Solve limit $lim_{xto1}frac{x^2-1}{ln(x)}$ without using L'Hôpital's rule?












2












$begingroup$


enter image description here



How to solve this limit?



$$lim_{xto1}frac{x^2-1}{ln(x)}=frac00$$










share|cite|improve this question











$endgroup$












  • $begingroup$
    Welcome to the site! Please see the MathJax guide to see how to format your math.
    $endgroup$
    – Simply Beautiful Art
    Jan 14 '17 at 14:48












  • $begingroup$
    Not about the question, but that was a troll edit.
    $endgroup$
    – Cehhiro
    Jan 14 '17 at 14:49










  • $begingroup$
    Also, please do not mess up the pretty $LaTeX$...
    $endgroup$
    – Simply Beautiful Art
    Jan 14 '17 at 14:50
















2












$begingroup$


enter image description here



How to solve this limit?



$$lim_{xto1}frac{x^2-1}{ln(x)}=frac00$$










share|cite|improve this question











$endgroup$












  • $begingroup$
    Welcome to the site! Please see the MathJax guide to see how to format your math.
    $endgroup$
    – Simply Beautiful Art
    Jan 14 '17 at 14:48












  • $begingroup$
    Not about the question, but that was a troll edit.
    $endgroup$
    – Cehhiro
    Jan 14 '17 at 14:49










  • $begingroup$
    Also, please do not mess up the pretty $LaTeX$...
    $endgroup$
    – Simply Beautiful Art
    Jan 14 '17 at 14:50














2












2








2





$begingroup$


enter image description here



How to solve this limit?



$$lim_{xto1}frac{x^2-1}{ln(x)}=frac00$$










share|cite|improve this question











$endgroup$




enter image description here



How to solve this limit?



$$lim_{xto1}frac{x^2-1}{ln(x)}=frac00$$







calculus limits limits-without-lhopital






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 2 at 11:44









Nosrati

26.6k62354




26.6k62354










asked Jan 14 '17 at 14:47









Макс МотовиловМакс Мотовилов

92




92












  • $begingroup$
    Welcome to the site! Please see the MathJax guide to see how to format your math.
    $endgroup$
    – Simply Beautiful Art
    Jan 14 '17 at 14:48












  • $begingroup$
    Not about the question, but that was a troll edit.
    $endgroup$
    – Cehhiro
    Jan 14 '17 at 14:49










  • $begingroup$
    Also, please do not mess up the pretty $LaTeX$...
    $endgroup$
    – Simply Beautiful Art
    Jan 14 '17 at 14:50


















  • $begingroup$
    Welcome to the site! Please see the MathJax guide to see how to format your math.
    $endgroup$
    – Simply Beautiful Art
    Jan 14 '17 at 14:48












  • $begingroup$
    Not about the question, but that was a troll edit.
    $endgroup$
    – Cehhiro
    Jan 14 '17 at 14:49










  • $begingroup$
    Also, please do not mess up the pretty $LaTeX$...
    $endgroup$
    – Simply Beautiful Art
    Jan 14 '17 at 14:50
















$begingroup$
Welcome to the site! Please see the MathJax guide to see how to format your math.
$endgroup$
– Simply Beautiful Art
Jan 14 '17 at 14:48






$begingroup$
Welcome to the site! Please see the MathJax guide to see how to format your math.
$endgroup$
– Simply Beautiful Art
Jan 14 '17 at 14:48














$begingroup$
Not about the question, but that was a troll edit.
$endgroup$
– Cehhiro
Jan 14 '17 at 14:49




$begingroup$
Not about the question, but that was a troll edit.
$endgroup$
– Cehhiro
Jan 14 '17 at 14:49












$begingroup$
Also, please do not mess up the pretty $LaTeX$...
$endgroup$
– Simply Beautiful Art
Jan 14 '17 at 14:50




$begingroup$
Also, please do not mess up the pretty $LaTeX$...
$endgroup$
– Simply Beautiful Art
Jan 14 '17 at 14:50










5 Answers
5






active

oldest

votes


















2












$begingroup$

Set $x-1=hiff x=1+h$



$$lim_{xto1}dfrac{x^2-1}{ln x}=dfrac{lim_{hto0}dfrac{(h+1)^2-1}h}{lim_{hto0}dfrac{ln(1+h)}h}=?$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    :D That was pretty neat to see.
    $endgroup$
    – Simply Beautiful Art
    Jan 14 '17 at 14:53










