+frac{log ^4(2)}{24}\
                              {bf H}^{(1)}_4(1/2) &=& 2 text{Li}_5left(frac{1}{2}right)+text{Li}_4left(frac{1}{2}right) log (2)+frac{zeta (5)}{32}-frac{1}{36} pi ^2 left(3 zeta (3)+log ^3(2)right)+frac{1}{2} zeta (3) log ^2(2)+frac{log
                              ^5(2)}{40}-frac{1}{720} pi ^4 log (2)
                              end{eqnarray}
                              Now, the question whether ${bf H}^{(1)}_5(1/2)$ is expressible in terms of poly-logarithms is most likely answered negatively. Indeed I used the web interface http://wayback.cecm.sfu.ca/cgi-bin/EZFace/zetaform.cgi to find possible linear dependencies. The code



                              lindep([ zp(2,6)+zp(2,5,1), z(6), z(3)*z(3), z(3)*z(2)*log(2), z(3)*log(2)^3, z(2)*log(2)^4, z(2)^2*log(2)^2, z(5)*log(2), log(2)^6, zp(2,4)*log(2)^2, zp(2,5)*log(2), zp(2,6)])


                              being run for two different number of digits of precision gives completely different results which suggests that such linear dependency most likely does not exist.







                              share|cite|improve this answer














                              share|cite|improve this answer



                              share|cite|improve this answer








                              edited Dec 14 '17 at 11:06

























                              answered Dec 13 '17 at 13:24









                              Przemo

                              4,1521928




                              4,1521928






















                                  up vote
                                  0
                                  down vote













                                  $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
                                  newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
                                  newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
                                  newcommand{dd}{mathrm{d}}
                                  newcommand{ds}[1]{displaystyle{#1}}
                                  newcommand{expo}[1]{,mathrm{e}^{#1},}
                                  newcommand{ic}{mathrm{i}}
                                  newcommand{mc}[1]{mathcal{#1}}
                                  newcommand{mrm}[1]{mathrm{#1}}
                                  newcommand{pars}[1]{left(,{#1},right)}
                                  newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                                  newcommand{root}[2]{,sqrt[#1]{,{#2},},}
                                  newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
                                  newcommand{verts}[1]{leftvert,{#1},rightvert}$
                                  begin{align}
                                  &bbox[#ffd,10px]{ds{%
                                  int_{0}^{1}{ln^{4}pars{1 + x}lnpars{x} over x},dd x}}
                                  ,,,stackrel{1 + x mapsto x}{=},,,
                                  int_{1}^{2}{ln^{4}pars{x}lnpars{x - 1} over x - 1},dd x
                                  \[5mm] stackrel{x mapsto 1/x}{=},,,&
                                  int_{1}^{1/2}{ln^{4}pars{1/x}lnpars{1/x - 1} over 1/x - 1}
                                  ,pars{-,{dd x over x^{2}}} =
                                  int_{1/2}^{1}{ln^{4}pars{x}lnpars{1 - x} - ln^{5}pars{x} over
                                  xpars{1 - x}},dd x
                                  \[1cm] = &
                                  underbrace{int_{1/2}^{1}{ln^{4}pars{x}lnpars{1 - x} over x},dd x}
                                  _{ds{mc{I}_{1}}} -
                                  underbrace{int_{1/2}^{1}{ln^{5}pars{x} over x},dd x}
                                  _{ds{= -,{ln^{6}pars{2} over 6}}} +
                                  underbrace{int_{1/2}^{1}{ln^{4}pars{x}lnpars{1 - x} over 1 - x},dd x}
                                  _{ds{mc{I}_{2}}}
                                  \[1mm] &
                                  -int_{1/2}^{1}{ln^{5}pars{x} over 1 - x},dd x
                                  label{1}tag{1}
                                  end{align}
                                  Note that
                                  begin{align}
                                  int_{1/2}^{1}{ln^{5}pars{x} over 1 - x},dd x & =
                                  -ln^{6}pars{2} +
                                  5int_{1/2}^{1}{ln^{4}pars{x}lnpars{1 - x} over x},dd x =
                                  -ln^{6}pars{2} + 5,mc{I}_{1}
                                  end{align}
                                  such that eqref{1} becomes
                                  begin{equation}
                                  bbx{bbox[#ffd,10px]{ds{%
                                  int_{0}^{1}{ln^{4}pars{1 + x}lnpars{x} over x},dd x}} =
                                  {7ln^{6}pars{2} over 6} - 4,mc{I}_{1} + mc{I}_{2}}label{2}tag{2}
                                  end{equation}




