Urgent with the continuity: Existence of directional derivatives at all directions of a $f:mathbb{R}^{2} to...
Let $f(x,y)=
begin{cases}
frac{2x^2y}{x^2+y^2} & if & (x,y) neq (0,0) \
0 & if & (x,y)=(0,0) .
end{cases}$
(i) Prove the directional derivatives of $f$ exist in any direction at the point $(0,0)$.
(ii)¿Is $f$ continuous on (0,0)?
For (i) I took $u=(u_{1},u_{2}) in mathbb{R^{2}}$ such $||u||=1$ and $0=(0,0)$. So $$lim_{t to 0} frac{f(0+ t u)-f(0)}{t}=lim_{t to 0}frac{2(tu_{1})^2 (tu_{2})}{(tu_{1})^4+(tu_{2})^2}=lim_{t to 0}frac{(t^2 u_{1}^2)(t^2 u_{1}^{2}) tu_{2}}{t^{4}u_{1}^{4}+t^{2} u_{2}^{2}}$$. But I cannot find the limit when $t$ aproaches to $0$. Which by finding them I would prove the directional derivative exist at every direction right?
For (ii) I got the intuition $f$ is not continuous at $(0,0)$ so I took $lbrace (frac{1}{k},frac{1}{k}) rbrace_{k in mathbb{N}}$ and $lbrace (frac{1}{k},0) rbrace_{k in mathbb{N}}$ which are two different sequences in $mathbb{R}^{2}$ converging to $(0,0)$. However, $lbrace f(frac{1}{k},frac{1}{k}) rbrace_{k in mathbb{N}}=lbrace frac{1}{k^{2}} rbrace_{n in mathbb{N}} to 0$ and $lbrace f(frac{1}{k},0) rbrace_{k in mathbb{N}} to 0$. So maybe my intuition was not right? Can anyone help me end the proof of continuity or not continuity , please?
multivariable-calculus continuity
|
show 3 more comments
Let $f(x,y)=
begin{cases}
frac{2x^2y}{x^2+y^2} & if & (x,y) neq (0,0) \
0 & if & (x,y)=(0,0) .
end{cases}$
(i) Prove the directional derivatives of $f$ exist in any direction at the point $(0,0)$.
(ii)¿Is $f$ continuous on (0,0)?
For (i) I took $u=(u_{1},u_{2}) in mathbb{R^{2}}$ such $||u||=1$ and $0=(0,0)$. So $$lim_{t to 0} frac{f(0+ t u)-f(0)}{t}=lim_{t to 0}frac{2(tu_{1})^2 (tu_{2})}{(tu_{1})^4+(tu_{2})^2}=lim_{t to 0}frac{(t^2 u_{1}^2)(t^2 u_{1}^{2}) tu_{2}}{t^{4}u_{1}^{4}+t^{2} u_{2}^{2}}$$. But I cannot find the limit when $t$ aproaches to $0$. Which by finding them I would prove the directional derivative exist at every direction right?
For (ii) I got the intuition $f$ is not continuous at $(0,0)$ so I took $lbrace (frac{1}{k},frac{1}{k}) rbrace_{k in mathbb{N}}$ and $lbrace (frac{1}{k},0) rbrace_{k in mathbb{N}}$ which are two different sequences in $mathbb{R}^{2}$ converging to $(0,0)$. However, $lbrace f(frac{1}{k},frac{1}{k}) rbrace_{k in mathbb{N}}=lbrace frac{1}{k^{2}} rbrace_{n in mathbb{N}} to 0$ and $lbrace f(frac{1}{k},0) rbrace_{k in mathbb{N}} to 0$. So maybe my intuition was not right? Can anyone help me end the proof of continuity or not continuity , please?
multivariable-calculus continuity
The powers in your very first line do not seem to match those in which you have the limits. If they were the same, you could use your user name, i.e. take $u_1=costheta$ and $u_2=sintheta$.