  • $begingroup$
    Very neat, but doesn't he still need L'Hôpital for the denominator?
    $endgroup$
    – Cehhiro
    Jan 14 '17 at 14:54












  • $begingroup$
    @O.VonSeckendorff You need something to get past the $ln$, whether it be known limits or series expansion.
    $endgroup$
    – Simply Beautiful Art
    Jan 14 '17 at 14:56










  • $begingroup$
    @O.VonSeckendorff, This is an elementary formula of limit, readily available from $$lim_{xto0}dfrac{e^x-1}x=1$$ See math.stackexchange.com/questions/690898/…
    $endgroup$
    – lab bhattacharjee
    Jan 14 '17 at 14:56










  • $begingroup$
    @labbhattacharjee I didn't know/remember that one. Good to know.
    $endgroup$
    – Cehhiro
    Jan 14 '17 at 14:57



















2












$begingroup$

In THIS ANSWER, I showed using only the limit definition of the exponential function and Bernoulli's Inequality that the logarithm function satisfies the inequalities




$$bbox[5px,border:2px solid #C0A000]{frac{x-1}{x}le log(x)le x-1} tag 1$$




for $x>0$.



Hence, we have from $(1)$



$$frac{x^2-1}{x-1}le frac{x^2-1}{log(x)}le frac{x(x^2-1)}{x-1} tag 2$$



whence application of the squeeze theorem yields the coveted limit




$$lim_{xto 1}frac{x^2-1}{log(x)}=2$$







share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    Plz. Check (1).
    $endgroup$
    – Nosrati
    Jan 14 '17 at 15:00










  • $begingroup$
    @MyGlasses Thank you; I've edited. -Mark
    $endgroup$
    – Mark Viola
    Jan 14 '17 at 15:04










  • $begingroup$
    Haha, nice... :-D
    $endgroup$
    – Simply Beautiful Art
    Jan 14 '17 at 15:09










  • $begingroup$
    @SimpleArt Thank you. And if you follow the link, it will show a way forward that begins with the limit definition of the exponential function.
    $endgroup$
    – Mark Viola
    Jan 14 '17 at 15:11



















1












$begingroup$

With substitution $x=e^t$ we have:
$$lim_{xto1}frac{x^2-1}{ln x}=lim_{tto0}frac{e^{2t}-1}{t}=lim_{tto0}frac{1+2t+frac{(2t)^2}{2}-1}{t}=2$$
where
$$e^theta=1+theta+frac{theta^2}{2}$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    We can employ $$lim_{xto0}dfrac{e^x-1}x=1$$
    $endgroup$
    – lab bhattacharjee
    Jan 14 '17 at 15:00










  • $begingroup$
    @labbhattacharjee from where? without proof?
    $endgroup$
    – Nosrati
    Jan 14 '17 at 15:01










  • $begingroup$
    Which identities can be used for limit ? math.stackexchange.com/questions/42679/… OR 2000clicks.com/MathHelp/CalculusLimitExponential.aspx
    $endgroup$
    – lab bhattacharjee
    Jan 14 '17 at 15:04










  • $begingroup$
    I mean, it is limit definition to derivative of $e^x$ at $x=0$.
    $endgroup$
    – Simply Beautiful Art
    Jan 14 '17 at 15:09










  • $begingroup$
    @labbhattacharjee For using this limit, according to your links, all apply l'hopital rule, derivative definition and Taylor expansion. My suppose is the part of Taylor expansion also, but I don't know where can find a proof without these techniques.
    $endgroup$
    – Nosrati
    Jan 14 '17 at 15:09



















0












$begingroup$

Notice that



$$ln(x)=(x-1)-frac12(x-1)^2+mathcal O(x^3)$$



and



$$x^2-1=(x-1)(x+1)$$



So the reciprocal of the limit is



$$frac1L=lim_{xto1}frac1{x+1}-frac{(x-1)}{2(x+1)}+mathcal Oleft(frac{(x-1)^2}{x+1}right)=frac12$$



So that



$$L=2$$






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    By a shift of the variable your limit is equivalent to



    $$lim_{tto0}frac{t(t+1)}{ln(1+t)}=frac{lim_{tto0}t+1}{lim_{tto0}dfrac{ln(1+t)}t}=2.$$