                                  $ds{Hugemc{I}_{1}: ?}$.
                                  begin{align}
                                  mc{I}_{1} & equiv
                                  int_{1/2}^{1}{ln^{4}pars{x}lnpars{1 - x} over x},dd x =
                                  -int_{1/2}^{1}mrm{Li}_{2}'pars{x}ln^{4}pars{x},dd x
                                  \[5mm] & =
                                  mrm{Li}_{2}pars{1 over 2}ln^{4}pars{2} +
                                  4int_{1/2}^{1}mrm{Li}_{3}'pars{x}ln^{3}pars{x},dd x
                                  \[5mm] & =
                                  mrm{Li}_{2}pars{1 over 2}ln^{4}pars{2} +
                                  4,mrm{Li}_{3}pars{1 over 2}ln^{3}pars{2} -
                                  12int_{1/2}^{1}mrm{Li}_{4}'pars{x}ln^{2}pars{x},dd x
                                  \[5mm] & =
                                  mrm{Li}_{2}pars{1 over 2}ln^{4}pars{2} +
                                  4,mrm{Li}_{3}pars{1 over 2}ln^{3}pars{2} +
                                  12,mrm{Li}_{4}pars{1 over 2}ln^{2}pars{2} +
                                  24int_{1/2}^{1}mrm{Li}_{5}'pars{x}lnpars{x},dd x
                                  \[1cm] & =
                                  mrm{Li}_{2}pars{1 over 2}ln^{4}pars{2} +
                                  4,mrm{Li}_{3}pars{1 over 2}ln^{3}pars{2} +
                                  12,mrm{Li}_{4}pars{1 over 2}ln^{2}pars{2} +
                                  24,mrm{Li}_{5}pars{1 over 2}lnpars{2}
                                  \[1mm] & - 24int_{1/2}^{1}mrm{Li}_{6}'pars{x},dd x
                                  \[1cm] & =
                                  mrm{Li}_{2}pars{1 over 2}ln^{4}pars{2} +
                                  4,mrm{Li}_{3}pars{1 over 2}ln^{3}pars{2} +
                                  12,mrm{Li}_{4}pars{1 over 2}ln^{2}pars{2} +
                                  24,mrm{Li}_{5}pars{1 over 2}lnpars{2}
                                  \[1mm] & -24,mrm{Li}_{6}pars{1} + 24,mrm{Li}_{6}pars{1 over 2}
                                  end{align}


                                  Note that
                                  $ds{mrm{Li}_{2}pars{1 over 2} = {pi^{2} over 12} -
                                  {ln^{2}pars{2} over 2}}$ and
                                  $ds{mrm{Li}_{3}pars{1 over 2} = {ln^{3}pars{2} over 6} -
                                  {pi^{2}lnpars{2} over 12} + {7zetapars{3} over 8}}$. Moreover,
                                  $ds{vphantom{Huge A}mrm{Li}_{6}pars{1} = zetapars{6} =
                                  {pi^{6} over 945}}$.




                                  Then,
                                  $$
                                  begin{array}{|rcl|}hline mbox{}&&\
                                  ds{quadmc{I}_{1}} & ds{equiv} &
                                  ds{int_{1/2}^{1}{ln^{4}pars{x}lnpars{1 - x} over x},dd x}
                                  \[5mm] & ds{=} &
                                  ds{-,{8pi^{6} over 315} - {pi^{2}ln^{4}pars{2} over 4} +
                                  {ln^{6}pars{2} over 6} + 12ln^{2}pars{2},mrm{Li}_{4}pars{1 over 2} +
                                  24lnpars{2},mrm{Li}_{5}pars{1 over 2}quad}
                                  \[1mm] &&
                                  ds{%
                                  + 24,mrm{Li}_{6}pars{1 over 2} + {7ln^{3}pars{2},zetapars{3} over 2}
                                  approx -0.0269}
                                  \ mbox{}&&
                                  \ hline
                                  end{array}
                                  $$




                                  $ds{Hugemc{I}_{2}: ?}$. This one isn't trivial at all. An attempt is given by
                                  begin{align}
                                  mc{I}_{2} & equiv
                                  int_{1/2}^{1}{ln^{4}pars{x}lnpars{1 - x} over 1 - x},dd x
                                  ,,,stackrel{x mapsto 1 - x}{=},,,
                                  int_{0}^{1/2}{ln^{4}pars{1 - x}lnpars{x} over x},dd x
                                  \[5mm] & =
                                  left.partiald[4]{}{mu}partiald{}{nu}
                                  int_{0}^{1/2}bracks{pars{1 - x}^{mu} - 1}x^{nu - 1}
                                  ,dd x,rightvert_{ mu = 0,, nu = 0^{+}}
                                  \[5mm] & =
                                  partiald[4]{}{mu}partiald{}{nu}
                                  bracks{int_{0}^{1/2}pars{1 - x}^{mu},x^{nu - 1}
                                  ,dd x - {1 over 2^{nu}nu}}_{ mu = 0,, nu = 0^{+}}
                                  \[5mm] & =
                                  partiald[4]{}{mu}partiald{}{nu}
                                  bracks{mrm{B}pars{{1 over 2},nu,1 + mu} - {1 over 2^{nu}nu}}_{ mu = 0,, nu = 0^{+}}
                                  end{align}