– marmot
Nov 25 at 5:51
1
Has not this question being asked a bazillion times? (i) Is is $x^2 + y^2$ or $x^4+y^2$ in the denominator? In the latter case, I believe there are not directional derivatives. (ii) Consider something of the form $x = sqrt{t}, y = t.$
– Will M.
Nov 25 at 5:57
Is $x^{2}+y^{2}$ in the denominator? I have seen other similar functions but still cannot solve for this specific one :( .For (ii) you mean those values as sequences? @WillM.
– Cos
Nov 25 at 6:07
By substituting $x=sqrt{t}$ and $y=t$ in $f(x,y)=f(sqrt{t}, t)$ i got $f(sqrt t, t)=1$, so How can i conclude f is not continuous at (0,0)? @WillM.
– Cos
Nov 25 at 6:15
$f(0,0)=0$ ${}{}{}{}$
– Will M.
Nov 25 at 6:47
|
show 3 more comments
Let $f(x,y)=
begin{cases}
frac{2x^2y}{x^2+y^2} & if & (x,y) neq (0,0) \
0 & if & (x,y)=(0,0) .
end{cases}$
(i) Prove the directional derivatives of $f$ exist in any direction at the point $(0,0)$.
(ii)¿Is $f$ continuous on (0,0)?
For (i) I took $u=(u_{1},u_{2}) in mathbb{R^{2}}$ such $||u||=1$ and $0=(0,0)$. So $$lim_{t to 0} frac{f(0+ t u)-f(0)}{t}=lim_{t to 0}frac{2(tu_{1})^2 (tu_{2})}{(tu_{1})^4+(tu_{2})^2}=lim_{t to 0}frac{(t^2 u_{1}^2)(t^2 u_{1}^{2}) tu_{2}}{t^{4}u_{1}^{4}+t^{2} u_{2}^{2}}$$. But I cannot find the limit when $t$ aproaches to $0$. Which by finding them I would prove the directional derivative exist at every direction right?
For (ii) I got the intuition $f$ is not continuous at $(0,0)$ so I took $lbrace (frac{1}{k},frac{1}{k}) rbrace_{k in mathbb{N}}$ and $lbrace (frac{1}{k},0) rbrace_{k in mathbb{N}}$ which are two different sequences in $mathbb{R}^{2}$ converging to $(0,0)$. However, $lbrace f(frac{1}{k},frac{1}{k}) rbrace_{k in mathbb{N}}=lbrace frac{1}{k^{2}} rbrace_{n in mathbb{N}} to 0$ and $lbrace f(frac{1}{k},0) rbrace_{k in mathbb{N}} to 0$. So maybe my intuition was not right? Can anyone help me end the proof of continuity or not continuity , please?
multivariable-calculus continuity
Let $f(x,y)=
begin{cases}
frac{2x^2y}{x^2+y^2} & if & (x,y) neq (0,0) \
0 & if & (x,y)=(0,0) .
end{cases}$
(i) Prove the directional derivatives of $f$ exist in any direction at the point $(0,0)$.
(ii)¿Is $f$ continuous on (0,0)?
For (i) I took $u=(u_{1},u_{2}) in mathbb{R^{2}}$ such $||u||=1$ and $0=(0,0)$. So $$lim_{t to 0} frac{f(0+ t u)-f(0)}{t}=lim_{t to 0}frac{2(tu_{1})^2 (tu_{2})}{(tu_{1})^4+(tu_{2})^2}=lim_{t to 0}frac{(t^2 u_{1}^2)(t^2 u_{1}^{2}) tu_{2}}{t^{4}u_{1}^{4}+t^{2} u_{2}^{2}}$$. But I cannot find the limit when $t$ aproaches to $0$. Which by finding them I would prove the directional derivative exist at every direction right?