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2097494%2fsolve-limit-lim-x-to1-fracx2-1-lnx-without-using-lh%25c3%25b4pitals-rule%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      5 Answers
      5






      active

      oldest

      votes








      5 Answers
      5






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      Set $x-1=hiff x=1+h$



      $$lim_{xto1}dfrac{x^2-1}{ln x}=dfrac{lim_{hto0}dfrac{(h+1)^2-1}h}{lim_{hto0}dfrac{ln(1+h)}h}=?$$






      share|cite|improve this answer











      $endgroup$













      • $begingroup$
        :D That was pretty neat to see.
        $endgroup$
        – Simply Beautiful Art
        Jan 14 '17 at 14:53










      • $begingroup$
        Very neat, but doesn't he still need L'Hôpital for the denominator?
        $endgroup$
        – Cehhiro
        Jan 14 '17 at 14:54












      • $begingroup$
        @O.VonSeckendorff You need something to get past the $ln$, whether it be known limits or series expansion.
        $endgroup$
        – Simply Beautiful Art
        Jan 14 '17 at 14:56










      • $begingroup$
        @O.VonSeckendorff, This is an elementary formula of limit, readily available from $$lim_{xto0}dfrac{e^x-1}x=1$$ See math.stackexchange.com/questions/690898/…
        $endgroup$
        – lab bhattacharjee
        Jan 14 '17 at 14:56










      • $begingroup$
        @labbhattacharjee I didn't know/remember that one. Good to know.
        $endgroup$
        – Cehhiro
        Jan 14 '17 at 14:57
















      2












      $begingroup$

      Set $x-1=hiff x=1+h$



      $$lim_{xto1}dfrac{x^2-1}{ln x}=dfrac{lim_{hto0}dfrac{(h+1)^2-1}h}{lim_{hto0}dfrac{ln(1+h)}h}=?$$






      share|cite|improve this answer











      $endgroup$













      • $begingroup$
        :D That was pretty neat to see.
        $endgroup$
        – Simply Beautiful Art
        Jan 14 '17 at 14:53










      • $begingroup$
        Very neat, but doesn't he still need L'Hôpital for the denominator?
        $endgroup$
        – Cehhiro
        Jan 14 '17 at 14:54












      • $begingroup$
        @O.VonSeckendorff You need something to get past the $ln$, whether it be known limits or series expansion.
        $endgroup$
        – Simply Beautiful Art
        Jan 14 '17 at 14:56










      • $begingroup$
        @O.VonSeckendorff, This is an elementary formula of limit, readily available from $$lim_{xto0}dfrac{e^x-1}x=1$$ See math.stackexchange.com/questions/690898/…
        $endgroup$
        – lab bhattacharjee
        Jan 14 '17 at 14:56










      • $begingroup$
        @labbhattacharjee I didn't know/remember that one. Good to know.
        $endgroup$
        – Cehhiro
        Jan 14 '17 at 14:57














      2












      2








      2





      $begingroup$

      Set $x-1=hiff x=1+h$



      $$lim_{xto1}dfrac{x^2-1}{ln x}=dfrac{lim_{hto0}dfrac{(h+1)^2-1}h}{lim_{hto0}dfrac{ln(1+h)}h}=?$$






      share|cite|improve this answer











      $endgroup$



      Set $x-1=hiff x=1+h$



      $$lim_{xto1}dfrac{x^2-1}{ln x}=dfrac{lim_{hto0}dfrac{(h+1)^2-1}h}{lim_{hto0}dfrac{ln(1+h)}h}=?$$







      share|cite|improve this answer














      share|cite|improve this answer



      share|cite|improve this answer








      edited Jan 14 '17 at 14:53

























      answered Jan 14 '17 at 14:52









      lab bhattacharjeelab bhattacharjee

      226k15157275




      226k15157275












      • $begingroup$
        :D That was pretty neat to see.
        $endgroup$
        – Simply Beautiful Art
        Jan 14 '17 at 14:53










      • $begingroup$
        Very neat, but doesn't he still need L'Hôpital for the denominator?
        $endgroup$
        – Cehhiro
        Jan 14 '17 at 14:54












      • $begingroup$
        @O.VonSeckendorff You need something to get past the $ln$, whether it be known limits or series expansion.
        $endgroup$
        – Simply Beautiful Art
        Jan 14 '17 at 14:56










      • $begingroup$
        @O.VonSeckendorff, This is an elementary formula of limit, readily available from $$lim_{xto0}dfrac{e^x-1}x=1$$ See math.stackexchange.com/questions/690898/…
        $endgroup$
        – lab bhattacharjee
        Jan 14 '17 at 14:56