                                  $ds{mrm{B}}$ is the Incomplete Beta Function. It'll continue$ldots$







                                  share|cite|improve this answer

























                                    up vote
                                    0
                                    down vote













                                    $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
                                    newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
                                    newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
                                    newcommand{dd}{mathrm{d}}
                                    newcommand{ds}[1]{displaystyle{#1}}
                                    newcommand{expo}[1]{,mathrm{e}^{#1},}
                                    newcommand{ic}{mathrm{i}}
                                    newcommand{mc}[1]{mathcal{#1}}
                                    newcommand{mrm}[1]{mathrm{#1}}
                                    newcommand{pars}[1]{left(,{#1},right)}
                                    newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                                    newcommand{root}[2]{,sqrt[#1]{,{#2},},}
                                    newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
                                    newcommand{verts}[1]{leftvert,{#1},rightvert}$
                                    begin{align}
                                    &bbox[#ffd,10px]{ds{%
                                    int_{0}^{1}{ln^{4}pars{1 + x}lnpars{x} over x},dd x}}
                                    ,,,stackrel{1 + x mapsto x}{=},,,
                                    int_{1}^{2}{ln^{4}pars{x}lnpars{x - 1} over x - 1},dd x
                                    \[5mm] stackrel{x mapsto 1/x}{=},,,&
                                    int_{1}^{1/2}{ln^{4}pars{1/x}lnpars{1/x - 1} over 1/x - 1}
                                    ,pars{-,{dd x over x^{2}}} =
                                    int_{1/2}^{1}{ln^{4}pars{x}lnpars{1 - x} - ln^{5}pars{x} over
                                    xpars{1 - x}},dd x
                                    \[1cm] = &
                                    underbrace{int_{1/2}^{1}{ln^{4}pars{x}lnpars{1 - x} over x},dd x}
                                    _{ds{mc{I}_{1}}} -
                                    underbrace{int_{1/2}^{1}{ln^{5}pars{x} over x},dd x}
                                    _{ds{= -,{ln^{6}pars{2} over 6}}} +
                                    underbrace{int_{1/2}^{1}{ln^{4}pars{x}lnpars{1 - x} over 1 - x},dd x}
                                    _{ds{mc{I}_{2}}}
                                    \[1mm] &
                                    -int_{1/2}^{1}{ln^{5}pars{x} over 1 - x},dd x
                                    label{1}tag{1}
                                    end{align}
                                    Note that
                                    begin{align}
                                    int_{1/2}^{1}{ln^{5}pars{x} over 1 - x},dd x & =
                                    -ln^{6}pars{2} +
                                    5int_{1/2}^{1}{ln^{4}pars{x}lnpars{1 - x} over x},dd x =
                                    -ln^{6}pars{2} + 5,mc{I}_{1}
                                    end{align}
                                    such that eqref{1} becomes
                                    begin{equation}
                                    bbx{bbox[#ffd,10px]{ds{%
                                    int_{0}^{1}{ln^{4}pars{1 + x}lnpars{x} over x},dd x}} =
                                    {7ln^{6}pars{2} over 6} - 4,mc{I}_{1} + mc{I}_{2}}label{2}tag{2}
                                    end{equation}