For (ii) I got the intuition $f$ is not continuous at $(0,0)$ so I took $lbrace (frac{1}{k},frac{1}{k}) rbrace_{k in mathbb{N}}$ and $lbrace (frac{1}{k},0) rbrace_{k in mathbb{N}}$ which are two different sequences in $mathbb{R}^{2}$ converging to $(0,0)$. However, $lbrace f(frac{1}{k},frac{1}{k}) rbrace_{k in mathbb{N}}=lbrace frac{1}{k^{2}} rbrace_{n in mathbb{N}} to 0$ and $lbrace f(frac{1}{k},0) rbrace_{k in mathbb{N}} to 0$. So maybe my intuition was not right? Can anyone help me end the proof of continuity or not continuity , please?
multivariable-calculus continuity
multivariable-calculus continuity
edited Nov 26 at 9:01
Yadati Kiran
1,694519
1,694519
asked Nov 25 at 5:48
Cos
1126
1126
The powers in your very first line do not seem to match those in which you have the limits. If they were the same, you could use your user name, i.e. take $u_1=costheta$ and $u_2=sintheta$.
– marmot
Nov 25 at 5:51
1
Has not this question being asked a bazillion times? (i) Is is $x^2 + y^2$ or $x^4+y^2$ in the denominator? In the latter case, I believe there are not directional derivatives. (ii) Consider something of the form $x = sqrt{t}, y = t.$
– Will M.
Nov 25 at 5:57
Is $x^{2}+y^{2}$ in the denominator? I have seen other similar functions but still cannot solve for this specific one :( .For (ii) you mean those values as sequences? @WillM.
– Cos
Nov 25 at 6:07
By substituting $x=sqrt{t}$ and $y=t$ in $f(x,y)=f(sqrt{t}, t)$ i got $f(sqrt t, t)=1$, so How can i conclude f is not continuous at (0,0)? @WillM.
– Cos
Nov 25 at 6:15
$f(0,0)=0$ ${}{}{}{}$
– Will M.
Nov 25 at 6:47
|
show 3 more comments
The powers in your very first line do not seem to match those in which you have the limits. If they were the same, you could use your user name, i.e. take $u_1=costheta$ and $u_2=sintheta$.
– marmot
Nov 25 at 5:51
1
Has not this question being asked a bazillion times? (i) Is is $x^2 + y^2$ or $x^4+y^2$ in the denominator? In the latter case, I believe there are not directional derivatives. (ii) Consider something of the form $x = sqrt{t}, y = t.$
– Will M.
Nov 25 at 5:57
Is $x^{2}+y^{2}$ in the denominator? I have seen other similar functions but still cannot solve for this specific one :( .For (ii) you mean those values as sequences? @WillM.
– Cos
Nov 25 at 6:07
By substituting $x=sqrt{t}$ and $y=t$ in $f(x,y)=f(sqrt{t}, t)$ i got $f(sqrt t, t)=1$, so How can i conclude f is not continuous at (0,0)? @WillM.
– Cos
Nov 25 at 6:15
$f(0,0)=0$ ${}{}{}{}$
– Will M.
Nov 25 at 6:47
The powers in your very first line do not seem to match those in which you have the limits. If they were the same, you could use your user name, i.e. take $u_1=costheta$ and $u_2=sintheta$.
– marmot
Nov 25 at 5:51
The powers in your very first line do not seem to match those in which you have the limits. If they were the same, you could use your user name, i.e. take $u_1=costheta$ and $u_2=sintheta$.
– marmot
Nov 25 at 5:51
1
1
Has not this question being asked a bazillion times? (i) Is is $x^2 + y^2$ or $x^4+y^2$ in the denominator? In the latter case, I believe there are not directional derivatives. (ii) Consider something of the form $x = sqrt{t}, y = t.$
– Will M.
Nov 25 at 5:57
Has not this question being asked a bazillion times? (i) Is is $x^2 + y^2$ or $x^4+y^2$ in the denominator? In the latter case, I believe there are not directional derivatives. (ii) Consider something of the form $x = sqrt{t}, y = t.$
– Will M.
Nov 25 at 5:57
Is $x^{2}+y^{2}$ in the denominator? I have seen other similar functions but still cannot solve for this specific one :( .For (ii) you mean those values as sequences? @WillM.