      • $begingroup$
        @labbhattacharjee I didn't know/remember that one. Good to know.
        $endgroup$
        – Cehhiro
        Jan 14 '17 at 14:57


















      • $begingroup$
        :D That was pretty neat to see.
        $endgroup$
        – Simply Beautiful Art
        Jan 14 '17 at 14:53










      • $begingroup$
        Very neat, but doesn't he still need L'Hôpital for the denominator?
        $endgroup$
        – Cehhiro
        Jan 14 '17 at 14:54












      • $begingroup$
        @O.VonSeckendorff You need something to get past the $ln$, whether it be known limits or series expansion.
        $endgroup$
        – Simply Beautiful Art
        Jan 14 '17 at 14:56










      • $begingroup$
        @O.VonSeckendorff, This is an elementary formula of limit, readily available from $$lim_{xto0}dfrac{e^x-1}x=1$$ See math.stackexchange.com/questions/690898/…
        $endgroup$
        – lab bhattacharjee
        Jan 14 '17 at 14:56










      • $begingroup$
        @labbhattacharjee I didn't know/remember that one. Good to know.
        $endgroup$
        – Cehhiro
        Jan 14 '17 at 14:57
















      $begingroup$
      :D That was pretty neat to see.
      $endgroup$
      – Simply Beautiful Art
      Jan 14 '17 at 14:53




      $begingroup$
      :D That was pretty neat to see.
      $endgroup$
      – Simply Beautiful Art
      Jan 14 '17 at 14:53












      $begingroup$
      Very neat, but doesn't he still need L'Hôpital for the denominator?
      $endgroup$
      – Cehhiro
      Jan 14 '17 at 14:54






      $begingroup$
      Very neat, but doesn't he still need L'Hôpital for the denominator?
      $endgroup$
      – Cehhiro
      Jan 14 '17 at 14:54














      $begingroup$
      @O.VonSeckendorff You need something to get past the $ln$, whether it be known limits or series expansion.
      $endgroup$
      – Simply Beautiful Art
      Jan 14 '17 at 14:56




      $begingroup$
      @O.VonSeckendorff You need something to get past the $ln$, whether it be known limits or series expansion.
      $endgroup$
      – Simply Beautiful Art
      Jan 14 '17 at 14:56












      $begingroup$
      @O.VonSeckendorff, This is an elementary formula of limit, readily available from $$lim_{xto0}dfrac{e^x-1}x=1$$ See math.stackexchange.com/questions/690898/…
      $endgroup$
      – lab bhattacharjee
      Jan 14 '17 at 14:56




      $begingroup$
      @O.VonSeckendorff, This is an elementary formula of limit, readily available from $$lim_{xto0}dfrac{e^x-1}x=1$$ See math.stackexchange.com/questions/690898/…
      $endgroup$
      – lab bhattacharjee
      Jan 14 '17 at 14:56












      $begingroup$
      @labbhattacharjee I didn't know/remember that one. Good to know.
      $endgroup$
      – Cehhiro
      Jan 14 '17 at 14:57




      $begingroup$
      @labbhattacharjee I didn't know/remember that one. Good to know.
      $endgroup$
      – Cehhiro
      Jan 14 '17 at 14:57











      2












      $begingroup$

      In THIS ANSWER, I showed using only the limit definition of the exponential function and Bernoulli's Inequality that the logarithm function satisfies the inequalities




      $$bbox[5px,border:2px solid #C0A000]{frac{x-1}{x}le log(x)le x-1} tag 1$$




      for $x>0$.



      Hence, we have from $(1)$



      $$frac{x^2-1}{x-1}le frac{x^2-1}{log(x)}le frac{x(x^2-1)}{x-1} tag 2$$



      whence application of the squeeze theorem yields the coveted limit




      $$lim_{xto 1}frac{x^2-1}{log(x)}=2$$







      share|cite|improve this answer











      $endgroup$









      • 1




        $begingroup$
        Plz. Check (1).
        $endgroup$
        – Nosrati
        Jan 14 '17 at 15:00










      • $begingroup$
        @MyGlasses Thank you; I've edited. -Mark
        $endgroup$
        – Mark Viola
        Jan 14 '17 at 15:04










      • $begingroup$
        Haha, nice... :-D
        $endgroup$
        – Simply Beautiful Art
        Jan 14 '17 at 15:09










      • $begingroup$
        @SimpleArt Thank you. And if you follow the link, it will show a way forward that begins with the limit definition of the exponential function.
        $endgroup$
        – Mark Viola
        Jan 14 '17 at 15:11
















      2












      $begingroup$

      In THIS ANSWER, I showed using only the limit definition of the exponential function and Bernoulli's Inequality that the logarithm function satisfies the inequalities




      $$bbox[5px,border:2px solid #C0A000]{frac{x-1}{x}le log(x)le x-1} tag 1$$




      for $x>0$.



