A functional equation (another)












1












$begingroup$


I would like to find a continuous concave function from $[1/2,1]$ to $[0,1]$ such that $f(1)=1$ and for all $xin [1/2,1]$



$$f(x)= frac{1}{2} + frac{1}{4}fleft(frac{2x}{1+x}right).$$



I am actually not sure about existence of a solution.










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    I would like to find a continuous concave function from $[1/2,1]$ to $[0,1]$ such that $f(1)=1$ and for all $xin [1/2,1]$



    $$f(x)= frac{1}{2} + frac{1}{4}fleft(frac{2x}{1+x}right).$$



    I am actually not sure about existence of a solution.










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      I would like to find a continuous concave function from $[1/2,1]$ to $[0,1]$ such that $f(1)=1$ and for all $xin [1/2,1]$



      $$f(x)= frac{1}{2} + frac{1}{4}fleft(frac{2x}{1+x}right).$$



      I am actually not sure about existence of a solution.










      share|cite|improve this question











      $endgroup$




      I would like to find a continuous concave function from $[1/2,1]$ to $[0,1]$ such that $f(1)=1$ and for all $xin [1/2,1]$



      $$f(x)= frac{1}{2} + frac{1}{4}fleft(frac{2x}{1+x}right).$$



      I am actually not sure about existence of a solution.







      convex-analysis functional-equations






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 13 '18 at 12:51









      Ethan Bolker

      42.6k549113




      42.6k549113










      asked Dec 13 '18 at 12:50









      S. CurryS. Curry

      92




      92






















          2 Answers
          2






          active

          oldest

          votes


















          2












          $begingroup$

          First of all if we plug in $x=1$ we get



          $$f(1) = frac 12 + frac 14 f(1). $$



          This implies



          $$f(1) = frac 23$$



          so it appears that you cannot have $f(1)=1$.






          share|cite|improve this answer









          $endgroup$





















            0












            $begingroup$

            $$f(x)= frac{1}{2} + frac{1}{4}fleft(frac{2x}{1+x}right) tag 1$$
            As already pointed out this implies $f(1)=frac23$ which is contradictory to the specified condition $f(1)=1$.



            Thus the answer is : There is no solution to the problem with the original wording.



            Nevertheless it is interesting to look for the general solution of Eq.$(1)$ without the condition.



            We will check the solution :
            $$f(x)=frac23+cleft(frac{x}{x-1}right)^2 tag 2$$
            $c=$any constant.



            $$fleft( frac{2x}{1+x} right)=frac23+cleft(frac{ frac{2x}{1+x}}{ frac{2x}{1+x}-1}right)^2 tag 3$$
            After simplification :
            $$fleft( frac{2x}{1+x} right)= frac23+cleft(frac{2x}{x-1}right)^2$$
            We put $(3)$ in $(1)$ :
            $$frac{1}{2} + frac{1}{4}fleft(frac{2x}{1+x}right)=frac{1}{2} + frac{1}{4}left( frac23+cleft(frac{2x}{x-1}right)^2right)$$
            After simplification :
            $$frac{1}{2} + frac{1}{4}fleft(frac{2x}{1+x}right)=frac23+cleft(frac{x}{x-1}right)^2$$
            Comparing to Eq.$(2)$ we see that :
            $$frac{1}{2} + frac{1}{4}fleft(frac{2x}{1+x}right)=f(x)$$
            This agrees with Eq.$(2)$. Thus the general solution of $(1)$ is :
            $$f(x)=frac23+cleft(frac{x}{x-1}right)^2 qquad (xneq 1)$$
            The particular case $c=0$ corresponds to the trivial solution $f(x)=frac23$.



            This confirmes that the condition $f(1)=1$ must be rejected if we want Eq.$(1)$ have solutions.