– Cos
Nov 25 at 6:07
Is $x^{2}+y^{2}$ in the denominator? I have seen other similar functions but still cannot solve for this specific one :( .For (ii) you mean those values as sequences? @WillM.
– Cos
Nov 25 at 6:07
By substituting $x=sqrt{t}$ and $y=t$ in $f(x,y)=f(sqrt{t}, t)$ i got $f(sqrt t, t)=1$, so How can i conclude f is not continuous at (0,0)? @WillM.
– Cos
Nov 25 at 6:15
By substituting $x=sqrt{t}$ and $y=t$ in $f(x,y)=f(sqrt{t}, t)$ i got $f(sqrt t, t)=1$, so How can i conclude f is not continuous at (0,0)? @WillM.
– Cos
Nov 25 at 6:15
$f(0,0)=0$ ${}{}{}{}$
– Will M.
Nov 25 at 6:47
$f(0,0)=0$ ${}{}{}{}$
– Will M.
Nov 25 at 6:47
|
show 3 more comments
1 Answer
1
active
oldest
votes
Directional derivative is defined as $$D_vec{u}f(x,y)=lim_{hto0}dfrac{f(x+ah,y+bh)-f(x,y)}{h} $$ where $vec{u}=langle a,brangle$ is the unit vector along which rate of change of $f(x,y)$ is calculated.
$$displaystyle D_vec{u}f(0,0)=lim_{hto0}dfrac{dfrac{2(ah)^2(bh)}{(ah)^2+(bh)^2}-0}{h}= lim_{hto0}frac{2a^2b}{a^2+b^2}$$ which exists since $||vec{u}||=1implies a^2+b^2neq0$. So directional derivatives of $f$ exist in any direction at the point $(0,0)$ since limit is independent of how $h$ approaches $0$.
To calculate continuity let $(x,y)to(0,0)$ along $y=mx$ where $m$ is a constant.
$$displaystylelim_{(x,mxto(0,0))}dfrac{2x^2mx}{x^2(1+m^2)}=lim_{substack{xto 0\text{along y=mx}}}dfrac{2mx}{(1+m^2)}=0=f(0,0)$$
So $f$ is continuous at $(0,0)$.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3012478%2furgent-with-the-continuity-existence-of-directional-derivatives-at-all-directio%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Directional derivative is defined as $$D_vec{u}f(x,y)=lim_{hto0}dfrac{f(x+ah,y+bh)-f(x,y)}{h} $$ where $vec{u}=langle a,brangle$ is the unit vector along which rate of change of $f(x,y)$ is calculated.
$$displaystyle D_vec{u}f(0,0)=lim_{hto0}dfrac{dfrac{2(ah)^2(bh)}{(ah)^2+(bh)^2}-0}{h}= lim_{hto0}frac{2a^2b}{a^2+b^2}$$ which exists since $||vec{u}||=1implies a^2+b^2neq0$. So directional derivatives of $f$ exist in any direction at the point $(0,0)$ since limit is independent of how $h$ approaches $0$.
To calculate continuity let $(x,y)to(0,0)$ along $y=mx$ where $m$ is a constant.
$$displaystylelim_{(x,mxto(0,0))}dfrac{2x^2mx}{x^2(1+m^2)}=lim_{substack{xto 0\text{along y=mx}}}dfrac{2mx}{(1+m^2)}=0=f(0,0)$$
So $f$ is continuous at $(0,0)$.
add a comment |
Directional derivative is defined as $$D_vec{u}f(x,y)=lim_{hto0}dfrac{f(x+ah,y+bh)-f(x,y)}{h} $$ where $vec{u}=langle a,brangle$ is the unit vector along which rate of change of $f(x,y)$ is calculated.
$$displaystyle D_vec{u}f(0,0)=lim_{hto0}dfrac{dfrac{2(ah)^2(bh)}{(ah)^2+(bh)^2}-0}{h}= lim_{hto0}frac{2a^2b}{a^2+b^2}$$ which exists since $||vec{u}||=1implies a^2+b^2neq0$. So directional derivatives of $f$ exist in any direction at the point $(0,0)$ since limit is independent of how $h$ approaches $0$.
