differential 1 - form of $omega$
$begingroup$
Let $omega$ be a differential form.
$$omega = dfrac{xdywedge dz + ydzwedge dx + zdxwedge dy}{(x^2 + y^2+ z^2)^{3/2}}$$
1)Find $domega$.
2)show that exist 1-form $theta$ such that $dtheta = omega$ in half-space $z>0$.
3) Show that doesn't exist 1-form $theta$ such that $dtheta = omega$ in $ mathbb R^3 setminus{0} $
I found $domega$, it equals zero, but i have no idea how to show in 2) and 3). Can you help me with this?
differential-geometry differential-forms
$endgroup$
add a comment |
$begingroup$
Let $omega$ be a differential form.
$$omega = dfrac{xdywedge dz + ydzwedge dx + zdxwedge dy}{(x^2 + y^2+ z^2)^{3/2}}$$
1)Find $domega$.
2)show that exist 1-form $theta$ such that $dtheta = omega$ in half-space $z>0$.
3) Show that doesn't exist 1-form $theta$ such that $dtheta = omega$ in $ mathbb R^3 setminus{0} $
I found $domega$, it equals zero, but i have no idea how to show in 2) and 3). Can you help me with this?
differential-geometry differential-forms
$endgroup$
add a comment |
$begingroup$
Let $omega$ be a differential form.
$$omega = dfrac{xdywedge dz + ydzwedge dx + zdxwedge dy}{(x^2 + y^2+ z^2)^{3/2}}$$
1)Find $domega$.
2)show that exist 1-form $theta$ such that $dtheta = omega$ in half-space $z>0$.
3) Show that doesn't exist 1-form $theta$ such that $dtheta = omega$ in $ mathbb R^3 setminus{0} $
I found $domega$, it equals zero, but i have no idea how to show in 2) and 3). Can you help me with this?
differential-geometry differential-forms
$endgroup$
Let $omega$ be a differential form.
$$omega = dfrac{xdywedge dz + ydzwedge dx + zdxwedge dy}{(x^2 + y^2+ z^2)^{3/2}}$$
1)Find $domega$.
2)show that exist 1-form $theta$ such that $dtheta = omega$ in half-space $z>0$.
3) Show that doesn't exist 1-form $theta$ such that $dtheta = omega$ in $ mathbb R^3 setminus{0} $
I found $domega$, it equals zero, but i have no idea how to show in 2) and 3). Can you help me with this?
differential-geometry differential-forms
differential-geometry differential-forms
asked Dec 28 '18 at 23:12
Gera SlanovaGera Slanova
483
483
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
2) You have shown in the first question that $omega$ is closed, whence using Poincaré's lemma, it is exact on each contractible subsets of $mathbb{R}^3$ on which $omega$ is defined, such that the half-space $z>0$, since it is convex.
3) If $omega$ were exact on $mathbb{R}^3setminus{0}$, using Stokes' theorem, its integral on $S^2$ would be zero, since $S^2$ has no boundary, but it is equal to $4pi$.
I feel a bit guilty about not computing this integral, so let's do it:
$$begin{align}int_{S^2}omega&=int_{S^2}x,mathrm{d}ywedgemathrm{d}z+y,mathrm{d}zwedgemathrm{d}x+z,mathrm{d}xwedge mathrm{d}y,tag{1}\tag{2}&=int_{B^3}mathrm{d}(x,mathrm{d}ywedgemathrm{d}z+y,mathrm{d}zwedgemathrm{d}x+z,mathrm{d}xwedgemathrm{d}y),\tag{3}&=3int_{B^3}mathrm{d}xwedgemathrm{d}ywedgemathrm{d}z,\&=4pi.tag{4}end{align}$$
Here are the steps behing each equality:
$(1)$: $omega_{vert S^2}=x,mathrm{d}ywedgemathrm{d}z+y,mathrm{d}zwedgemathrm{d}x+z,mathrm{d}xwedgemathrm{d}y$, since $x^2+y^2+z^2=1$ for $(x,y,z)in S^2$,
$(2)$: Stokes' theorem on $B^3$, noticing that $partial B^3=S^2$,
$(3)$: $mathrm{d}(x,mathrm{d}ywedgemathrm{d}z+y,mathrm{d}zwedgemathrm{d}x+z,mathrm{d}xwedgemathrm{d}y)=3,mathrm{d}xwedgemathrm{d}ywedgemathrm{d}z$, using standard properties of the wedge product and the exterior derivative,
$(4)$: $mathrm{d}xwedgemathrm{d}ywedgemathrm{d}z$ is the Lebesgue measure on $mathbb{R}^3$ and the Lebesgue measure of $B^3$ is $4pi/3$.