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037964%2fa-functional-equation-another%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              2












              $begingroup$

              First of all if we plug in $x=1$ we get



              $$f(1) = frac 12 + frac 14 f(1). $$



              This implies



              $$f(1) = frac 23$$



              so it appears that you cannot have $f(1)=1$.






              share|cite|improve this answer









              $endgroup$


















                2












                $begingroup$

                First of all if we plug in $x=1$ we get



                $$f(1) = frac 12 + frac 14 f(1). $$



                This implies



                $$f(1) = frac 23$$



                so it appears that you cannot have $f(1)=1$.






                share|cite|improve this answer









                $endgroup$
















                  2












                  2








                  2





                  $begingroup$

                  First of all if we plug in $x=1$ we get



                  $$f(1) = frac 12 + frac 14 f(1). $$



                  This implies



                  $$f(1) = frac 23$$



                  so it appears that you cannot have $f(1)=1$.






                  share|cite|improve this answer









                  $endgroup$



                  First of all if we plug in $x=1$ we get



                  $$f(1) = frac 12 + frac 14 f(1). $$



                  This implies



                  $$f(1) = frac 23$$



                  so it appears that you cannot have $f(1)=1$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Dec 13 '18 at 12:56









                  flawrflawr

                  11.5k32446




                  11.5k32446























                      0












                      $begingroup$

                      $$f(x)= frac{1}{2} + frac{1}{4}fleft(frac{2x}{1+x}right) tag 1$$
                      As already pointed out this implies $f(1)=frac23$ which is contradictory to the specified condition $f(1)=1$.



                      Thus the answer is : There is no solution to the problem with the original wording.



                      Nevertheless it is interesting to look for the general solution of Eq.$(1)$ without the condition.



                      We will check the solution :
                      $$f(x)=frac23+cleft(frac{x}{x-1}right)^2 tag 2$$
                      $c=$any constant.



                      $$fleft( frac{2x}{1+x} right)=frac23+cleft(frac{ frac{2x}{1+x}}{ frac{2x}{1+x}-1}right)^2 tag 3$$
                      After simplification :
                      $$fleft( frac{2x}{1+x} right)= frac23+cleft(frac{2x}{x-1}right)^2$$
                      We put $(3)$ in $(1)$ :
                      $$frac{1}{2} + frac{1}{4}fleft(frac{2x}{1+x}right)=frac{1}{2} + frac{1}{4}left( frac23+cleft(frac{2x}{x-1}right)^2right)$$
                      After simplification :
                      $$frac{1}{2} + frac{1}{4}fleft(frac{2x}{1+x}right)=frac23+cleft(frac{x}{x-1}right)^2$$
                      Comparing to Eq.$(2)$ we see that :
                      $$frac{1}{2} + frac{1}{4}fleft(frac{2x}{1+x}right)=f(x)$$
                      This agrees with Eq.$(2)$. Thus the general solution of $(1)$ is :
                      $$f(x)=frac23+cleft(frac{x}{x-1}right)^2 qquad (xneq 1)$$
                      The particular case $c=0$ corresponds to the trivial solution $f(x)=frac23$.



                      This confirmes that the condition $f(1)=1$ must be rejected if we want Eq.$(1)$ have solutions.






                      share|cite|improve this answer









                      $endgroup$


















                        0












                        $begingroup$

                        $$f(x)= frac{1}{2} + frac{1}{4}fleft(frac{2x}{1+x}right) tag 1$$
                        As already pointed out this implies $f(1)=frac23$ which is contradictory to the specified condition $f(1)=1$.



                        Thus the answer is : There is no solution to the problem with the original wording.



                        Nevertheless it is interesting to look for the general solution of Eq.$(1)$ without the condition.



                        We will check the solution :
                        $$f(x)=frac23+cleft(frac{x}{x-1}right)^2 tag 2$$
                        $c=$any constant.



                        $$fleft( frac{2x}{1+x} right)=frac23+cleft(frac{ frac{2x}{1+x}}{ frac{2x}{1+x}-1}right)^2 tag 3$$
                        After simplification :
                        $$fleft( frac{2x}{1+x} right)= frac23+cleft(frac{2x}{x-1}right)^2$$
                        We put $(3)$ in $(1)$ :
                        $$frac{1}{2} + frac{1}{4}fleft(frac{2x}{1+x}right)=frac{1}{2} + frac{1}{4}left( frac23+cleft(frac{2x}{x-1}right)^2right)$$
                        After simplification :
                        $$frac{1}{2} + frac{1}{4}fleft(frac{2x}{1+x}right)=frac23+cleft(frac{x}{x-1}right)^2$$
                        Comparing to Eq.$(2)$ we see that :
                        $$frac{1}{2} + frac{1}{4}fleft(frac{2x}{1+x}right)=f(x)$$
                        This agrees with Eq.$(2)$. Thus the general solution of $(1)$ is :
                        $$f(x)=frac23+cleft(frac{x}{x-1}right)^2 qquad (xneq 1)$$
                        The particular case $c=0$ corresponds to the trivial solution $f(x)=frac23$.