                                    $ds{Hugemc{I}_{1}: ?}$.
                                    begin{align}
                                    mc{I}_{1} & equiv
                                    int_{1/2}^{1}{ln^{4}pars{x}lnpars{1 - x} over x},dd x =
                                    -int_{1/2}^{1}mrm{Li}_{2}'pars{x}ln^{4}pars{x},dd x
                                    \[5mm] & =
                                    mrm{Li}_{2}pars{1 over 2}ln^{4}pars{2} +
                                    4int_{1/2}^{1}mrm{Li}_{3}'pars{x}ln^{3}pars{x},dd x
                                    \[5mm] & =
                                    mrm{Li}_{2}pars{1 over 2}ln^{4}pars{2} +
                                    4,mrm{Li}_{3}pars{1 over 2}ln^{3}pars{2} -
                                    12int_{1/2}^{1}mrm{Li}_{4}'pars{x}ln^{2}pars{x},dd x
                                    \[5mm] & =
                                    mrm{Li}_{2}pars{1 over 2}ln^{4}pars{2} +
                                    4,mrm{Li}_{3}pars{1 over 2}ln^{3}pars{2} +
                                    12,mrm{Li}_{4}pars{1 over 2}ln^{2}pars{2} +
                                    24int_{1/2}^{1}mrm{Li}_{5}'pars{x}lnpars{x},dd x
                                    \[1cm] & =
                                    mrm{Li}_{2}pars{1 over 2}ln^{4}pars{2} +
                                    4,mrm{Li}_{3}pars{1 over 2}ln^{3}pars{2} +
                                    12,mrm{Li}_{4}pars{1 over 2}ln^{2}pars{2} +
                                    24,mrm{Li}_{5}pars{1 over 2}lnpars{2}
                                    \[1mm] & - 24int_{1/2}^{1}mrm{Li}_{6}'pars{x},dd x
                                    \[1cm] & =
                                    mrm{Li}_{2}pars{1 over 2}ln^{4}pars{2} +
                                    4,mrm{Li}_{3}pars{1 over 2}ln^{3}pars{2} +
                                    12,mrm{Li}_{4}pars{1 over 2}ln^{2}pars{2} +
                                    24,mrm{Li}_{5}pars{1 over 2}lnpars{2}
                                    \[1mm] & -24,mrm{Li}_{6}pars{1} + 24,mrm{Li}_{6}pars{1 over 2}
                                    end{align}


                                    Note that
                                    $ds{mrm{Li}_{2}pars{1 over 2} = {pi^{2} over 12} -
                                    {ln^{2}pars{2} over 2}}$ and
                                    $ds{mrm{Li}_{3}pars{1 over 2} = {ln^{3}pars{2} over 6} -
                                    {pi^{2}lnpars{2} over 12} + {7zetapars{3} over 8}}$. Moreover,
                                    $ds{vphantom{Huge A}mrm{Li}_{6}pars{1} = zetapars{6} =
                                    {pi^{6} over 945}}$.




                                    Then,
                                    $$
                                    begin{array}{|rcl|}hline mbox{}&&\
                                    ds{quadmc{I}_{1}} & ds{equiv} &
                                    ds{int_{1/2}^{1}{ln^{4}pars{x}lnpars{1 - x} over x},dd x}
                                    \[5mm] & ds{=} &
                                    ds{-,{8pi^{6} over 315} - {pi^{2}ln^{4}pars{2} over 4} +
                                    {ln^{6}pars{2} over 6} + 12ln^{2}pars{2},mrm{Li}_{4}pars{1 over 2} +
                                    24lnpars{2},mrm{Li}_{5}pars{1 over 2}quad}
                                    \[1mm] &&
                                    ds{%
                                    + 24,mrm{Li}_{6}pars{1 over 2} + {7ln^{3}pars{2},zetapars{3} over 2}
                                    approx -0.0269}
                                    \ mbox{}&&
                                    \ hline
                                    end{array}
                                    $$




                                    $ds{Hugemc{I}_{2}: ?}$. This one isn't trivial at all. An attempt is given by
                                    begin{align}
                                    mc{I}_{2} & equiv
                                    int_{1/2}^{1}{ln^{4}pars{x}lnpars{1 - x} over 1 - x},dd x
                                    ,,,stackrel{x mapsto 1 - x}{=},,,
                                    int_{0}^{1/2}{ln^{4}pars{1 - x}lnpars{x} over x},dd x
                                    \[5mm] & =
                                    left.partiald[4]{}{mu}partiald{}{nu}
                                    int_{0}^{1/2}bracks{pars{1 - x}^{mu} - 1}x^{nu - 1}
                                    ,dd x,rightvert_{ mu = 0,, nu = 0^{+}}
                                    \[5mm] & =
                                    partiald[4]{}{mu}partiald{}{nu}
                                    bracks{int_{0}^{1/2}pars{1 - x}^{mu},x^{nu - 1}
                                    ,dd x - {1 over 2^{nu}nu}}_{ mu = 0,, nu = 0^{+}}
                                    \[5mm] & =
                                    partiald[4]{}{mu}partiald{}{nu}
                                    bracks{mrm{B}pars{{1 over 2},nu,1 + mu} - {1 over 2^{nu}nu}}_{ mu = 0,, nu = 0^{+}}
                                    end{align}