I hope that everything is crystal clear.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3055375%2fdifferential-1-form-of-omega%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
2) You have shown in the first question that $omega$ is closed, whence using Poincaré's lemma, it is exact on each contractible subsets of $mathbb{R}^3$ on which $omega$ is defined, such that the half-space $z>0$, since it is convex.
3) If $omega$ were exact on $mathbb{R}^3setminus{0}$, using Stokes' theorem, its integral on $S^2$ would be zero, since $S^2$ has no boundary, but it is equal to $4pi$.
I feel a bit guilty about not computing this integral, so let's do it:
$$begin{align}int_{S^2}omega&=int_{S^2}x,mathrm{d}ywedgemathrm{d}z+y,mathrm{d}zwedgemathrm{d}x+z,mathrm{d}xwedge mathrm{d}y,tag{1}\tag{2}&=int_{B^3}mathrm{d}(x,mathrm{d}ywedgemathrm{d}z+y,mathrm{d}zwedgemathrm{d}x+z,mathrm{d}xwedgemathrm{d}y),\tag{3}&=3int_{B^3}mathrm{d}xwedgemathrm{d}ywedgemathrm{d}z,\&=4pi.tag{4}end{align}$$
Here are the steps behing each equality:
$(1)$: $omega_{vert S^2}=x,mathrm{d}ywedgemathrm{d}z+y,mathrm{d}zwedgemathrm{d}x+z,mathrm{d}xwedgemathrm{d}y$, since $x^2+y^2+z^2=1$ for $(x,y,z)in S^2$,
$(2)$: Stokes' theorem on $B^3$, noticing that $partial B^3=S^2$,
$(3)$: $mathrm{d}(x,mathrm{d}ywedgemathrm{d}z+y,mathrm{d}zwedgemathrm{d}x+z,mathrm{d}xwedgemathrm{d}y)=3,mathrm{d}xwedgemathrm{d}ywedgemathrm{d}z$, using standard properties of the wedge product and the exterior derivative,
$(4)$: $mathrm{d}xwedgemathrm{d}ywedgemathrm{d}z$ is the Lebesgue measure on $mathbb{R}^3$ and the Lebesgue measure of $B^3$ is $4pi/3$.
I hope that everything is crystal clear.
$endgroup$
add a comment |
$begingroup$
2) You have shown in the first question that $omega$ is closed, whence using Poincaré's lemma, it is exact on each contractible subsets of $mathbb{R}^3$ on which $omega$ is defined, such that the half-space $z>0$, since it is convex.
3) If $omega$ were exact on $mathbb{R}^3setminus{0}$, using Stokes' theorem, its integral on $S^2$ would be zero, since $S^2$ has no boundary, but it is equal to $4pi$.
I feel a bit guilty about not computing this integral, so let's do it:
$$begin{align}int_{S^2}omega&=int_{S^2}x,mathrm{d}ywedgemathrm{d}z+y,mathrm{d}zwedgemathrm{d}x+z,mathrm{d}xwedge mathrm{d}y,tag{1}\tag{2}&=int_{B^3}mathrm{d}(x,mathrm{d}ywedgemathrm{d}z+y,mathrm{d}zwedgemathrm{d}x+z,mathrm{d}xwedgemathrm{d}y),\tag{3}&=3int_{B^3}mathrm{d}xwedgemathrm{d}ywedgemathrm{d}z,\&=4pi.tag{4}end{align}$$
Here are the steps behing each equality:
$(1)$: $omega_{vert S^2}=x,mathrm{d}ywedgemathrm{d}z+y,mathrm{d}zwedgemathrm{d}x+z,mathrm{d}xwedgemathrm{d}y$, since $x^2+y^2+z^2=1$ for $(x,y,z)in S^2$,
$(2)$: Stokes' theorem on $B^3$, noticing that $partial B^3=S^2$,
$(3)$: $mathrm{d}(x,mathrm{d}ywedgemathrm{d}z+y,mathrm{d}zwedgemathrm{d}x+z,mathrm{d}xwedgemathrm{d}y)=3,mathrm{d}xwedgemathrm{d}ywedgemathrm{d}z$, using standard properties of the wedge product and the exterior derivative,
$(4)$: $mathrm{d}xwedgemathrm{d}ywedgemathrm{d}z$ is the Lebesgue measure on $mathbb{R}^3$ and the Lebesgue measure of $B^3$ is $4pi/3$.
I hope that everything is crystal clear.