      Hence, we have from $(1)$



      $$frac{x^2-1}{x-1}le frac{x^2-1}{log(x)}le frac{x(x^2-1)}{x-1} tag 2$$



      whence application of the squeeze theorem yields the coveted limit




      $$lim_{xto 1}frac{x^2-1}{log(x)}=2$$







      share|cite|improve this answer











      $endgroup$









      • 1




        $begingroup$
        Plz. Check (1).
        $endgroup$
        – Nosrati
        Jan 14 '17 at 15:00










      • $begingroup$
        @MyGlasses Thank you; I've edited. -Mark
        $endgroup$
        – Mark Viola
        Jan 14 '17 at 15:04










      • $begingroup$
        Haha, nice... :-D
        $endgroup$
        – Simply Beautiful Art
        Jan 14 '17 at 15:09










      • $begingroup$
        @SimpleArt Thank you. And if you follow the link, it will show a way forward that begins with the limit definition of the exponential function.
        $endgroup$
        – Mark Viola
        Jan 14 '17 at 15:11














      2












      2








      2





      $begingroup$

      In THIS ANSWER, I showed using only the limit definition of the exponential function and Bernoulli's Inequality that the logarithm function satisfies the inequalities




      $$bbox[5px,border:2px solid #C0A000]{frac{x-1}{x}le log(x)le x-1} tag 1$$




      for $x>0$.



      Hence, we have from $(1)$



      $$frac{x^2-1}{x-1}le frac{x^2-1}{log(x)}le frac{x(x^2-1)}{x-1} tag 2$$



      whence application of the squeeze theorem yields the coveted limit




      $$lim_{xto 1}frac{x^2-1}{log(x)}=2$$







      share|cite|improve this answer











      $endgroup$



      In THIS ANSWER, I showed using only the limit definition of the exponential function and Bernoulli's Inequality that the logarithm function satisfies the inequalities




      $$bbox[5px,border:2px solid #C0A000]{frac{x-1}{x}le log(x)le x-1} tag 1$$




      for $x>0$.



      Hence, we have from $(1)$



      $$frac{x^2-1}{x-1}le frac{x^2-1}{log(x)}le frac{x(x^2-1)}{x-1} tag 2$$



      whence application of the squeeze theorem yields the coveted limit




      $$lim_{xto 1}frac{x^2-1}{log(x)}=2$$








      share|cite|improve this answer














      share|cite|improve this answer



      share|cite|improve this answer








      edited Apr 13 '17 at 12:21









      Community

      1




      1










      answered Jan 14 '17 at 14:58









      Mark ViolaMark Viola

      133k1277174




      133k1277174








      • 1




        $begingroup$
        Plz. Check (1).
        $endgroup$
        – Nosrati
        Jan 14 '17 at 15:00










      • $begingroup$
        @MyGlasses Thank you; I've edited. -Mark
        $endgroup$
        – Mark Viola
        Jan 14 '17 at 15:04










      • $begingroup$
        Haha, nice... :-D
        $endgroup$
        – Simply Beautiful Art
        Jan 14 '17 at 15:09










      • $begingroup$
        @SimpleArt Thank you. And if you follow the link, it will show a way forward that begins with the limit definition of the exponential function.
        $endgroup$
        – Mark Viola
        Jan 14 '17 at 15:11














      • 1




        $begingroup$
        Plz. Check (1).
        $endgroup$
        – Nosrati
        Jan 14 '17 at 15:00










      • $begingroup$
        @MyGlasses Thank you; I've edited. -Mark
        $endgroup$
        – Mark Viola
        Jan 14 '17 at 15:04










      • $begingroup$
        Haha, nice... :-D
        $endgroup$
        – Simply Beautiful Art
        Jan 14 '17 at 15:09










      • $begingroup$
        @SimpleArt Thank you. And if you follow the link, it will show a way forward that begins with the limit definition of the exponential function.
        $endgroup$
        – Mark Viola
        Jan 14 '17 at 15:11