                                    $ds{mrm{B}}$ is the Incomplete Beta Function. It'll continue$ldots$







                                    share|cite|improve this answer























                                      up vote
                                      0
                                      down vote










                                      up vote
                                      0
                                      down vote









                                      $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
                                      newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
                                      newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
                                      newcommand{dd}{mathrm{d}}
                                      newcommand{ds}[1]{displaystyle{#1}}
                                      newcommand{expo}[1]{,mathrm{e}^{#1},}
                                      newcommand{ic}{mathrm{i}}
                                      newcommand{mc}[1]{mathcal{#1}}
                                      newcommand{mrm}[1]{mathrm{#1}}
                                      newcommand{pars}[1]{left(,{#1},right)}
                                      newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                                      newcommand{root}[2]{,sqrt[#1]{,{#2},},}
                                      newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
                                      newcommand{verts}[1]{leftvert,{#1},rightvert}$
                                      begin{align}
                                      &bbox[#ffd,10px]{ds{%
                                      int_{0}^{1}{ln^{4}pars{1 + x}lnpars{x} over x},dd x}}
                                      ,,,stackrel{1 + x mapsto x}{=},,,
                                      int_{1}^{2}{ln^{4}pars{x}lnpars{x - 1} over x - 1},dd x
                                      \[5mm] stackrel{x mapsto 1/x}{=},,,&
                                      int_{1}^{1/2}{ln^{4}pars{1/x}lnpars{1/x - 1} over 1/x - 1}
                                      ,pars{-,{dd x over x^{2}}} =
                                      int_{1/2}^{1}{ln^{4}pars{x}lnpars{1 - x} - ln^{5}pars{x} over
                                      xpars{1 - x}},dd x
                                      \[1cm] = &
                                      underbrace{int_{1/2}^{1}{ln^{4}pars{x}lnpars{1 - x} over x},dd x}
                                      _{ds{mc{I}_{1}}} -
                                      underbrace{int_{1/2}^{1}{ln^{5}pars{x} over x},dd x}
                                      _{ds{= -,{ln^{6}pars{2} over 6}}} +
                                      underbrace{int_{1/2}^{1}{ln^{4}pars{x}lnpars{1 - x} over 1 - x},dd x}
                                      _{ds{mc{I}_{2}}}
                                      \[1mm] &
                                      -int_{1/2}^{1}{ln^{5}pars{x} over 1 - x},dd x
                                      label{1}tag{1}
                                      end{align}
                                      Note that
                                      begin{align}
                                      int_{1/2}^{1}{ln^{5}pars{x} over 1 - x},dd x & =
                                      -ln^{6}pars{2} +
                                      5int_{1/2}^{1}{ln^{4}pars{x}lnpars{1 - x} over x},dd x =
                                      -ln^{6}pars{2} + 5,mc{I}_{1}
                                      end{align}
                                      such that eqref{1} becomes
                                      begin{equation}
                                      bbx{bbox[#ffd,10px]{ds{%
                                      int_{0}^{1}{ln^{4}pars{1 + x}lnpars{x} over x},dd x}} =
                                      {7ln^{6}pars{2} over 6} - 4,mc{I}_{1} + mc{I}_{2}}label{2}tag{2}
                                      end{equation}




                                      $ds{Hugemc{I}_{1}: ?}$.
                                      begin{align}
                                      mc{I}_{1} & equiv
                                      int_{1/2}^{1}{ln^{4}pars{x}lnpars{1 - x} over x},dd x =
                                      -int_{1/2}^{1}mrm{Li}_{2}'pars{x}ln^{4}pars{x},dd x
                                      \[5mm] & =
                                      mrm{Li}_{2}pars{1 over 2}ln^{4}pars{2} +
                                      4int_{1/2}^{1}mrm{Li}_{3}'pars{x}ln^{3}pars{x},dd x
                                      \[5mm] & =
                                      mrm{Li}_{2}pars{1 over 2}ln^{4}pars{2} +
                                      4,mrm{Li}_{3}pars{1 over 2}ln^{3}pars{2} -
                                      12int_{1/2}^{1}mrm{Li}_{4}'pars{x}ln^{2}pars{x},dd x
                                      \[5mm] & =
                                      mrm{Li}_{2}pars{1 over 2}ln^{4}pars{2} +
                                      4,mrm{Li}_{3}pars{1 over 2}ln^{3}pars{2} +
                                      12,mrm{Li}_{4}pars{1 over 2}ln^{2}pars{2} +
                                      24int_{1/2}^{1}mrm{Li}_{5}'pars{x}lnpars{x},dd x
                                      \[1cm] & =
                                      mrm{Li}_{2}pars{1 over 2}ln^{4}pars{2} +
                                      4,mrm{Li}_{3}pars{1 over 2}ln^{3}pars{2} +
                                      12,mrm{Li}_{4}pars{1 over 2}ln^{2}pars{2} +
                                      24,mrm{Li}_{5}pars{1 over 2}lnpars{2}
                                      \[1mm] & - 24int_{1/2}^{1}mrm{Li}_{6}'pars{x},dd x
                                      \[1cm] & =
                                      mrm{Li}_{2}pars{1 over 2}ln^{4}pars{2} +
                                      4,mrm{Li}_{3}pars{1 over 2}ln^{3}pars{2} +
                                      12,mrm{Li}_{4}pars{1 over 2}ln^{2}pars{2} +
                                      24,mrm{Li}_{5}pars{1 over 2}lnpars{2}
                                      \[1mm] & -24,mrm{Li}_{6}pars{1} + 24,mrm{Li}_{6}pars{1 over 2}
                                      end{align}