To calculate continuity let $(x,y)to(0,0)$ along $y=mx$ where $m$ is a constant.
$$displaystylelim_{(x,mxto(0,0))}dfrac{2x^2mx}{x^2(1+m^2)}=lim_{substack{xto 0\text{along y=mx}}}dfrac{2mx}{(1+m^2)}=0=f(0,0)$$
So $f$ is continuous at $(0,0)$.
add a comment |
Directional derivative is defined as $$D_vec{u}f(x,y)=lim_{hto0}dfrac{f(x+ah,y+bh)-f(x,y)}{h} $$ where $vec{u}=langle a,brangle$ is the unit vector along which rate of change of $f(x,y)$ is calculated.
$$displaystyle D_vec{u}f(0,0)=lim_{hto0}dfrac{dfrac{2(ah)^2(bh)}{(ah)^2+(bh)^2}-0}{h}= lim_{hto0}frac{2a^2b}{a^2+b^2}$$ which exists since $||vec{u}||=1implies a^2+b^2neq0$. So directional derivatives of $f$ exist in any direction at the point $(0,0)$ since limit is independent of how $h$ approaches $0$.
To calculate continuity let $(x,y)to(0,0)$ along $y=mx$ where $m$ is a constant.
$$displaystylelim_{(x,mxto(0,0))}dfrac{2x^2mx}{x^2(1+m^2)}=lim_{substack{xto 0\text{along y=mx}}}dfrac{2mx}{(1+m^2)}=0=f(0,0)$$
So $f$ is continuous at $(0,0)$.
Directional derivative is defined as $$D_vec{u}f(x,y)=lim_{hto0}dfrac{f(x+ah,y+bh)-f(x,y)}{h} $$ where $vec{u}=langle a,brangle$ is the unit vector along which rate of change of $f(x,y)$ is calculated.
$$displaystyle D_vec{u}f(0,0)=lim_{hto0}dfrac{dfrac{2(ah)^2(bh)}{(ah)^2+(bh)^2}-0}{h}= lim_{hto0}frac{2a^2b}{a^2+b^2}$$ which exists since $||vec{u}||=1implies a^2+b^2neq0$. So directional derivatives of $f$ exist in any direction at the point $(0,0)$ since limit is independent of how $h$ approaches $0$.
To calculate continuity let $(x,y)to(0,0)$ along $y=mx$ where $m$ is a constant.
$$displaystylelim_{(x,mxto(0,0))}dfrac{2x^2mx}{x^2(1+m^2)}=lim_{substack{xto 0\text{along y=mx}}}dfrac{2mx}{(1+m^2)}=0=f(0,0)$$
So $f$ is continuous at $(0,0)$.
edited Nov 26 at 8:58
answered Nov 26 at 8:48
Yadati Kiran
1,694519
1,694519
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3012478%2furgent-with-the-continuity-existence-of-directional-derivatives-at-all-directio%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
The powers in your very first line do not seem to match those in which you have the limits. If they were the same, you could use your user name, i.e. take $u_1=costheta$ and $u_2=sintheta$.
– marmot
Nov 25 at 5:51
1
Has not this question being asked a bazillion times? (i) Is is $x^2 + y^2$ or $x^4+y^2$ in the denominator? In the latter case, I believe there are not directional derivatives. (ii) Consider something of the form $x = sqrt{t}, y = t.$
– Will M.
Nov 25 at 5:57
Is $x^{2}+y^{2}$ in the denominator? I have seen other similar functions but still cannot solve for this specific one :( .For (ii) you mean those values as sequences? @WillM.
– Cos
Nov 25 at 6:07
By substituting $x=sqrt{t}$ and $y=t$ in $f(x,y)=f(sqrt{t}, t)$ i got $f(sqrt t, t)=1$, so How can i conclude f is not continuous at (0,0)? @WillM.
– Cos
Nov 25 at 6:15
$f(0,0)=0$ ${}{}{}{}$
– Will M.
Nov 25 at 6:47