How to prove that $left|sum_{k=0}^{n-1}sin(2k+1)xright|$ is bounded
$begingroup$
I'm currently studying Fourier series using a textbook which unfortunately provides only partial solutions to its explanations. To show the uniform convergence of a Fourier series I need to prove the assumption from the title above. Any help is very much appreciated.
calculus functional-analysis fourier-analysis
$endgroup$
add a comment |
$begingroup$
I'm currently studying Fourier series using a textbook which unfortunately provides only partial solutions to its explanations. To show the uniform convergence of a Fourier series I need to prove the assumption from the title above. Any help is very much appreciated.
calculus functional-analysis fourier-analysis
$endgroup$
2
$begingroup$
$|sum_{k=0}^{n-1}sin(2k+1)x| le sum_{k=0}^{n-1}|sin(2k+1)x|$
$endgroup$
– N74
Jan 2 at 11:50
add a comment |
$begingroup$
I'm currently studying Fourier series using a textbook which unfortunately provides only partial solutions to its explanations. To show the uniform convergence of a Fourier series I need to prove the assumption from the title above. Any help is very much appreciated.
calculus functional-analysis fourier-analysis
$endgroup$
I'm currently studying Fourier series using a textbook which unfortunately provides only partial solutions to its explanations. To show the uniform convergence of a Fourier series I need to prove the assumption from the title above. Any help is very much appreciated.
calculus functional-analysis fourier-analysis
calculus functional-analysis fourier-analysis
edited Jan 2 at 12:33
mechanodroid
27.9k62447
27.9k62447
asked Jan 2 at 11:25
GuitarmanGuitarman
132
132
2
$begingroup$
$|sum_{k=0}^{n-1}sin(2k+1)x| le sum_{k=0}^{n-1}|sin(2k+1)x|$
$endgroup$
– N74
Jan 2 at 11:50
add a comment |
2
$begingroup$
$|sum_{k=0}^{n-1}sin(2k+1)x| le sum_{k=0}^{n-1}|sin(2k+1)x|$
$endgroup$
– N74
Jan 2 at 11:50
2
2
$begingroup$
$|sum_{k=0}^{n-1}sin(2k+1)x| le sum_{k=0}^{n-1}|sin(2k+1)x|$
$endgroup$
– N74
Jan 2 at 11:50
$begingroup$
$|sum_{k=0}^{n-1}sin(2k+1)x| le sum_{k=0}^{n-1}|sin(2k+1)x|$
$endgroup$
– N74
Jan 2 at 11:50
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
You can calculate this sum explicitly:
begin{align}
sum_{k=0}^{n-1}sin(2k+1)x &= operatorname{Im}left(sum_{k=0}^{n-1}e^{(2k+1)ix}right)\
&= operatorname{Im}left(e^{ix}sum_{k=0}^{n-1}left(e^{2ix}right)^{k}right)\
&= operatorname{Im}left(e^{ix}frac{e^{2nix}-1}{e^{2ix}-1}right)\
&= operatorname{Im}left(frac{e^{2nix}-1}{e^{ix}-e^{-ix}}right)\
&= operatorname{Im}left(frac{cos(2nix)-1+isin(2pi ix)}{2isin x}right)\
&= frac{sin(2nx)}{2sin x}
end{align}
Now it should be clear that it is bounded.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059363%2fhow-to-prove-that-left-sum-k-0n-1-sin2k1x-right-is-bounded%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You can calculate this sum explicitly:
begin{align}
sum_{k=0}^{n-1}sin(2k+1)x &= operatorname{Im}left(sum_{k=0}^{n-1}e^{(2k+1)ix}right)\
&= operatorname{Im}left(e^{ix}sum_{k=0}^{n-1}left(e^{2ix}right)^{k}right)\
&= operatorname{Im}left(e^{ix}frac{e^{2nix}-1}{e^{2ix}-1}right)\
&= operatorname{Im}left(frac{e^{2nix}-1}{e^{ix}-e^{-ix}}right)\
&= operatorname{Im}left(frac{cos(2nix)-1+isin(2pi ix)}{2isin x}right)\
&= frac{sin(2nx)}{2sin x}
end{align}
Now it should be clear that it is bounded.
$endgroup$
add a comment |
$begingroup$
You can calculate this sum explicitly:
begin{align}
sum_{k=0}^{n-1}sin(2k+1)x &= operatorname{Im}left(sum_{k=0}^{n-1}e^{(2k+1)ix}right)\
&= operatorname{Im}left(e^{ix}sum_{k=0}^{n-1}left(e^{2ix}right)^{k}right)\
&= operatorname{Im}left(e^{ix}frac{e^{2nix}-1}{e^{2ix}-1}right)\
&= operatorname{Im}left(frac{e^{2nix}-1}{e^{ix}-e^{-ix}}right)\
&= operatorname{Im}left(frac{cos(2nix)-1+isin(2pi ix)}{2isin x}right)\
&= frac{sin(2nx)}{2sin x}
end{align}
Now it should be clear that it is bounded.
$endgroup$
add a comment |
$begingroup$
You can calculate this sum explicitly:
begin{align}
sum_{k=0}^{n-1}sin(2k+1)x &= operatorname{Im}left(sum_{k=0}^{n-1}e^{(2k+1)ix}right)\
&= operatorname{Im}left(e^{ix}sum_{k=0}^{n-1}left(e^{2ix}right)^{k}right)\
&= operatorname{Im}left(e^{ix}frac{e^{2nix}-1}{e^{2ix}-1}right)\
&= operatorname{Im}left(frac{e^{2nix}-1}{e^{ix}-e^{-ix}}right)\
&= operatorname{Im}left(frac{cos(2nix)-1+isin(2pi ix)}{2isin x}right)\
&= frac{sin(2nx)}{2sin x}
end{align}
Now it should be clear that it is bounded.
$endgroup$
You can calculate this sum explicitly:
begin{align}
sum_{k=0}^{n-1}sin(2k+1)x &= operatorname{Im}left(sum_{k=0}^{n-1}e^{(2k+1)ix}right)\
&= operatorname{Im}left(e^{ix}sum_{k=0}^{n-1}left(e^{2ix}right)^{k}right)\
&= operatorname{Im}left(e^{ix}frac{e^{2nix}-1}{e^{2ix}-1}right)\
&= operatorname{Im}left(frac{e^{2nix}-1}{e^{ix}-e^{-ix}}right)\
&= operatorname{Im}left(frac{cos(2nix)-1+isin(2pi ix)}{2isin x}right)\
&= frac{sin(2nx)}{2sin x}
end{align}
Now it should be clear that it is bounded.
answered Jan 2 at 12:33
mechanodroidmechanodroid
27.9k62447
27.9k62447
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059363%2fhow-to-prove-that-left-sum-k-0n-1-sin2k1x-right-is-bounded%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
$|sum_{k=0}^{n-1}sin(2k+1)x| le sum_{k=0}^{n-1}|sin(2k+1)x|$
$endgroup$
– N74
Jan 2 at 11:50