Chain rule doubt












1












$begingroup$


I have a doubt of appling the chain rule.
I have this $L$ function:
$$
L = ycdot log(frac{e^{a x+b}}{e^{ax+b} + exp^{cx+d}})
$$

I can rewrite it as:
$$
L = ycdot log(p)
$$

where
$$
p = frac{e^{v_{0}}}{e^{v_{0}}+e^{v_{1}}}
$$

$$
v_{0} = ax+b
$$

$$
v_{1} = cx+d
$$



If I apply the chain rule I have this:



$$
frac{partial L}{partial x} = frac{partial L}{partial p} cdot frac{partial p}{partial v_{0}} cdot frac{partial v_{0}}{partial x}
$$



But I know that I am missing somewhere the value of $frac{partial v_{1}}{partial x}$



What I am doing wrong?










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    I have a doubt of appling the chain rule.
    I have this $L$ function:
    $$
    L = ycdot log(frac{e^{a x+b}}{e^{ax+b} + exp^{cx+d}})
    $$

    I can rewrite it as:
    $$
    L = ycdot log(p)
    $$

    where
    $$
    p = frac{e^{v_{0}}}{e^{v_{0}}+e^{v_{1}}}
    $$

    $$
    v_{0} = ax+b
    $$

    $$
    v_{1} = cx+d
    $$



    If I apply the chain rule I have this:



    $$
    frac{partial L}{partial x} = frac{partial L}{partial p} cdot frac{partial p}{partial v_{0}} cdot frac{partial v_{0}}{partial x}
    $$



    But I know that I am missing somewhere the value of $frac{partial v_{1}}{partial x}$



    What I am doing wrong?










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      I have a doubt of appling the chain rule.
      I have this $L$ function:
      $$
      L = ycdot log(frac{e^{a x+b}}{e^{ax+b} + exp^{cx+d}})
      $$

      I can rewrite it as:
      $$
      L = ycdot log(p)
      $$

      where
      $$
      p = frac{e^{v_{0}}}{e^{v_{0}}+e^{v_{1}}}
      $$

      $$
      v_{0} = ax+b
      $$

      $$
      v_{1} = cx+d
      $$



      If I apply the chain rule I have this:



      $$
      frac{partial L}{partial x} = frac{partial L}{partial p} cdot frac{partial p}{partial v_{0}} cdot frac{partial v_{0}}{partial x}
      $$



      But I know that I am missing somewhere the value of $frac{partial v_{1}}{partial x}$



      What I am doing wrong?










      share|cite|improve this question











      $endgroup$




      I have a doubt of appling the chain rule.
      I have this $L$ function:
      $$
      L = ycdot log(frac{e^{a x+b}}{e^{ax+b} + exp^{cx+d}})
      $$

      I can rewrite it as:
      $$
      L = ycdot log(p)
      $$

      where
      $$
      p = frac{e^{v_{0}}}{e^{v_{0}}+e^{v_{1}}}
      $$

      $$
      v_{0} = ax+b
      $$

      $$
      v_{1} = cx+d
      $$



      If I apply the chain rule I have this:



      $$
      frac{partial L}{partial x} = frac{partial L}{partial p} cdot frac{partial p}{partial v_{0}} cdot frac{partial v_{0}}{partial x}
      $$



      But I know that I am missing somewhere the value of $frac{partial v_{1}}{partial x}$



      What I am doing wrong?







      derivatives chain-rule






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 13 '18 at 12:48









      idea

      2,15841125




      2,15841125










      asked Dec 13 '18 at 12:35









      MaikMaik

      212




      212






















          2 Answers
          2






          active

          oldest

          votes


















          1












          $begingroup$

          Note that $$p=p(v_0,v_1)\
          frac{dp}{dx}=frac{partial p}{partial v_0}frac{dv_0}{dx}+frac{partial p}{partial v_1}frac{dv_1}{dx}$$






          share|cite|improve this answer









          $endgroup$





















            0












            $begingroup$

            Your result is wrong because $p$ is a function of $x$ that contains the two functions $nu_0$ and $nu_1$ but not in the nested form $p(nu_0(nu_1))$. So we must write its derivative using also the quotient rule as:



            $$
            frac{partial p}{partial x}=frac{e^{nu_0}frac{partial nu_0}{partial x}(e^{v_{0}}+e^{v_{1}})-e^{nu_0}(e^{v_{0}}frac{partial nu_0}{partial x}+e^{v_{1}}frac{partial nu_1}{partial x})}{(e^{v_{0}}+e^{v_{1}})^2}
            $$



            and the correct final result is
            $$
            frac{partial L}{partial x} = frac{partial L}{partial p} cdot frac{e^{nu_0}frac{partial nu_0}{partial x}(e^{v_{0}}+e^{v_{1}})-e^{nu_0}(e^{v_{0}}frac{partial nu_0}{partial x}+e^{v_{1}}frac{partial nu_1}{partial x})}{(e^{v_{0}}+e^{v_{1}})^2}
            $$






            share|cite|improve this answer











            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037950%2fchain-rule-doubt%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              1












