Show that if $lim_{n to infty} x_n = 0$ if follows that $lim_{n to infty} (1+frac{x_n}{n})^n = 1$
$begingroup$
Let $(x_n)$ be a sequence in R. Show that if $lim_{n to infty} x_n = 0$ if follows that $lim_{n to infty} (1+frac{x_n}{n})^n = 1$
My idea looks like the following (using the binomial theorem):
$$(1+frac{x_n}{n})^n = sum_{k=1}^{n} {{n}choose{k}} (frac{x_n}{n})^k = sum_{k=1}^{n} frac{n!}{k! cdot (n-k)!} (frac{x_n}{n})^k=sum_{k=1}^{n} frac{n space cdot space ... space cdot space (n-k+1)}{k!} (frac{x_n}{n})^k$$
How do I proceed from here? Am I somehow supposed to split the sum up and then take the limit? Can someone help me out? Thanks in advance!
limits proof-writing limits-without-lhopital
$endgroup$
|
show 1 more comment
$begingroup$
Let $(x_n)$ be a sequence in R. Show that if $lim_{n to infty} x_n = 0$ if follows that $lim_{n to infty} (1+frac{x_n}{n})^n = 1$
My idea looks like the following (using the binomial theorem):
$$(1+frac{x_n}{n})^n = sum_{k=1}^{n} {{n}choose{k}} (frac{x_n}{n})^k = sum_{k=1}^{n} frac{n!}{k! cdot (n-k)!} (frac{x_n}{n})^k=sum_{k=1}^{n} frac{n space cdot space ... space cdot space (n-k+1)}{k!} (frac{x_n}{n})^k$$
How do I proceed from here? Am I somehow supposed to split the sum up and then take the limit? Can someone help me out? Thanks in advance!
limits proof-writing limits-without-lhopital
$endgroup$
$begingroup$
Are you familiar with the proposition saying that if $a_nrightarrow pm infty$, then $Big( 1+frac{1}{a_n} Big)^{a_n}rightarrow e$?
$endgroup$
– Keen-ameteur
Jan 2 at 12:49
$begingroup$
Are you sure you don't want the limit as n goes to infinity?
$endgroup$
– Zach
Jan 2 at 12:51
$begingroup$
No I'm not. I know that $lim{n to infty} (1+frac{x}{n})^n=e^x$ though. However I'm not sure how to apply that here.
$endgroup$
– John D.
Jan 2 at 12:52
$begingroup$
Oh yes as n goes to infinity.
$endgroup$
– John D.
Jan 2 at 12:52
$begingroup$
$0 le log((1+frac{x_n}{n})^n) = nlog(1+frac{x_n}{n}) le nfrac{x_n}{n} = x_n$
$endgroup$
– mathworker21
Jan 2 at 13:27
|
show 1 more comment
$begingroup$
Let $(x_n)$ be a sequence in R. Show that if $lim_{n to infty} x_n = 0$ if follows that $lim_{n to infty} (1+frac{x_n}{n})^n = 1$
My idea looks like the following (using the binomial theorem):
$$(1+frac{x_n}{n})^n = sum_{k=1}^{n} {{n}choose{k}} (frac{x_n}{n})^k = sum_{k=1}^{n} frac{n!}{k! cdot (n-k)!} (frac{x_n}{n})^k=sum_{k=1}^{n} frac{n space cdot space ... space cdot space (n-k+1)}{k!} (frac{x_n}{n})^k$$
How do I proceed from here? Am I somehow supposed to split the sum up and then take the limit? Can someone help me out? Thanks in advance!
limits proof-writing limits-without-lhopital
$endgroup$
Let $(x_n)$ be a sequence in R. Show that if $lim_{n to infty} x_n = 0$ if follows that $lim_{n to infty} (1+frac{x_n}{n})^n = 1$
My idea looks like the following (using the binomial theorem):
$$(1+frac{x_n}{n})^n = sum_{k=1}^{n} {{n}choose{k}} (frac{x_n}{n})^k = sum_{k=1}^{n} frac{n!}{k! cdot (n-k)!} (frac{x_n}{n})^k=sum_{k=1}^{n} frac{n space cdot space ... space cdot space (n-k+1)}{k!} (frac{x_n}{n})^k$$
How do I proceed from here? Am I somehow supposed to split the sum up and then take the limit? Can someone help me out? Thanks in advance!
limits proof-writing limits-without-lhopital
limits proof-writing limits-without-lhopital
edited Jan 2 at 12:53
John D.
asked Jan 2 at 12:39
John D.John D.