                        This confirmes that the condition $f(1)=1$ must be rejected if we want Eq.$(1)$ have solutions.






                        share|cite|improve this answer









                        $endgroup$
















                          0












                          0








                          0





                          $begingroup$

                          $$f(x)= frac{1}{2} + frac{1}{4}fleft(frac{2x}{1+x}right) tag 1$$
                          As already pointed out this implies $f(1)=frac23$ which is contradictory to the specified condition $f(1)=1$.



                          Thus the answer is : There is no solution to the problem with the original wording.



                          Nevertheless it is interesting to look for the general solution of Eq.$(1)$ without the condition.



                          We will check the solution :
                          $$f(x)=frac23+cleft(frac{x}{x-1}right)^2 tag 2$$
                          $c=$any constant.



                          $$fleft( frac{2x}{1+x} right)=frac23+cleft(frac{ frac{2x}{1+x}}{ frac{2x}{1+x}-1}right)^2 tag 3$$
                          After simplification :
                          $$fleft( frac{2x}{1+x} right)= frac23+cleft(frac{2x}{x-1}right)^2$$
                          We put $(3)$ in $(1)$ :
                          $$frac{1}{2} + frac{1}{4}fleft(frac{2x}{1+x}right)=frac{1}{2} + frac{1}{4}left( frac23+cleft(frac{2x}{x-1}right)^2right)$$
                          After simplification :
                          $$frac{1}{2} + frac{1}{4}fleft(frac{2x}{1+x}right)=frac23+cleft(frac{x}{x-1}right)^2$$
                          Comparing to Eq.$(2)$ we see that :
                          $$frac{1}{2} + frac{1}{4}fleft(frac{2x}{1+x}right)=f(x)$$
                          This agrees with Eq.$(2)$. Thus the general solution of $(1)$ is :
                          $$f(x)=frac23+cleft(frac{x}{x-1}right)^2 qquad (xneq 1)$$
                          The particular case $c=0$ corresponds to the trivial solution $f(x)=frac23$.



                          This confirmes that the condition $f(1)=1$ must be rejected if we want Eq.$(1)$ have solutions.






                          share|cite|improve this answer









                          $endgroup$



                          $$f(x)= frac{1}{2} + frac{1}{4}fleft(frac{2x}{1+x}right) tag 1$$
                          As already pointed out this implies $f(1)=frac23$ which is contradictory to the specified condition $f(1)=1$.



                          Thus the answer is : There is no solution to the problem with the original wording.



                          Nevertheless it is interesting to look for the general solution of Eq.$(1)$ without the condition.



                          We will check the solution :
                          $$f(x)=frac23+cleft(frac{x}{x-1}right)^2 tag 2$$
                          $c=$any constant.



                          $$fleft( frac{2x}{1+x} right)=frac23+cleft(frac{ frac{2x}{1+x}}{ frac{2x}{1+x}-1}right)^2 tag 3$$
                          After simplification :
                          $$fleft( frac{2x}{1+x} right)= frac23+cleft(frac{2x}{x-1}right)^2$$
                          We put $(3)$ in $(1)$ :
                          $$frac{1}{2} + frac{1}{4}fleft(frac{2x}{1+x}right)=frac{1}{2} + frac{1}{4}left( frac23+cleft(frac{2x}{x-1}right)^2right)$$
                          After simplification :
                          $$frac{1}{2} + frac{1}{4}fleft(frac{2x}{1+x}right)=frac23+cleft(frac{x}{x-1}right)^2$$
                          Comparing to Eq.$(2)$ we see that :
                          $$frac{1}{2} + frac{1}{4}fleft(frac{2x}{1+x}right)=f(x)$$
                          This agrees with Eq.$(2)$. Thus the general solution of $(1)$ is :
                          $$f(x)=frac23+cleft(frac{x}{x-1}right)^2 qquad (xneq 1)$$
                          The particular case $c=0$ corresponds to the trivial solution $f(x)=frac23$.



                          This confirmes that the condition $f(1)=1$ must be rejected if we want Eq.$(1)$ have solutions.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Dec 14 '18 at 11:55









                          JJacquelinJJacquelin

                          43.7k21853




                          43.7k21853






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037964%2fa-functional-equation-another%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Ellipse (mathématiques)

                              Quarter-circle Tiles

                              Mont Emei