$(A times B)^c = (A^c times Y) cup (X times B^c)$












1












$begingroup$


Let $X$ and $Y$ be universal sets and $A subseteq X$ and $B subseteq Y$.



Then, I want to prove that $(A times B)^c=(A^c times Y) cup (X times B^c)$.



I think that i have to suppose that $(x,y) in (A times B)^c$, then $(x,y) in (X times Y) setminus (Atimes B) Rightarrow (x,y) in (A^c times Y) cup (X times B^c)$, but is this correct? And how should I prove that?



Any help is appreciated...










share|cite|improve this question









$endgroup$

















    1












    $begingroup$


    Let $X$ and $Y$ be universal sets and $A subseteq X$ and $B subseteq Y$.



    Then, I want to prove that $(A times B)^c=(A^c times Y) cup (X times B^c)$.



    I think that i have to suppose that $(x,y) in (A times B)^c$, then $(x,y) in (X times Y) setminus (Atimes B) Rightarrow (x,y) in (A^c times Y) cup (X times B^c)$, but is this correct? And how should I prove that?



    Any help is appreciated...










    share|cite|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$


      Let $X$ and $Y$ be universal sets and $A subseteq X$ and $B subseteq Y$.



      Then, I want to prove that $(A times B)^c=(A^c times Y) cup (X times B^c)$.



      I think that i have to suppose that $(x,y) in (A times B)^c$, then $(x,y) in (X times Y) setminus (Atimes B) Rightarrow (x,y) in (A^c times Y) cup (X times B^c)$, but is this correct? And how should I prove that?



      Any help is appreciated...










      share|cite|improve this question









      $endgroup$




      Let $X$ and $Y$ be universal sets and $A subseteq X$ and $B subseteq Y$.



      Then, I want to prove that $(A times B)^c=(A^c times Y) cup (X times B^c)$.



      I think that i have to suppose that $(x,y) in (A times B)^c$, then $(x,y) in (X times Y) setminus (Atimes B) Rightarrow (x,y) in (A^c times Y) cup (X times B^c)$, but is this correct? And how should I prove that?



      Any help is appreciated...







      elementary-set-theory






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 2 at 10:46









      t.ysnt.ysn

      1397




      1397






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          Let $(x,y)in(Atimes B)^c$. Then $(x,y)notin Atimes B$ which implies that $xnotin A$ or $ynotin B$. Hence, $(x,y)in A^ctimes Y$ or $(x,y)in Xtimes B^c$.



          For the other direction. Let $(x,y)in (A^c times Y) cup (X times B^c)$. This implies that $(x,y)in A^c times Y$ or $(x,y)in X times B^c$, namely $xnotin A$ or $ynotin B$. Thus, $(x,y)notin Atimes B$.



          To see this result and get some intuition check for example: $A=B=[0,1]$ and $X=Y=mathbb{R}$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thanks a lot. :)
            $endgroup$
            – t.ysn
            Jan 2 at 11:07











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059331%2fa-times-bc-ac-times-y-cup-x-times-bc%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          Let $(x,y)in(Atimes B)^c$. Then $(x,y)notin Atimes B$ which implies that $xnotin A$ or $ynotin B$. Hence, $(x,y)in A^ctimes Y$ or $(x,y)in Xtimes B^c$.



          For the other direction. Let $(x,y)in (A^c times Y) cup (X times B^c)$. This implies that $(x,y)in A^c times Y$ or $(x,y)in X times B^c$, namely $xnotin A$ or $ynotin B$. Thus, $(x,y)notin Atimes B$.



          To see this result and get some intuition check for example: $A=B=[0,1]$ and $X=Y=mathbb{R}$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thanks a lot. :)
            $endgroup$
            – t.ysn
            Jan 2 at 11:07
















          1












          $begingroup$

          Let $(x,y)in(Atimes B)^c$. Then $(x,y)notin Atimes B$ which implies that $xnotin A$ or $ynotin B$. Hence, $(x,y)in A^ctimes Y$ or $(x,y)in Xtimes B^c$.



          For the other direction. Let $(x,y)in (A^c times Y) cup (X times B^c)$. This implies that $(x,y)in A^c times Y$ or $(x,y)in X times B^c$, namely $xnotin A$ or $ynotin B$. Thus, $(x,y)notin Atimes B$.



          To see this result and get some intuition check for example: $A=B=[0,1]$ and $X=Y=mathbb{R}$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thanks a lot. :)
            $endgroup$
            – t.ysn
            Jan 2 at 11:07














          1












          1








          1





          $begingroup$

          Let $(x,y)in(Atimes B)^c$. Then $(x,y)notin Atimes B$ which implies that $xnotin A$ or $ynotin B$. Hence, $(x,y)in A^ctimes Y$ or $(x,y)in Xtimes B^c$.



          For the other direction. Let $(x,y)in (A^c times Y) cup (X times B^c)$. This implies that $(x,y)in A^c times Y$ or $(x,y)in X times B^c$, namely $xnotin A$ or $ynotin B$. Thus, $(x,y)notin Atimes B$.



          To see this result and get some intuition check for example: $A=B=[0,1]$ and $X=Y=mathbb{R}$.






          share|cite|improve this answer









          $endgroup$



          Let $(x,y)in(Atimes B)^c$. Then $(x,y)notin Atimes B$ which implies that $xnotin A$ or $ynotin B$. Hence, $(x,y)in A^ctimes Y$ or $(x,y)in Xtimes B^c$.



          For the other direction. Let $(x,y)in (A^c times Y) cup (X times B^c)$. This implies that $(x,y)in A^c times Y$ or $(x,y)in X times B^c$, namely $xnotin A$ or $ynotin B$. Thus, $(x,y)notin Atimes B$.



          To see this result and get some intuition check for example: $A=B=[0,1]$ and $X=Y=mathbb{R}$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 2 at 10:53









          Test123Test123

          2,782828




          2,782828












          • $begingroup$
            Thanks a lot. :)
            $endgroup$
            – t.ysn
            Jan 2 at 11:07


















          • $begingroup$
            Thanks a lot. :)
            $endgroup$
            – t.ysn
            Jan 2 at 11:07
















          $begingroup$
          Thanks a lot. :)
          $endgroup$
          – t.ysn
          Jan 2 at 11:07




          $begingroup$
          Thanks a lot. :)
          $endgroup$
          – t.ysn
          Jan 2 at 11:07


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059331%2fa-times-bc-ac-times-y-cup-x-times-bc%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Ellipse (mathématiques)

          Quarter-circle Tiles

          Mont Emei