Calculate product measure of off-diagonal set












0












$begingroup$


Let





  • $(E,mathcal E)$ be a measurable space


  • $mu_i$ be a probability measure on $(E,mathcal E)$


  • $lambda:=mu_1+mu_2$ and $$f_i:=frac{{rm d}mu_i}{{rm d}lambda}$$


  • $Q$ denote the measure with density $min(f_1,f_2)$ with respect to $lambda$ and $$nu_i:=mu_i-Q$$



Let $Delta:=left{(x,x):xin Eright}$. How can we show that $(v_1otimesnu_2)(Delta^c)=nu_1(E)nu_2(E)$?




For simplicity, let $B:=Delta^c=left{(x,y)in E^2:xne yright}$ and $$B_y:=left{xin E:(x,y)in Bright}=Esetminusleft{yright};;;text{for }yin E.$$ We should have $$(nu_1otimesnu_2)(B)=intnu_1(B_y)nu_2({rm d}y)=(nu_1(E)-nu_1(left{yright}))nu_2(E)tag1.$$ So, the conclusion would follow if $nu_1(left{yright})=0$. But why should that be the case?










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    Let





    • $(E,mathcal E)$ be a measurable space


    • $mu_i$ be a probability measure on $(E,mathcal E)$


    • $lambda:=mu_1+mu_2$ and $$f_i:=frac{{rm d}mu_i}{{rm d}lambda}$$


    • $Q$ denote the measure with density $min(f_1,f_2)$ with respect to $lambda$ and $$nu_i:=mu_i-Q$$



    Let $Delta:=left{(x,x):xin Eright}$. How can we show that $(v_1otimesnu_2)(Delta^c)=nu_1(E)nu_2(E)$?




    For simplicity, let $B:=Delta^c=left{(x,y)in E^2:xne yright}$ and $$B_y:=left{xin E:(x,y)in Bright}=Esetminusleft{yright};;;text{for }yin E.$$ We should have $$(nu_1otimesnu_2)(B)=intnu_1(B_y)nu_2({rm d}y)=(nu_1(E)-nu_1(left{yright}))nu_2(E)tag1.$$ So, the conclusion would follow if $nu_1(left{yright})=0$. But why should that be the case?










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      Let





      • $(E,mathcal E)$ be a measurable space


      • $mu_i$ be a probability measure on $(E,mathcal E)$


      • $lambda:=mu_1+mu_2$ and $$f_i:=frac{{rm d}mu_i}{{rm d}lambda}$$


      • $Q$ denote the measure with density $min(f_1,f_2)$ with respect to $lambda$ and $$nu_i:=mu_i-Q$$



      Let $Delta:=left{(x,x):xin Eright}$. How can we show that $(v_1otimesnu_2)(Delta^c)=nu_1(E)nu_2(E)$?




      For simplicity, let $B:=Delta^c=left{(x,y)in E^2:xne yright}$ and $$B_y:=left{xin E:(x,y)in Bright}=Esetminusleft{yright};;;text{for }yin E.$$ We should have $$(nu_1otimesnu_2)(B)=intnu_1(B_y)nu_2({rm d}y)=(nu_1(E)-nu_1(left{yright}))nu_2(E)tag1.$$ So, the conclusion would follow if $nu_1(left{yright})=0$. But why should that be the case?










      share|cite|improve this question









      $endgroup$




      Let





      • $(E,mathcal E)$ be a measurable space


      • $mu_i$ be a probability measure on $(E,mathcal E)$


      • $lambda:=mu_1+mu_2$ and $$f_i:=frac{{rm d}mu_i}{{rm d}lambda}$$


      • $Q$ denote the measure with density $min(f_1,f_2)$ with respect to $lambda$ and $$nu_i:=mu_i-Q$$



      Let $Delta:=left{(x,x):xin Eright}$. How can we show that $(v_1otimesnu_2)(Delta^c)=nu_1(E)nu_2(E)$?




      For simplicity, let $B:=Delta^c=left{(x,y)in E^2:xne yright}$ and $$B_y:=left{xin E:(x,y)in Bright}=Esetminusleft{yright};;;text{for }yin E.$$ We should have $$(nu_1otimesnu_2)(B)=intnu_1(B_y)nu_2({rm d}y)=(nu_1(E)-nu_1(left{yright}))nu_2(E)tag1.$$ So, the conclusion would follow if $nu_1(left{yright})=0$. But why should that be the case?







      real-analysis measure-theory product-measure






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 2 at 12:07









      0xbadf00d0xbadf00d

      1,96841532




      1,96841532






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          Let us write $f_1wedge f_2$ for $min{f_1,f_2}$. What we are required to prove is that $ (nu_1 otimes nu_2)(Delta)=0$. You can write the left side as $int int_{{x}} (f_2- (f_2wedge f_1) (y))dlambda(y) [f_1(x)- (f_2(x)wedge f_1(x))]dlambda (x)=0$. Note that if $f_2(x)- (f_2(x)wedge f_1(x))>0$ then $f_2(x) >f_1(x)$ and hence $(f_1- (f_2wedge f_1) (x))=0$. This makes the double integral $0$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            So, your argument is that the left-hand side is $$intleft(f_1(x)-(f_1wedge f_2)(x)right)left(f_2(x)-(f_1wedge f_2)(x)right)lambdaleft(left{xright}right)lambdaleft({rm d}xright)$$ and then conclude by your note, right?
            $endgroup$
            – 0xbadf00d
            Jan 2 at 19:03












          • $begingroup$
            Yes, that is right.
            $endgroup$
            – Kavi Rama Murthy
            Jan 3 at 0:31