              $begingroup$

              Note that $$p=p(v_0,v_1)\
              frac{dp}{dx}=frac{partial p}{partial v_0}frac{dv_0}{dx}+frac{partial p}{partial v_1}frac{dv_1}{dx}$$






              share|cite|improve this answer









              $endgroup$


















                1












                $begingroup$

                Note that $$p=p(v_0,v_1)\
                frac{dp}{dx}=frac{partial p}{partial v_0}frac{dv_0}{dx}+frac{partial p}{partial v_1}frac{dv_1}{dx}$$






                share|cite|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  Note that $$p=p(v_0,v_1)\
                  frac{dp}{dx}=frac{partial p}{partial v_0}frac{dv_0}{dx}+frac{partial p}{partial v_1}frac{dv_1}{dx}$$






                  share|cite|improve this answer









                  $endgroup$



                  Note that $$p=p(v_0,v_1)\
                  frac{dp}{dx}=frac{partial p}{partial v_0}frac{dv_0}{dx}+frac{partial p}{partial v_1}frac{dv_1}{dx}$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Dec 13 '18 at 13:05









                  Empy2Empy2

                  33.5k12261




                  33.5k12261























                      0












                      $begingroup$

                      Your result is wrong because $p$ is a function of $x$ that contains the two functions $nu_0$ and $nu_1$ but not in the nested form $p(nu_0(nu_1))$. So we must write its derivative using also the quotient rule as:



                      $$
                      frac{partial p}{partial x}=frac{e^{nu_0}frac{partial nu_0}{partial x}(e^{v_{0}}+e^{v_{1}})-e^{nu_0}(e^{v_{0}}frac{partial nu_0}{partial x}+e^{v_{1}}frac{partial nu_1}{partial x})}{(e^{v_{0}}+e^{v_{1}})^2}
                      $$



                      and the correct final result is
                      $$
                      frac{partial L}{partial x} = frac{partial L}{partial p} cdot frac{e^{nu_0}frac{partial nu_0}{partial x}(e^{v_{0}}+e^{v_{1}})-e^{nu_0}(e^{v_{0}}frac{partial nu_0}{partial x}+e^{v_{1}}frac{partial nu_1}{partial x})}{(e^{v_{0}}+e^{v_{1}})^2}
                      $$






                      share|cite|improve this answer











                      $endgroup$


















                        0












                        $begingroup$

                        Your result is wrong because $p$ is a function of $x$ that contains the two functions $nu_0$ and $nu_1$ but not in the nested form $p(nu_0(nu_1))$. So we must write its derivative using also the quotient rule as:



                        $$
                        frac{partial p}{partial x}=frac{e^{nu_0}frac{partial nu_0}{partial x}(e^{v_{0}}+e^{v_{1}})-e^{nu_0}(e^{v_{0}}frac{partial nu_0}{partial x}+e^{v_{1}}frac{partial nu_1}{partial x})}{(e^{v_{0}}+e^{v_{1}})^2}
                        $$



                        and the correct final result is
                        $$
                        frac{partial L}{partial x} = frac{partial L}{partial p} cdot frac{e^{nu_0}frac{partial nu_0}{partial x}(e^{v_{0}}+e^{v_{1}})-e^{nu_0}(e^{v_{0}}frac{partial nu_0}{partial x}+e^{v_{1}}frac{partial nu_1}{partial x})}{(e^{v_{0}}+e^{v_{1}})^2}
                        $$






                        share|cite|improve this answer











                        $endgroup$
















                          0












                          0








                          0





                          $begingroup$

                          Your result is wrong because $p$ is a function of $x$ that contains the two functions $nu_0$ and $nu_1$ but not in the nested form $p(nu_0(nu_1))$. So we must write its derivative using also the quotient rule as:



                          $$
                          frac{partial p}{partial x}=frac{e^{nu_0}frac{partial nu_0}{partial x}(e^{v_{0}}+e^{v_{1}})-e^{nu_0}(e^{v_{0}}frac{partial nu_0}{partial x}+e^{v_{1}}frac{partial nu_1}{partial x})}{(e^{v_{0}}+e^{v_{1}})^2}
                          $$



                          and the correct final result is
                          $$
                          frac{partial L}{partial x} = frac{partial L}{partial p} cdot frac{e^{nu_0}frac{partial nu_0}{partial x}(e^{v_{0}}+e^{v_{1}})-e^{nu_0}(e^{v_{0}}frac{partial nu_0}{partial x}+e^{v_{1}}frac{partial nu_1}{partial x})}{(e^{v_{0}}+e^{v_{1}})^2}
                          $$






                          share|cite|improve this answer











                          $endgroup$



                          Your result is wrong because $p$ is a function of $x$ that contains the two functions $nu_0$ and $nu_1$ but not in the nested form $p(nu_0(nu_1))$. So we must write its derivative using also the quotient rule as:



                          $$
                          frac{partial p}{partial x}=frac{e^{nu_0}frac{partial nu_0}{partial x}(e^{v_{0}}+e^{v_{1}})-e^{nu_0}(e^{v_{0}}frac{partial nu_0}{partial x}+e^{v_{1}}frac{partial nu_1}{partial x})}{(e^{v_{0}}+e^{v_{1}})^2}
                          $$



                          and the correct final result is
                          $$
                          frac{partial L}{partial x} = frac{partial L}{partial p} cdot frac{e^{nu_0}frac{partial nu_0}{partial x}(e^{v_{0}}+e^{v_{1}})-e^{nu_0}(e^{v_{0}}frac{partial nu_0}{partial x}+e^{v_{1}}frac{partial nu_1}{partial x})}{(e^{v_{0}}+e^{v_{1}})^2}
                          $$







                          share|cite|improve this answer














                          share|cite|improve this answer



                          share|cite|improve this answer








                          edited Dec 13 '18 at 13:10

























                          answered Dec 13 '18 at 12:59









                          Emilio NovatiEmilio Novati

                          52k43474




                          52k43474






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037950%2fchain-rule-doubt%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Quarter-circle Tiles

                              build a pushdown automaton that recognizes the reverse language of a given pushdown automaton?

                              Mont Emei