                                      Note that
                                      $ds{mrm{Li}_{2}pars{1 over 2} = {pi^{2} over 12} -
                                      {ln^{2}pars{2} over 2}}$ and
                                      $ds{mrm{Li}_{3}pars{1 over 2} = {ln^{3}pars{2} over 6} -
                                      {pi^{2}lnpars{2} over 12} + {7zetapars{3} over 8}}$. Moreover,
                                      $ds{vphantom{Huge A}mrm{Li}_{6}pars{1} = zetapars{6} =
                                      {pi^{6} over 945}}$.




                                      Then,
                                      $$
                                      begin{array}{|rcl|}hline mbox{}&&\
                                      ds{quadmc{I}_{1}} & ds{equiv} &
                                      ds{int_{1/2}^{1}{ln^{4}pars{x}lnpars{1 - x} over x},dd x}
                                      \[5mm] & ds{=} &
                                      ds{-,{8pi^{6} over 315} - {pi^{2}ln^{4}pars{2} over 4} +
                                      {ln^{6}pars{2} over 6} + 12ln^{2}pars{2},mrm{Li}_{4}pars{1 over 2} +
                                      24lnpars{2},mrm{Li}_{5}pars{1 over 2}quad}
                                      \[1mm] &&
                                      ds{%
                                      + 24,mrm{Li}_{6}pars{1 over 2} + {7ln^{3}pars{2},zetapars{3} over 2}
                                      approx -0.0269}
                                      \ mbox{}&&
                                      \ hline
                                      end{array}
                                      $$




                                      $ds{Hugemc{I}_{2}: ?}$. This one isn't trivial at all. An attempt is given by
                                      begin{align}
                                      mc{I}_{2} & equiv
                                      int_{1/2}^{1}{ln^{4}pars{x}lnpars{1 - x} over 1 - x},dd x
                                      ,,,stackrel{x mapsto 1 - x}{=},,,
                                      int_{0}^{1/2}{ln^{4}pars{1 - x}lnpars{x} over x},dd x
                                      \[5mm] & =
                                      left.partiald[4]{}{mu}partiald{}{nu}
                                      int_{0}^{1/2}bracks{pars{1 - x}^{mu} - 1}x^{nu - 1}
                                      ,dd x,rightvert_{ mu = 0,, nu = 0^{+}}
                                      \[5mm] & =
                                      partiald[4]{}{mu}partiald{}{nu}
                                      bracks{int_{0}^{1/2}pars{1 - x}^{mu},x^{nu - 1}
                                      ,dd x - {1 over 2^{nu}nu}}_{ mu = 0,, nu = 0^{+}}
                                      \[5mm] & =
                                      partiald[4]{}{mu}partiald{}{nu}
                                      bracks{mrm{B}pars{{1 over 2},nu,1 + mu} - {1 over 2^{nu}nu}}_{ mu = 0,, nu = 0^{+}}
                                      end{align}