$endgroup$
add a comment |
$begingroup$
2) You have shown in the first question that $omega$ is closed, whence using Poincaré's lemma, it is exact on each contractible subsets of $mathbb{R}^3$ on which $omega$ is defined, such that the half-space $z>0$, since it is convex.
3) If $omega$ were exact on $mathbb{R}^3setminus{0}$, using Stokes' theorem, its integral on $S^2$ would be zero, since $S^2$ has no boundary, but it is equal to $4pi$.
I feel a bit guilty about not computing this integral, so let's do it:
$$begin{align}int_{S^2}omega&=int_{S^2}x,mathrm{d}ywedgemathrm{d}z+y,mathrm{d}zwedgemathrm{d}x+z,mathrm{d}xwedge mathrm{d}y,tag{1}\tag{2}&=int_{B^3}mathrm{d}(x,mathrm{d}ywedgemathrm{d}z+y,mathrm{d}zwedgemathrm{d}x+z,mathrm{d}xwedgemathrm{d}y),\tag{3}&=3int_{B^3}mathrm{d}xwedgemathrm{d}ywedgemathrm{d}z,\&=4pi.tag{4}end{align}$$
Here are the steps behing each equality:
$(1)$: $omega_{vert S^2}=x,mathrm{d}ywedgemathrm{d}z+y,mathrm{d}zwedgemathrm{d}x+z,mathrm{d}xwedgemathrm{d}y$, since $x^2+y^2+z^2=1$ for $(x,y,z)in S^2$,
$(2)$: Stokes' theorem on $B^3$, noticing that $partial B^3=S^2$,
$(3)$: $mathrm{d}(x,mathrm{d}ywedgemathrm{d}z+y,mathrm{d}zwedgemathrm{d}x+z,mathrm{d}xwedgemathrm{d}y)=3,mathrm{d}xwedgemathrm{d}ywedgemathrm{d}z$, using standard properties of the wedge product and the exterior derivative,
$(4)$: $mathrm{d}xwedgemathrm{d}ywedgemathrm{d}z$ is the Lebesgue measure on $mathbb{R}^3$ and the Lebesgue measure of $B^3$ is $4pi/3$.
I hope that everything is crystal clear.
$endgroup$
2) You have shown in the first question that $omega$ is closed, whence using Poincaré's lemma, it is exact on each contractible subsets of $mathbb{R}^3$ on which $omega$ is defined, such that the half-space $z>0$, since it is convex.
3) If $omega$ were exact on $mathbb{R}^3setminus{0}$, using Stokes' theorem, its integral on $S^2$ would be zero, since $S^2$ has no boundary, but it is equal to $4pi$.
I feel a bit guilty about not computing this integral, so let's do it:
$$begin{align}int_{S^2}omega&=int_{S^2}x,mathrm{d}ywedgemathrm{d}z+y,mathrm{d}zwedgemathrm{d}x+z,mathrm{d}xwedge mathrm{d}y,tag{1}\tag{2}&=int_{B^3}mathrm{d}(x,mathrm{d}ywedgemathrm{d}z+y,mathrm{d}zwedgemathrm{d}x+z,mathrm{d}xwedgemathrm{d}y),\tag{3}&=3int_{B^3}mathrm{d}xwedgemathrm{d}ywedgemathrm{d}z,\&=4pi.tag{4}end{align}$$
Here are the steps behing each equality:
$(1)$: $omega_{vert S^2}=x,mathrm{d}ywedgemathrm{d}z+y,mathrm{d}zwedgemathrm{d}x+z,mathrm{d}xwedgemathrm{d}y$, since $x^2+y^2+z^2=1$ for $(x,y,z)in S^2$,
$(2)$: Stokes' theorem on $B^3$, noticing that $partial B^3=S^2$,
$(3)$: $mathrm{d}(x,mathrm{d}ywedgemathrm{d}z+y,mathrm{d}zwedgemathrm{d}x+z,mathrm{d}xwedgemathrm{d}y)=3,mathrm{d}xwedgemathrm{d}ywedgemathrm{d}z$, using standard properties of the wedge product and the exterior derivative,
$(4)$: $mathrm{d}xwedgemathrm{d}ywedgemathrm{d}z$ is the Lebesgue measure on $mathbb{R}^3$ and the Lebesgue measure of $B^3$ is $4pi/3$.
I hope that everything is crystal clear.
edited Dec 29 '18 at 0:20
answered Dec 28 '18 at 23:20
C. FalconC. Falcon
15.2k41950
15.2k41950
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3055375%2fdifferential-1-form-of-omega%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown