probability of choosing a biased coin C which has probability 3/15 of getting heads assuming we got head on...












2














Full question: there are 3 biased coins A, B, and C each with probability $5/15, 3/15, 1/15$ of getting heads respectively. Also, they have probability 1/4 for A, 1/4 for B, and 1/2 for C of getting picked. If a coin was picked and tossed and the result was heads, what is the probability that the coin was coin C?



My approach: Since the coin picked was C and the result was head we merely multiply the probability of both those things happening concerning C:
$$1/15 * 1/2 = 1/30$$










share|cite|improve this question



























    2














    Full question: there are 3 biased coins A, B, and C each with probability $5/15, 3/15, 1/15$ of getting heads respectively. Also, they have probability 1/4 for A, 1/4 for B, and 1/2 for C of getting picked. If a coin was picked and tossed and the result was heads, what is the probability that the coin was coin C?



    My approach: Since the coin picked was C and the result was head we merely multiply the probability of both those things happening concerning C:
    $$1/15 * 1/2 = 1/30$$










    share|cite|improve this question

























      2












      2








      2







      Full question: there are 3 biased coins A, B, and C each with probability $5/15, 3/15, 1/15$ of getting heads respectively. Also, they have probability 1/4 for A, 1/4 for B, and 1/2 for C of getting picked. If a coin was picked and tossed and the result was heads, what is the probability that the coin was coin C?



      My approach: Since the coin picked was C and the result was head we merely multiply the probability of both those things happening concerning C:
      $$1/15 * 1/2 = 1/30$$










      share|cite|improve this question













      Full question: there are 3 biased coins A, B, and C each with probability $5/15, 3/15, 1/15$ of getting heads respectively. Also, they have probability 1/4 for A, 1/4 for B, and 1/2 for C of getting picked. If a coin was picked and tossed and the result was heads, what is the probability that the coin was coin C?



      My approach: Since the coin picked was C and the result was head we merely multiply the probability of both those things happening concerning C:
      $$1/15 * 1/2 = 1/30$$







      probability discrete-mathematics conditional-probability






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 2 hours ago









      hussain sagar

      776




      776






















          2 Answers
          2






          active

          oldest

          votes


















          3














          An intuitive argument based on Bayes' Theorem, says that getting heads was possible in one of three different ways:




          1. Draw $A$ with probability $1/4$ and flip heads with probability $5/15$, total chance of $1/4 times 5/15 = 1/12$.

          2. Draw $B$: $1/4 times 3/15 = 1/20$.

          3. Draw $C$: $1/2 times 1/15 = 1/30$.


          Thus, the chance that $C$ was drawn is
          $$
          frac{1/30}{1/12 + 1/20 + 1/30}
          = frac{1}{5/2+3/2 + 1}
          = frac15.
          $$






          share|cite|improve this answer





















          • Thank you, this makes a lot of sense.
            – hussain sagar
            1 hour ago










          • @hussainsagar you are welcome
            – gt6989b
            1 hour ago



















          1














          What you computed is the probability that coin $C$ is chosen and you get a head $H$, that is $P(H cap C)$. It is not equalty to $P(C|H)$.



          Guide:
          Use Bayes rule, that is



          $$P(C|H)= frac{P(H|C)P(C)}{P(H)}=frac{P(H|C)P(C)}{P(Hcap A)+P(H cap B)+P(H cap C)}$$






          share|cite|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050947%2fprobability-of-choosing-a-biased-coin-c-which-has-probability-3-15-of-getting-he%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3














            An intuitive argument based on Bayes' Theorem, says that getting heads was possible in one of three different ways:




            1. Draw $A$ with probability $1/4$ and flip heads with probability $5/15$, total chance of $1/4 times 5/15 = 1/12$.

            2. Draw $B$: $1/4 times 3/15 = 1/20$.

            3. Draw $C$: $1/2 times 1/15 = 1/30$.


            Thus, the chance that $C$ was drawn is
            $$
            frac{1/30}{1/12 + 1/20 + 1/30}
            = frac{1}{5/2+3/2 + 1}
            = frac15.
            $$






            share|cite|improve this answer





















            • Thank you, this makes a lot of sense.
              – hussain sagar
              1 hour ago










            • @hussainsagar you are welcome
              – gt6989b
              1 hour ago
















            3














            An intuitive argument based on Bayes' Theorem, says that getting heads was possible in one of three different ways:




            1. Draw $A$ with probability $1/4$ and flip heads with probability $5/15$, total chance of $1/4 times 5/15 = 1/12$.

            2. Draw $B$: $1/4 times 3/15 = 1/20$.

            3. Draw $C$: $1/2 times 1/15 = 1/30$.


            Thus, the chance that $C$ was drawn is
            $$
            frac{1/30}{1/12 + 1/20 + 1/30}
            = frac{1}{5/2+3/2 + 1}
            = frac15.
            $$






            share|cite|improve this answer





















            • Thank you, this makes a lot of sense.
              – hussain sagar
              1 hour ago










            • @hussainsagar you are welcome
              – gt6989b
              1 hour ago














            3












            3








            3






            An intuitive argument based on Bayes' Theorem, says that getting heads was possible in one of three different ways:




            1. Draw $A$ with probability $1/4$ and flip heads with probability $5/15$, total chance of $1/4 times 5/15 = 1/12$.

            2. Draw $B$: $1/4 times 3/15 = 1/20$.

            3. Draw $C$: $1/2 times 1/15 = 1/30$.


            Thus, the chance that $C$ was drawn is
            $$
            frac{1/30}{1/12 + 1/20 + 1/30}
            = frac{1}{5/2+3/2 + 1}
            = frac15.
            $$






            share|cite|improve this answer












            An intuitive argument based on Bayes' Theorem, says that getting heads was possible in one of three different ways:




            1. Draw $A$ with probability $1/4$ and flip heads with probability $5/15$, total chance of $1/4 times 5/15 = 1/12$.

            2. Draw $B$: $1/4 times 3/15 = 1/20$.

            3. Draw $C$: $1/2 times 1/15 = 1/30$.


            Thus, the chance that $C$ was drawn is
            $$
            frac{1/30}{1/12 + 1/20 + 1/30}
            = frac{1}{5/2+3/2 + 1}
            = frac15.
            $$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered 1 hour ago









            gt6989b

            32.9k22452




            32.9k22452












            • Thank you, this makes a lot of sense.
              – hussain sagar
              1 hour ago










            • @hussainsagar you are welcome
              – gt6989b
              1 hour ago


















            • Thank you, this makes a lot of sense.
              – hussain sagar
              1 hour ago










            • @hussainsagar you are welcome
              – gt6989b
              1 hour ago
















            Thank you, this makes a lot of sense.
            – hussain sagar
            1 hour ago




            Thank you, this makes a lot of sense.
            – hussain sagar
            1 hour ago












            @hussainsagar you are welcome
            – gt6989b
            1 hour ago




            @hussainsagar you are welcome
            – gt6989b
            1 hour ago











            1














            What you computed is the probability that coin $C$ is chosen and you get a head $H$, that is $P(H cap C)$. It is not equalty to $P(C|H)$.



            Guide:
            Use Bayes rule, that is



            $$P(C|H)= frac{P(H|C)P(C)}{P(H)}=frac{P(H|C)P(C)}{P(Hcap A)+P(H cap B)+P(H cap C)}$$






            share|cite|improve this answer


























              1














              What you computed is the probability that coin $C$ is chosen and you get a head $H$, that is $P(H cap C)$. It is not equalty to $P(C|H)$.



              Guide:
              Use Bayes rule, that is



              $$P(C|H)= frac{P(H|C)P(C)}{P(H)}=frac{P(H|C)P(C)}{P(Hcap A)+P(H cap B)+P(H cap C)}$$






              share|cite|improve this answer
























                1












                1








                1






                What you computed is the probability that coin $C$ is chosen and you get a head $H$, that is $P(H cap C)$. It is not equalty to $P(C|H)$.



                Guide:
                Use Bayes rule, that is



                $$P(C|H)= frac{P(H|C)P(C)}{P(H)}=frac{P(H|C)P(C)}{P(Hcap A)+P(H cap B)+P(H cap C)}$$






                share|cite|improve this answer












                What you computed is the probability that coin $C$ is chosen and you get a head $H$, that is $P(H cap C)$. It is not equalty to $P(C|H)$.



                Guide:
                Use Bayes rule, that is



                $$P(C|H)= frac{P(H|C)P(C)}{P(H)}=frac{P(H|C)P(C)}{P(Hcap A)+P(H cap B)+P(H cap C)}$$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 1 hour ago









                Siong Thye Goh

                98.4k1463116




                98.4k1463116






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.





                    Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                    Please pay close attention to the following guidance:


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050947%2fprobability-of-choosing-a-biased-coin-c-which-has-probability-3-15-of-getting-he%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Quarter-circle Tiles

                    build a pushdown automaton that recognizes the reverse language of a given pushdown automaton?

                    Mont Emei