                                      $ds{mrm{B}}$ is the Incomplete Beta Function. It'll continue$ldots$







                                      share|cite|improve this answer












                                      $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
                                      newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
                                      newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
                                      newcommand{dd}{mathrm{d}}
                                      newcommand{ds}[1]{displaystyle{#1}}
                                      newcommand{expo}[1]{,mathrm{e}^{#1},}
                                      newcommand{ic}{mathrm{i}}
                                      newcommand{mc}[1]{mathcal{#1}}
                                      newcommand{mrm}[1]{mathrm{#1}}
                                      newcommand{pars}[1]{left(,{#1},right)}
                                      newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                                      newcommand{root}[2]{,sqrt[#1]{,{#2},},}
                                      newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
                                      newcommand{verts}[1]{leftvert,{#1},rightvert}$
                                      begin{align}
                                      &bbox[#ffd,10px]{ds{%
                                      int_{0}^{1}{ln^{4}pars{1 + x}lnpars{x} over x},dd x}}
                                      ,,,stackrel{1 + x mapsto x}{=},,,
                                      int_{1}^{2}{ln^{4}pars{x}lnpars{x - 1} over x - 1},dd x
                                      \[5mm] stackrel{x mapsto 1/x}{=},,,&
                                      int_{1}^{1/2}{ln^{4}pars{1/x}lnpars{1/x - 1} over 1/x - 1}
                                      ,pars{-,{dd x over x^{2}}} =
                                      int_{1/2}^{1}{ln^{4}pars{x}lnpars{1 - x} - ln^{5}pars{x} over
                                      xpars{1 - x}},dd x
                                      \[1cm] = &
                                      underbrace{int_{1/2}^{1}{ln^{4}pars{x}lnpars{1 - x} over x},dd x}
                                      _{ds{mc{I}_{1}}} -
                                      underbrace{int_{1/2}^{1}{ln^{5}pars{x} over x},dd x}
                                      _{ds{= -,{ln^{6}pars{2} over 6}}} +
                                      underbrace{int_{1/2}^{1}{ln^{4}pars{x}lnpars{1 - x} over 1 - x},dd x}
                                      _{ds{mc{I}_{2}}}
                                      \[1mm] &
                                      -int_{1/2}^{1}{ln^{5}pars{x} over 1 - x},dd x
                                      label{1}tag{1}
                                      end{align}
                                      Note that
                                      begin{align}
                                      int_{1/2}^{1}{ln^{5}pars{x} over 1 - x},dd x & =
                                      -ln^{6}pars{2} +
                                      5int_{1/2}^{1}{ln^{4}pars{x}lnpars{1 - x} over x},dd x =
                                      -ln^{6}pars{2} + 5,mc{I}_{1}
                                      end{align}
                                      such that eqref{1} becomes
                                      begin{equation}
                                      bbx{bbox[#ffd,10px]{ds{%
                                      int_{0}^{1}{ln^{4}pars{1 + x}lnpars{x} over x},dd x}} =
                                      {7ln^{6}pars{2} over 6} - 4,mc{I}_{1} + mc{I}_{2}}label{2}tag{2}
                                      end{equation}




                                      $ds{Hugemc{I}_{1}: ?}$.
                                      begin{align}
                                      mc{I}_{1} & equiv
                                      int_{1/2}^{1}{ln^{4}pars{x}lnpars{1 - x} over x},dd x =
                                      -int_{1/2}^{1}mrm{Li}_{2}'pars{x}ln^{4}pars{x},dd x
                                      \[5mm] & =
                                      mrm{Li}_{2}pars{1 over 2}ln^{4}pars{2} +
                                      4int_{1/2}^{1}mrm{Li}_{3}'pars{x}ln^{3}pars{x},dd x
                                      \[5mm] & =
                                      mrm{Li}_{2}pars{1 over 2}ln^{4}pars{2} +
                                      4,mrm{Li}_{3}pars{1 over 2}ln^{3}pars{2} -
                                      12int_{1/2}^{1}mrm{Li}_{4}'pars{x}ln^{2}pars{x},dd x
                                      \[5mm] & =
                                      mrm{Li}_{2}pars{1 over 2}ln^{4}pars{2} +
                                      4,mrm{Li}_{3}pars{1 over 2}ln^{3}pars{2} +
                                      12,mrm{Li}_{4}pars{1 over 2}ln^{2}pars{2} +
                                      24int_{1/2}^{1}mrm{Li}_{5}'pars{x}lnpars{x},dd x
                                      \[1cm] & =
                                      mrm{Li}_{2}pars{1 over 2}ln^{4}pars{2} +
                                      4,mrm{Li}_{3}pars{1 over 2}ln^{3}pars{2} +
                                      12,mrm{Li}_{4}pars{1 over 2}ln^{2}pars{2} +
                                      24,mrm{Li}_{5}pars{1 over 2}lnpars{2}
                                      \[1mm] & - 24int_{1/2}^{1}mrm{Li}_{6}'pars{x},dd x
                                      \[1cm] & =
                                      mrm{Li}_{2}pars{1 over 2}ln^{4}pars{2} +
                                      4,mrm{Li}_{3}pars{1 over 2}ln^{3}pars{2} +
                                      12,mrm{Li}_{4}pars{1 over 2}ln^{2}pars{2} +
                                      24,mrm{Li}_{5}pars{1 over 2}lnpars{2}
                                      \[1mm] & -24,mrm{Li}_{6}pars{1} + 24,mrm{Li}_{6}pars{1 over 2}
                                      end{align}