153
153
$begingroup$
Are you familiar with the proposition saying that if $a_nrightarrow pm infty$, then $Big( 1+frac{1}{a_n} Big)^{a_n}rightarrow e$?
$endgroup$
– Keen-ameteur
Jan 2 at 12:49
$begingroup$
Are you sure you don't want the limit as n goes to infinity?
$endgroup$
– Zach
Jan 2 at 12:51
$begingroup$
No I'm not. I know that $lim{n to infty} (1+frac{x}{n})^n=e^x$ though. However I'm not sure how to apply that here.
$endgroup$
– John D.
Jan 2 at 12:52
$begingroup$
Oh yes as n goes to infinity.
$endgroup$
– John D.
Jan 2 at 12:52
$begingroup$
$0 le log((1+frac{x_n}{n})^n) = nlog(1+frac{x_n}{n}) le nfrac{x_n}{n} = x_n$
$endgroup$
– mathworker21
Jan 2 at 13:27
|
show 1 more comment
$begingroup$
Are you familiar with the proposition saying that if $a_nrightarrow pm infty$, then $Big( 1+frac{1}{a_n} Big)^{a_n}rightarrow e$?
$endgroup$
– Keen-ameteur
Jan 2 at 12:49
$begingroup$
Are you sure you don't want the limit as n goes to infinity?
$endgroup$
– Zach
Jan 2 at 12:51
$begingroup$
No I'm not. I know that $lim{n to infty} (1+frac{x}{n})^n=e^x$ though. However I'm not sure how to apply that here.
$endgroup$
– John D.
Jan 2 at 12:52
$begingroup$
Oh yes as n goes to infinity.
$endgroup$
– John D.
Jan 2 at 12:52
$begingroup$
$0 le log((1+frac{x_n}{n})^n) = nlog(1+frac{x_n}{n}) le nfrac{x_n}{n} = x_n$
$endgroup$
– mathworker21
Jan 2 at 13:27
$begingroup$
Are you familiar with the proposition saying that if $a_nrightarrow pm infty$, then $Big( 1+frac{1}{a_n} Big)^{a_n}rightarrow e$?
$endgroup$
– Keen-ameteur
Jan 2 at 12:49
$begingroup$
Are you familiar with the proposition saying that if $a_nrightarrow pm infty$, then $Big( 1+frac{1}{a_n} Big)^{a_n}rightarrow e$?
$endgroup$
– Keen-ameteur
Jan 2 at 12:49
$begingroup$
Are you sure you don't want the limit as n goes to infinity?
$endgroup$
– Zach
Jan 2 at 12:51
$begingroup$
Are you sure you don't want the limit as n goes to infinity?
$endgroup$
– Zach
Jan 2 at 12:51
$begingroup$
No I'm not. I know that $lim{n to infty} (1+frac{x}{n})^n=e^x$ though. However I'm not sure how to apply that here.
$endgroup$
– John D.
Jan 2 at 12:52
$begingroup$
No I'm not. I know that $lim{n to infty} (1+frac{x}{n})^n=e^x$ though. However I'm not sure how to apply that here.
$endgroup$
– John D.
Jan 2 at 12:52
$begingroup$
Oh yes as n goes to infinity.
$endgroup$
– John D.
Jan 2 at 12:52
$begingroup$
Oh yes as n goes to infinity.
$endgroup$
– John D.
Jan 2 at 12:52
$begingroup$
$0 le log((1+frac{x_n}{n})^n) = nlog(1+frac{x_n}{n}) le nfrac{x_n}{n} = x_n$
$endgroup$
– mathworker21
Jan 2 at 13:27
$begingroup$
$0 le log((1+frac{x_n}{n})^n) = nlog(1+frac{x_n}{n}) le nfrac{x_n}{n} = x_n$
$endgroup$
– mathworker21
Jan 2 at 13:27
|
show 1 more comment
1 Answer
1
active
oldest
votes
$begingroup$
For $n$ sufficiently large $-epsilon <x_n <epsilon$ so $(1-frac {epsilon} n)^{n} leq (1-frac {x_n} n)^{n} leq (1-frac {epsilon} n)^{n}$. Use squeeze theorem, the fact that $(1+frac x n)^{n} to e^{x}$ for any real number $x$, and then observe that $e^{-epsilon}$ and $e^{epsilon}$ both tend to $1$ as $ epsilon to 0$.
$endgroup$
$begingroup$
Thank you very much!
$endgroup$
– John D.
Jan 2 at 13:14
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059426%2fshow-that-if-lim-n-to-infty-x-n-0-if-follows-that-lim-n-to-infty%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
For $n$ sufficiently large $-epsilon <x_n <epsilon$ so $(1-frac {epsilon} n)^{n} leq (1-frac {x_n} n)^{n} leq (1-frac {epsilon} n)^{n}$. Use squeeze theorem, the fact that $(1+frac x n)^{n} to e^{x}$ for any real number $x$, and then observe that $e^{-epsilon}$ and $e^{epsilon}$ both tend to $1$ as $ epsilon to 0$.
$endgroup$
$begingroup$
Thank you very much!
$endgroup$
– John D.
Jan 2 at 13:14
add a comment |
$begingroup$
For $n$ sufficiently large $-epsilon <x_n <epsilon$ so $(1-frac {epsilon} n)^{n} leq (1-frac {x_n} n)^{n} leq (1-frac {epsilon} n)^{n}$. Use squeeze theorem, the fact that $(1+frac x n)^{n} to e^{x}$ for any real number $x$, and then observe that $e^{-epsilon}$ and $e^{epsilon}$ both tend to $1$ as $ epsilon to 0$.
$endgroup$
$begingroup$
Thank you very much!
$endgroup$
– John D.
Jan 2 at 13:14
add a comment |
$begingroup$
For $n$ sufficiently large $-epsilon <x_n <epsilon$ so $(1-frac {epsilon} n)^{n} leq (1-frac {x_n} n)^{n} leq (1-frac {epsilon} n)^{n}$. Use squeeze theorem, the fact that $(1+frac x n)^{n} to e^{x}$ for any real number $x$, and then observe that $e^{-epsilon}$ and $e^{epsilon}$ both tend to $1$ as $ epsilon to 0$.
$endgroup$
For $n$ sufficiently large $-epsilon <x_n <epsilon$ so $(1-frac {epsilon} n)^{n} leq (1-frac {x_n} n)^{n} leq (1-frac {epsilon} n)^{n}$. Use squeeze theorem, the fact that $(1+frac x n)^{n} to e^{x}$ for any real number $x$, and then observe that $e^{-epsilon}$ and $e^{epsilon}$ both tend to $1$ as $ epsilon to 0$.
answered Jan 2 at 13:01
Kavi Rama MurthyKavi Rama Murthy
63.7k42464
63.7k42464
$begingroup$
Thank you very much!
$endgroup$
– John D.
Jan 2 at 13:14
add a comment |
$begingroup$
Thank you very much!
$endgroup$
– John D.
Jan 2 at 13:14
$begingroup$
Thank you very much!
$endgroup$
– John D.
Jan 2 at 13:14
$begingroup$
Thank you very much!
$endgroup$
– John D.
Jan 2 at 13:14
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059426%2fshow-that-if-lim-n-to-infty-x-n-0-if-follows-that-lim-n-to-infty%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Are you familiar with the proposition saying that if $a_nrightarrow pm infty$, then $Big( 1+frac{1}{a_n} Big)^{a_n}rightarrow e$?
$endgroup$
– Keen-ameteur
Jan 2 at 12:49
$begingroup$
Are you sure you don't want the limit as n goes to infinity?
$endgroup$
– Zach
Jan 2 at 12:51
$begingroup$
No I'm not. I know that $lim{n to infty} (1+frac{x}{n})^n=e^x$ though. However I'm not sure how to apply that here.
$endgroup$
– John D.
Jan 2 at 12:52
$begingroup$
Oh yes as n goes to infinity.
$endgroup$
– John D.
Jan 2 at 12:52
$begingroup$
$0 le log((1+frac{x_n}{n})^n) = nlog(1+frac{x_n}{n}) le nfrac{x_n}{n} = x_n$
$endgroup$
– mathworker21
Jan 2 at 13:27