Isomorphism of Tensor Products
$begingroup$
$M bigotimes_{mathbb{Z}} mathbb{Z}_{21} cong (M/3M) bigoplus (M/7M)$
Can u guys help me prove if this is true or not? M is an abelian group, so a $mathbb{Z}$ module I tried creating homomorphisms with the universal property of the tensor product for bilinear maps and prove that they are inverse to one another but im not getting the desire isomorphism, yet i dont know if the statement is true.
abstract-algebra modules tensor-products
$endgroup$
add a comment |
$begingroup$
$M bigotimes_{mathbb{Z}} mathbb{Z}_{21} cong (M/3M) bigoplus (M/7M)$
Can u guys help me prove if this is true or not? M is an abelian group, so a $mathbb{Z}$ module I tried creating homomorphisms with the universal property of the tensor product for bilinear maps and prove that they are inverse to one another but im not getting the desire isomorphism, yet i dont know if the statement is true.
abstract-algebra modules tensor-products
$endgroup$
$begingroup$
what have you tried so far?
$endgroup$
– Praphulla Koushik
Jan 2 at 11:52
$begingroup$
ive tried creating maps , for example one that sends $(m+3M,m_1+7M) to (mm_1 bigotimes 1 +21mathbb{Z})$ and one that sends $ (m bigotimes x+21mathbb{Z}) to (xm + 3M, 1 +7M)$
$endgroup$
– Pedro Santos
Jan 2 at 11:56
add a comment |
$begingroup$
$M bigotimes_{mathbb{Z}} mathbb{Z}_{21} cong (M/3M) bigoplus (M/7M)$
Can u guys help me prove if this is true or not? M is an abelian group, so a $mathbb{Z}$ module I tried creating homomorphisms with the universal property of the tensor product for bilinear maps and prove that they are inverse to one another but im not getting the desire isomorphism, yet i dont know if the statement is true.
abstract-algebra modules tensor-products
$endgroup$
$M bigotimes_{mathbb{Z}} mathbb{Z}_{21} cong (M/3M) bigoplus (M/7M)$
Can u guys help me prove if this is true or not? M is an abelian group, so a $mathbb{Z}$ module I tried creating homomorphisms with the universal property of the tensor product for bilinear maps and prove that they are inverse to one another but im not getting the desire isomorphism, yet i dont know if the statement is true.
abstract-algebra modules tensor-products
abstract-algebra modules tensor-products
edited Jan 2 at 11:58
Pedro Santos
asked Jan 2 at 11:51
Pedro SantosPedro Santos
1459
1459
$begingroup$
what have you tried so far?
$endgroup$
– Praphulla Koushik
Jan 2 at 11:52
$begingroup$
ive tried creating maps , for example one that sends $(m+3M,m_1+7M) to (mm_1 bigotimes 1 +21mathbb{Z})$ and one that sends $ (m bigotimes x+21mathbb{Z}) to (xm + 3M, 1 +7M)$
$endgroup$
– Pedro Santos
Jan 2 at 11:56
add a comment |
$begingroup$
what have you tried so far?
$endgroup$
– Praphulla Koushik
Jan 2 at 11:52
$begingroup$
ive tried creating maps , for example one that sends $(m+3M,m_1+7M) to (mm_1 bigotimes 1 +21mathbb{Z})$ and one that sends $ (m bigotimes x+21mathbb{Z}) to (xm + 3M, 1 +7M)$
$endgroup$
– Pedro Santos
Jan 2 at 11:56
$begingroup$
what have you tried so far?
$endgroup$
– Praphulla Koushik
Jan 2 at 11:52
$begingroup$
what have you tried so far?
$endgroup$
– Praphulla Koushik
Jan 2 at 11:52
$begingroup$
ive tried creating maps , for example one that sends $(m+3M,m_1+7M) to (mm_1 bigotimes 1 +21mathbb{Z})$ and one that sends $ (m bigotimes x+21mathbb{Z}) to (xm + 3M, 1 +7M)$
$endgroup$
– Pedro Santos
Jan 2 at 11:56
$begingroup$
ive tried creating maps , for example one that sends $(m+3M,m_1+7M) to (mm_1 bigotimes 1 +21mathbb{Z})$ and one that sends $ (m bigotimes x+21mathbb{Z}) to (xm + 3M, 1 +7M)$
$endgroup$
– Pedro Santos
Jan 2 at 11:56
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
See that $mathbb{Z}_{21}=mathbb{Z}_3oplus mathbb{Z}_7$.
As tensor product distributes with direct sum, $$Motimes_{mathbb{Z}}mathbb{Z}_{21}=Motimes_{mathbb{Z}}(mathbb{Z}_3oplus mathbb{Z}_7)=(Motimes_mathbb{Z}mathbb{Z}_3)oplus (Motimes_mathbb{Z}mathbb{Z}_7)$$
Can you take it from here?
$endgroup$
$begingroup$
Oh yeah i forgot about that damn it , Thanks , now i can use the fact that $M bigotimes mathbb{Z}{m} cong M/mM$
$endgroup$
– Pedro Santos
Jan 2 at 11:59
$begingroup$
Enjoy!!!!!!!!!!