      1




      1




      $begingroup$
      Plz. Check (1).
      $endgroup$
      – Nosrati
      Jan 14 '17 at 15:00




      $begingroup$
      Plz. Check (1).
      $endgroup$
      – Nosrati
      Jan 14 '17 at 15:00












      $begingroup$
      @MyGlasses Thank you; I've edited. -Mark
      $endgroup$
      – Mark Viola
      Jan 14 '17 at 15:04




      $begingroup$
      @MyGlasses Thank you; I've edited. -Mark
      $endgroup$
      – Mark Viola
      Jan 14 '17 at 15:04












      $begingroup$
      Haha, nice... :-D
      $endgroup$
      – Simply Beautiful Art
      Jan 14 '17 at 15:09




      $begingroup$
      Haha, nice... :-D
      $endgroup$
      – Simply Beautiful Art
      Jan 14 '17 at 15:09












      $begingroup$
      @SimpleArt Thank you. And if you follow the link, it will show a way forward that begins with the limit definition of the exponential function.
      $endgroup$
      – Mark Viola
      Jan 14 '17 at 15:11




      $begingroup$
      @SimpleArt Thank you. And if you follow the link, it will show a way forward that begins with the limit definition of the exponential function.
      $endgroup$
      – Mark Viola
      Jan 14 '17 at 15:11











      1












      $begingroup$

      With substitution $x=e^t$ we have:
      $$lim_{xto1}frac{x^2-1}{ln x}=lim_{tto0}frac{e^{2t}-1}{t}=lim_{tto0}frac{1+2t+frac{(2t)^2}{2}-1}{t}=2$$
      where
      $$e^theta=1+theta+frac{theta^2}{2}$$






      share|cite|improve this answer











      $endgroup$













      • $begingroup$
        We can employ $$lim_{xto0}dfrac{e^x-1}x=1$$
        $endgroup$
        – lab bhattacharjee
        Jan 14 '17 at 15:00










      • $begingroup$
        @labbhattacharjee from where? without proof?
        $endgroup$
        – Nosrati
        Jan 14 '17 at 15:01










      • $begingroup$
        Which identities can be used for limit ? math.stackexchange.com/questions/42679/… OR 2000clicks.com/MathHelp/CalculusLimitExponential.aspx
        $endgroup$
        – lab bhattacharjee
        Jan 14 '17 at 15:04










      • $begingroup$
        I mean, it is limit definition to derivative of $e^x$ at $x=0$.
        $endgroup$
        – Simply Beautiful Art
        Jan 14 '17 at 15:09










      • $begingroup$
        @labbhattacharjee For using this limit, according to your links, all apply l'hopital rule, derivative definition and Taylor expansion. My suppose is the part of Taylor expansion also, but I don't know where can find a proof without these techniques.
        $endgroup$
        – Nosrati
        Jan 14 '17 at 15:09
















      1












      $begingroup$

      With substitution $x=e^t$ we have:
      $$lim_{xto1}frac{x^2-1}{ln x}=lim_{tto0}frac{e^{2t}-1}{t}=lim_{tto0}frac{1+2t+frac{(2t)^2}{2}-1}{t}=2$$
      where
      $$e^theta=1+theta+frac{theta^2}{2}$$






      share|cite|improve this answer











      $endgroup$













      • $begingroup$
        We can employ $$lim_{xto0}dfrac{e^x-1}x=1$$
        $endgroup$
        – lab bhattacharjee
        Jan 14 '17 at 15:00










      • $begingroup$
        @labbhattacharjee from where? without proof?
        $endgroup$
        – Nosrati
        Jan 14 '17 at 15:01










      • $begingroup$
        Which identities can be used for limit ? math.stackexchange.com/questions/42679/… OR 2000clicks.com/MathHelp/CalculusLimitExponential.aspx
        $endgroup$
        – lab bhattacharjee
        Jan 14 '17 at 15:04










      • $begingroup$
        I mean, it is limit definition to derivative of $e^x$ at $x=0$.
        $endgroup$
        – Simply Beautiful Art
        Jan 14 '17 at 15:09










      • $begingroup$
        @labbhattacharjee For using this limit, according to your links, all apply l'hopital rule, derivative definition and Taylor expansion. My suppose is the part of Taylor expansion also, but I don't know where can find a proof without these techniques.
        $endgroup$
        – Nosrati
        Jan 14 '17 at 15:09