                                      Note that
                                      $ds{mrm{Li}_{2}pars{1 over 2} = {pi^{2} over 12} -
                                      {ln^{2}pars{2} over 2}}$ and
                                      $ds{mrm{Li}_{3}pars{1 over 2} = {ln^{3}pars{2} over 6} -
                                      {pi^{2}lnpars{2} over 12} + {7zetapars{3} over 8}}$. Moreover,
                                      $ds{vphantom{Huge A}mrm{Li}_{6}pars{1} = zetapars{6} =
                                      {pi^{6} over 945}}$.




                                      Then,
                                      $$
                                      begin{array}{|rcl|}hline mbox{}&&\
                                      ds{quadmc{I}_{1}} & ds{equiv} &
                                      ds{int_{1/2}^{1}{ln^{4}pars{x}lnpars{1 - x} over x},dd x}
                                      \[5mm] & ds{=} &
                                      ds{-,{8pi^{6} over 315} - {pi^{2}ln^{4}pars{2} over 4} +
                                      {ln^{6}pars{2} over 6} + 12ln^{2}pars{2},mrm{Li}_{4}pars{1 over 2} +
                                      24lnpars{2},mrm{Li}_{5}pars{1 over 2}quad}
                                      \[1mm] &&
                                      ds{%
                                      + 24,mrm{Li}_{6}pars{1 over 2} + {7ln^{3}pars{2},zetapars{3} over 2}
                                      approx -0.0269}
                                      \ mbox{}&&
                                      \ hline
                                      end{array}
                                      $$




                                      $ds{Hugemc{I}_{2}: ?}$. This one isn't trivial at all. An attempt is given by
                                      begin{align}
                                      mc{I}_{2} & equiv
                                      int_{1/2}^{1}{ln^{4}pars{x}lnpars{1 - x} over 1 - x},dd x
                                      ,,,stackrel{x mapsto 1 - x}{=},,,
                                      int_{0}^{1/2}{ln^{4}pars{1 - x}lnpars{x} over x},dd x
                                      \[5mm] & =
                                      left.partiald[4]{}{mu}partiald{}{nu}
                                      int_{0}^{1/2}bracks{pars{1 - x}^{mu} - 1}x^{nu - 1}
                                      ,dd x,rightvert_{ mu = 0,, nu = 0^{+}}
                                      \[5mm] & =
                                      partiald[4]{}{mu}partiald{}{nu}
                                      bracks{int_{0}^{1/2}pars{1 - x}^{mu},x^{nu - 1}
                                      ,dd x - {1 over 2^{nu}nu}}_{ mu = 0,, nu = 0^{+}}
                                      \[5mm] & =
                                      partiald[4]{}{mu}partiald{}{nu}
                                      bracks{mrm{B}pars{{1 over 2},nu,1 + mu} - {1 over 2^{nu}nu}}_{ mu = 0,, nu = 0^{+}}
                                      end{align}


                                      $ds{mrm{B}}$ is the Incomplete Beta Function. It'll continue$ldots$








                                      share|cite|improve this answer












                                      share|cite|improve this answer



                                      share|cite|improve this answer










                                      answered Feb 1 at 23:17









                                      Felix Marin

                                      66.6k7107139




                                      66.6k7107139






























                                          draft saved

                                          draft discarded




















































                                          Thanks for contributing an answer to Mathematics Stack Exchange!


                                          • Please be sure to answer the question. Provide details and share your research!

                                          But avoid



                                          • Asking for help, clarification, or responding to other answers.

                                          • Making statements based on opinion; back them up with references or personal experience.


                                          Use MathJax to format equations. MathJax reference.


                                          To learn more, see our tips on writing great answers.





                                          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                                          Please pay close attention to the following guidance:


                                          • Please be sure to answer the question. Provide details and share your research!

                                          But avoid



                                          • Asking for help, clarification, or responding to other answers.

                                          • Making statements based on opinion; back them up with references or personal experience.


                                          To learn more, see our tips on writing great answers.




                                          draft saved


                                          draft discarded














                                          StackExchange.ready(
                                          function () {
                                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2338068%2fclosed-form-for-large-int-01-frac-ln41x-ln-xx-dx%23new-answer', 'question_page');
                                          }
                                          );

                                          Post as a guest















                                          Required, but never shown





















































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown

































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown







                                          Popular posts from this blog

                                          Ellipse (mathématiques)

                                          Quarter-circle Tiles

                                          Mont Emei