$endgroup$
– Praphulla Koushik
Jan 2 at 12:01
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059393%2fisomorphism-of-tensor-products%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
See that $mathbb{Z}_{21}=mathbb{Z}_3oplus mathbb{Z}_7$.
As tensor product distributes with direct sum, $$Motimes_{mathbb{Z}}mathbb{Z}_{21}=Motimes_{mathbb{Z}}(mathbb{Z}_3oplus mathbb{Z}_7)=(Motimes_mathbb{Z}mathbb{Z}_3)oplus (Motimes_mathbb{Z}mathbb{Z}_7)$$
Can you take it from here?
$endgroup$
$begingroup$
Oh yeah i forgot about that damn it , Thanks , now i can use the fact that $M bigotimes mathbb{Z}{m} cong M/mM$
$endgroup$
– Pedro Santos
Jan 2 at 11:59
$begingroup$
Enjoy!!!!!!!!!!
$endgroup$
– Praphulla Koushik
Jan 2 at 12:01
add a comment |
$begingroup$
See that $mathbb{Z}_{21}=mathbb{Z}_3oplus mathbb{Z}_7$.
As tensor product distributes with direct sum, $$Motimes_{mathbb{Z}}mathbb{Z}_{21}=Motimes_{mathbb{Z}}(mathbb{Z}_3oplus mathbb{Z}_7)=(Motimes_mathbb{Z}mathbb{Z}_3)oplus (Motimes_mathbb{Z}mathbb{Z}_7)$$
Can you take it from here?
$endgroup$
$begingroup$
Oh yeah i forgot about that damn it , Thanks , now i can use the fact that $M bigotimes mathbb{Z}{m} cong M/mM$
$endgroup$
– Pedro Santos
Jan 2 at 11:59
$begingroup$
Enjoy!!!!!!!!!!
$endgroup$
– Praphulla Koushik
Jan 2 at 12:01
add a comment |
$begingroup$
See that $mathbb{Z}_{21}=mathbb{Z}_3oplus mathbb{Z}_7$.
As tensor product distributes with direct sum, $$Motimes_{mathbb{Z}}mathbb{Z}_{21}=Motimes_{mathbb{Z}}(mathbb{Z}_3oplus mathbb{Z}_7)=(Motimes_mathbb{Z}mathbb{Z}_3)oplus (Motimes_mathbb{Z}mathbb{Z}_7)$$
Can you take it from here?
$endgroup$
See that $mathbb{Z}_{21}=mathbb{Z}_3oplus mathbb{Z}_7$.
As tensor product distributes with direct sum, $$Motimes_{mathbb{Z}}mathbb{Z}_{21}=Motimes_{mathbb{Z}}(mathbb{Z}_3oplus mathbb{Z}_7)=(Motimes_mathbb{Z}mathbb{Z}_3)oplus (Motimes_mathbb{Z}mathbb{Z}_7)$$
Can you take it from here?
edited Jan 2 at 12:02
answered Jan 2 at 11:57
Praphulla KoushikPraphulla Koushik
16919
16919
$begingroup$
Oh yeah i forgot about that damn it , Thanks , now i can use the fact that $M bigotimes mathbb{Z}{m} cong M/mM$
$endgroup$
– Pedro Santos
Jan 2 at 11:59
$begingroup$
Enjoy!!!!!!!!!!
$endgroup$
– Praphulla Koushik
Jan 2 at 12:01
add a comment |
$begingroup$
Oh yeah i forgot about that damn it , Thanks , now i can use the fact that $M bigotimes mathbb{Z}{m} cong M/mM$
$endgroup$
– Pedro Santos
Jan 2 at 11:59
$begingroup$
Enjoy!!!!!!!!!!
$endgroup$
– Praphulla Koushik
Jan 2 at 12:01
$begingroup$
Oh yeah i forgot about that damn it , Thanks , now i can use the fact that $M bigotimes mathbb{Z}{m} cong M/mM$
$endgroup$
– Pedro Santos
Jan 2 at 11:59
$begingroup$
Oh yeah i forgot about that damn it , Thanks , now i can use the fact that $M bigotimes mathbb{Z}{m} cong M/mM$
$endgroup$
– Pedro Santos
Jan 2 at 11:59
$begingroup$
Enjoy!!!!!!!!!!
$endgroup$
– Praphulla Koushik
Jan 2 at 12:01
$begingroup$
Enjoy!!!!!!!!!!
$endgroup$
– Praphulla Koushik
Jan 2 at 12:01
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059393%2fisomorphism-of-tensor-products%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
what have you tried so far?
$endgroup$
– Praphulla Koushik
Jan 2 at 11:52
$begingroup$
ive tried creating maps , for example one that sends $(m+3M,m_1+7M) to (mm_1 bigotimes 1 +21mathbb{Z})$ and one that sends $ (m bigotimes x+21mathbb{Z}) to (xm + 3M, 1 +7M)$
$endgroup$
– Pedro Santos
Jan 2 at 11:56