      1












      1








      1





      $begingroup$

      With substitution $x=e^t$ we have:
      $$lim_{xto1}frac{x^2-1}{ln x}=lim_{tto0}frac{e^{2t}-1}{t}=lim_{tto0}frac{1+2t+frac{(2t)^2}{2}-1}{t}=2$$
      where
      $$e^theta=1+theta+frac{theta^2}{2}$$






      share|cite|improve this answer











      $endgroup$



      With substitution $x=e^t$ we have:
      $$lim_{xto1}frac{x^2-1}{ln x}=lim_{tto0}frac{e^{2t}-1}{t}=lim_{tto0}frac{1+2t+frac{(2t)^2}{2}-1}{t}=2$$
      where
      $$e^theta=1+theta+frac{theta^2}{2}$$







      share|cite|improve this answer














      share|cite|improve this answer



      share|cite|improve this answer








      edited Jan 14 '17 at 15:04

























      answered Jan 14 '17 at 14:58









      NosratiNosrati

      26.6k62354




      26.6k62354












      • $begingroup$
        We can employ $$lim_{xto0}dfrac{e^x-1}x=1$$
        $endgroup$
        – lab bhattacharjee
        Jan 14 '17 at 15:00










      • $begingroup$
        @labbhattacharjee from where? without proof?
        $endgroup$
        – Nosrati
        Jan 14 '17 at 15:01










      • $begingroup$
        Which identities can be used for limit ? math.stackexchange.com/questions/42679/… OR 2000clicks.com/MathHelp/CalculusLimitExponential.aspx
        $endgroup$
        – lab bhattacharjee
        Jan 14 '17 at 15:04










      • $begingroup$
        I mean, it is limit definition to derivative of $e^x$ at $x=0$.
        $endgroup$
        – Simply Beautiful Art
        Jan 14 '17 at 15:09










      • $begingroup$
        @labbhattacharjee For using this limit, according to your links, all apply l'hopital rule, derivative definition and Taylor expansion. My suppose is the part of Taylor expansion also, but I don't know where can find a proof without these techniques.
        $endgroup$
        – Nosrati
        Jan 14 '17 at 15:09


















      • $begingroup$
        We can employ $$lim_{xto0}dfrac{e^x-1}x=1$$
        $endgroup$
        – lab bhattacharjee
        Jan 14 '17 at 15:00










      • $begingroup$
        @labbhattacharjee from where? without proof?
        $endgroup$
        – Nosrati
        Jan 14 '17 at 15:01










      • $begingroup$
        Which identities can be used for limit ? math.stackexchange.com/questions/42679/… OR 2000clicks.com/MathHelp/CalculusLimitExponential.aspx
        $endgroup$
        – lab bhattacharjee
        Jan 14 '17 at 15:04










      • $begingroup$
        I mean, it is limit definition to derivative of $e^x$ at $x=0$.
        $endgroup$
        – Simply Beautiful Art
        Jan 14 '17 at 15:09










      • $begingroup$
        @labbhattacharjee For using this limit, according to your links, all apply l'hopital rule, derivative definition and Taylor expansion. My suppose is the part of Taylor expansion also, but I don't know where can find a proof without these techniques.
        $endgroup$
        – Nosrati
        Jan 14 '17 at 15:09
















      $begingroup$
      We can employ $$lim_{xto0}dfrac{e^x-1}x=1$$
      $endgroup$
      – lab bhattacharjee
      Jan 14 '17 at 15:00




      $begingroup$
      We can employ $$lim_{xto0}dfrac{e^x-1}x=1$$
      $endgroup$
      – lab bhattacharjee
      Jan 14 '17 at 15:00












      $begingroup$
      @labbhattacharjee from where? without proof?
      $endgroup$
      – Nosrati
      Jan 14 '17 at 15:01




      $begingroup$
      @labbhattacharjee from where? without proof?
      $endgroup$
      – Nosrati
      Jan 14 '17 at 15:01












      $begingroup$
      Which identities can be used for limit ? math.stackexchange.com/questions/42679/… OR 2000clicks.com/MathHelp/CalculusLimitExponential.aspx
      $endgroup$
      – lab bhattacharjee
      Jan 14 '17 at 15:04




      $begingroup$
      Which identities can be used for limit ? math.stackexchange.com/questions/42679/… OR 2000clicks.com/MathHelp/CalculusLimitExponential.aspx
      $endgroup$
      – lab bhattacharjee
      Jan 14 '17 at 15:04