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059404%2fcalculate-product-measure-of-off-diagonal-set%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          Let us write $f_1wedge f_2$ for $min{f_1,f_2}$. What we are required to prove is that $ (nu_1 otimes nu_2)(Delta)=0$. You can write the left side as $int int_{{x}} (f_2- (f_2wedge f_1) (y))dlambda(y) [f_1(x)- (f_2(x)wedge f_1(x))]dlambda (x)=0$. Note that if $f_2(x)- (f_2(x)wedge f_1(x))>0$ then $f_2(x) >f_1(x)$ and hence $(f_1- (f_2wedge f_1) (x))=0$. This makes the double integral $0$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            So, your argument is that the left-hand side is $$intleft(f_1(x)-(f_1wedge f_2)(x)right)left(f_2(x)-(f_1wedge f_2)(x)right)lambdaleft(left{xright}right)lambdaleft({rm d}xright)$$ and then conclude by your note, right?
            $endgroup$
            – 0xbadf00d
            Jan 2 at 19:03












          • $begingroup$
            Yes, that is right.
            $endgroup$
            – Kavi Rama Murthy
            Jan 3 at 0:31
















          1












          $begingroup$

          Let us write $f_1wedge f_2$ for $min{f_1,f_2}$. What we are required to prove is that $ (nu_1 otimes nu_2)(Delta)=0$. You can write the left side as $int int_{{x}} (f_2- (f_2wedge f_1) (y))dlambda(y) [f_1(x)- (f_2(x)wedge f_1(x))]dlambda (x)=0$. Note that if $f_2(x)- (f_2(x)wedge f_1(x))>0$ then $f_2(x) >f_1(x)$ and hence $(f_1- (f_2wedge f_1) (x))=0$. This makes the double integral $0$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            So, your argument is that the left-hand side is $$intleft(f_1(x)-(f_1wedge f_2)(x)right)left(f_2(x)-(f_1wedge f_2)(x)right)lambdaleft(left{xright}right)lambdaleft({rm d}xright)$$ and then conclude by your note, right?
            $endgroup$
            – 0xbadf00d
            Jan 2 at 19:03












          • $begingroup$
            Yes, that is right.
            $endgroup$
            – Kavi Rama Murthy
            Jan 3 at 0:31














          1












          1








          1





          $begingroup$

          Let us write $f_1wedge f_2$ for $min{f_1,f_2}$. What we are required to prove is that $ (nu_1 otimes nu_2)(Delta)=0$. You can write the left side as $int int_{{x}} (f_2- (f_2wedge f_1) (y))dlambda(y) [f_1(x)- (f_2(x)wedge f_1(x))]dlambda (x)=0$. Note that if $f_2(x)- (f_2(x)wedge f_1(x))>0$ then $f_2(x) >f_1(x)$ and hence $(f_1- (f_2wedge f_1) (x))=0$. This makes the double integral $0$.






          share|cite|improve this answer









          $endgroup$



          Let us write $f_1wedge f_2$ for $min{f_1,f_2}$. What we are required to prove is that $ (nu_1 otimes nu_2)(Delta)=0$. You can write the left side as $int int_{{x}} (f_2- (f_2wedge f_1) (y))dlambda(y) [f_1(x)- (f_2(x)wedge f_1(x))]dlambda (x)=0$. Note that if $f_2(x)- (f_2(x)wedge f_1(x))>0$ then $f_2(x) >f_1(x)$ and hence $(f_1- (f_2wedge f_1) (x))=0$. This makes the double integral $0$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 2 at 12:44









          Kavi Rama MurthyKavi Rama Murthy

          63.7k42464




          63.7k42464












          • $begingroup$
            So, your argument is that the left-hand side is $$intleft(f_1(x)-(f_1wedge f_2)(x)right)left(f_2(x)-(f_1wedge f_2)(x)right)lambdaleft(left{xright}right)lambdaleft({rm d}xright)$$ and then conclude by your note, right?
            $endgroup$
            – 0xbadf00d
            Jan 2 at 19:03












          • $begingroup$
            Yes, that is right.
            $endgroup$
            – Kavi Rama Murthy
            Jan 3 at 0:31


















          • $begingroup$
            So, your argument is that the left-hand side is $$intleft(f_1(x)-(f_1wedge f_2)(x)right)left(f_2(x)-(f_1wedge f_2)(x)right)lambdaleft(left{xright}right)lambdaleft({rm d}xright)$$ and then conclude by your note, right?
            $endgroup$
            – 0xbadf00d
            Jan 2 at 19:03












          • $begingroup$
            Yes, that is right.
            $endgroup$
            – Kavi Rama Murthy
            Jan 3 at 0:31
















          $begingroup$
          So, your argument is that the left-hand side is $$intleft(f_1(x)-(f_1wedge f_2)(x)right)left(f_2(x)-(f_1wedge f_2)(x)right)lambdaleft(left{xright}right)lambdaleft({rm d}xright)$$ and then conclude by your note, right?
          $endgroup$
          – 0xbadf00d
          Jan 2 at 19:03






          $begingroup$
          So, your argument is that the left-hand side is $$intleft(f_1(x)-(f_1wedge f_2)(x)right)left(f_2(x)-(f_1wedge f_2)(x)right)lambdaleft(left{xright}right)lambdaleft({rm d}xright)$$ and then conclude by your note, right?
          $endgroup$
          – 0xbadf00d
          Jan 2 at 19:03














          $begingroup$
          Yes, that is right.
          $endgroup$
          – Kavi Rama Murthy
          Jan 3 at 0:31




          $begingroup$
          Yes, that is right.
          $endgroup$
          – Kavi Rama Murthy
          Jan 3 at 0:31


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059404%2fcalculate-product-measure-of-off-diagonal-set%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Ellipse (mathématiques)

          Quarter-circle Tiles

          Mont Emei