      $begingroup$
      I mean, it is limit definition to derivative of $e^x$ at $x=0$.
      $endgroup$
      – Simply Beautiful Art
      Jan 14 '17 at 15:09




      $begingroup$
      I mean, it is limit definition to derivative of $e^x$ at $x=0$.
      $endgroup$
      – Simply Beautiful Art
      Jan 14 '17 at 15:09












      $begingroup$
      @labbhattacharjee For using this limit, according to your links, all apply l'hopital rule, derivative definition and Taylor expansion. My suppose is the part of Taylor expansion also, but I don't know where can find a proof without these techniques.
      $endgroup$
      – Nosrati
      Jan 14 '17 at 15:09




      $begingroup$
      @labbhattacharjee For using this limit, according to your links, all apply l'hopital rule, derivative definition and Taylor expansion. My suppose is the part of Taylor expansion also, but I don't know where can find a proof without these techniques.
      $endgroup$
      – Nosrati
      Jan 14 '17 at 15:09











      0












      $begingroup$

      Notice that



      $$ln(x)=(x-1)-frac12(x-1)^2+mathcal O(x^3)$$



      and



      $$x^2-1=(x-1)(x+1)$$



      So the reciprocal of the limit is



      $$frac1L=lim_{xto1}frac1{x+1}-frac{(x-1)}{2(x+1)}+mathcal Oleft(frac{(x-1)^2}{x+1}right)=frac12$$



      So that



      $$L=2$$






      share|cite|improve this answer









      $endgroup$


















        0












        $begingroup$

        Notice that



        $$ln(x)=(x-1)-frac12(x-1)^2+mathcal O(x^3)$$



        and



        $$x^2-1=(x-1)(x+1)$$



        So the reciprocal of the limit is



        $$frac1L=lim_{xto1}frac1{x+1}-frac{(x-1)}{2(x+1)}+mathcal Oleft(frac{(x-1)^2}{x+1}right)=frac12$$



        So that



        $$L=2$$






        share|cite|improve this answer









        $endgroup$
















          0












          0








          0





          $begingroup$

          Notice that



          $$ln(x)=(x-1)-frac12(x-1)^2+mathcal O(x^3)$$



          and



          $$x^2-1=(x-1)(x+1)$$



          So the reciprocal of the limit is



          $$frac1L=lim_{xto1}frac1{x+1}-frac{(x-1)}{2(x+1)}+mathcal Oleft(frac{(x-1)^2}{x+1}right)=frac12$$



          So that



          $$L=2$$






          share|cite|improve this answer









          $endgroup$



          Notice that



          $$ln(x)=(x-1)-frac12(x-1)^2+mathcal O(x^3)$$



          and



          $$x^2-1=(x-1)(x+1)$$



          So the reciprocal of the limit is



          $$frac1L=lim_{xto1}frac1{x+1}-frac{(x-1)}{2(x+1)}+mathcal Oleft(frac{(x-1)^2}{x+1}right)=frac12$$



          So that



          $$L=2$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 14 '17 at 14:52









          Simply Beautiful ArtSimply Beautiful Art

          50.7k579183




          50.7k579183























              0












              $begingroup$

              By a shift of the variable your limit is equivalent to



              $$lim_{tto0}frac{t(t+1)}{ln(1+t)}=frac{lim_{tto0}t+1}{lim_{tto0}dfrac{ln(1+t)}t}=2.$$






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                By a shift of the variable your limit is equivalent to



                $$lim_{tto0}frac{t(t+1)}{ln(1+t)}=frac{lim_{tto0}t+1}{lim_{tto0}dfrac{ln(1+t)}t}=2.$$






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  By a shift of the variable your limit is equivalent to



                  $$lim_{tto0}frac{t(t+1)}{ln(1+t)}=frac{lim_{tto0}t+1}{lim_{tto0}dfrac{ln(1+t)}t}=2.$$






                  share|cite|improve this answer









                  $endgroup$



                  By a shift of the variable your limit is equivalent to



                  $$lim_{tto0}frac{t(t+1)}{ln(1+t)}=frac{lim_{tto0}t+1}{lim_{tto0}dfrac{ln(1+t)}t}=2.$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 14 '17 at 15:32









                  Yves DaoustYves Daoust

                  129k675227




                  129k675227






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2097494%2fsolve-limit-lim-x-to1-fracx2-1-lnx-without-using-lh%25c3%25b4pitals-rule%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Ellipse (mathématiques)

                      Quarter-circle Tiles

                      Mont Emei