Which convergence when discussing density in $L^p$?












1












$begingroup$


For an exercise in my measure theory course, I need to prove some density results in the $L^p(mathbb R^n)$ space. But density requires convergence and this gets me confused. So when discussing density of a subset (e.g. the measurable simple functions) in $L^p$, what convergence are we talking about? Is it pointwise convergence or $L^p$ convergence?










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    $L^p$ convergence
    $endgroup$
    – mathworker21
    Dec 28 '18 at 21:13






  • 2




    $begingroup$
    When we say $L^p$ space, we mean $L^p$ set with $L^p$ norm.
    $endgroup$
    – Jakobian
    Dec 28 '18 at 21:16










  • $begingroup$
    All right, thanks a lot to both.
    $endgroup$
    – Bermudes
    Dec 28 '18 at 21:27
















1












$begingroup$


For an exercise in my measure theory course, I need to prove some density results in the $L^p(mathbb R^n)$ space. But density requires convergence and this gets me confused. So when discussing density of a subset (e.g. the measurable simple functions) in $L^p$, what convergence are we talking about? Is it pointwise convergence or $L^p$ convergence?










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    $L^p$ convergence
    $endgroup$
    – mathworker21
    Dec 28 '18 at 21:13






  • 2




    $begingroup$
    When we say $L^p$ space, we mean $L^p$ set with $L^p$ norm.
    $endgroup$
    – Jakobian
    Dec 28 '18 at 21:16










  • $begingroup$
    All right, thanks a lot to both.
    $endgroup$
    – Bermudes
    Dec 28 '18 at 21:27














1












1








1





$begingroup$


For an exercise in my measure theory course, I need to prove some density results in the $L^p(mathbb R^n)$ space. But density requires convergence and this gets me confused. So when discussing density of a subset (e.g. the measurable simple functions) in $L^p$, what convergence are we talking about? Is it pointwise convergence or $L^p$ convergence?










share|cite|improve this question









$endgroup$




For an exercise in my measure theory course, I need to prove some density results in the $L^p(mathbb R^n)$ space. But density requires convergence and this gets me confused. So when discussing density of a subset (e.g. the measurable simple functions) in $L^p$, what convergence are we talking about? Is it pointwise convergence or $L^p$ convergence?







measure-theory lp-spaces






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 28 '18 at 21:11









BermudesBermudes

18713




18713








  • 2




    $begingroup$
    $L^p$ convergence
    $endgroup$
    – mathworker21
    Dec 28 '18 at 21:13






  • 2




    $begingroup$
    When we say $L^p$ space, we mean $L^p$ set with $L^p$ norm.
    $endgroup$
    – Jakobian
    Dec 28 '18 at 21:16










  • $begingroup$
    All right, thanks a lot to both.
    $endgroup$
    – Bermudes
    Dec 28 '18 at 21:27














  • 2




    $begingroup$
    $L^p$ convergence
    $endgroup$
    – mathworker21
    Dec 28 '18 at 21:13






  • 2




    $begingroup$
    When we say $L^p$ space, we mean $L^p$ set with $L^p$ norm.
    $endgroup$
    – Jakobian
    Dec 28 '18 at 21:16










  • $begingroup$
    All right, thanks a lot to both.
    $endgroup$
    – Bermudes
    Dec 28 '18 at 21:27








2




2




$begingroup$
$L^p$ convergence
$endgroup$
– mathworker21
Dec 28 '18 at 21:13




$begingroup$
$L^p$ convergence
$endgroup$
– mathworker21
Dec 28 '18 at 21:13




2




2




$begingroup$
When we say $L^p$ space, we mean $L^p$ set with $L^p$ norm.
$endgroup$
– Jakobian
Dec 28 '18 at 21:16




$begingroup$
When we say $L^p$ space, we mean $L^p$ set with $L^p$ norm.
$endgroup$
– Jakobian
Dec 28 '18 at 21:16












$begingroup$
All right, thanks a lot to both.
$endgroup$
– Bermudes
Dec 28 '18 at 21:27




$begingroup$
All right, thanks a lot to both.
$endgroup$
– Bermudes
Dec 28 '18 at 21:27










1 Answer
1






active

oldest

votes


















0












$begingroup$

A subset $S$ of $mathbb L^pleft(X,mathcal F,muright)$ is dense in $mathbb L^pleft(X,mathcal F,muright)$ if for each element $f$ of $mathbb L^pleft(X,mathcal F,muright)$ and each positive $varepsilon$, there exists an element $g$ of $S$ such that $leftlVert f-grightrVert_p:=left(int_Xleftlvert f(x)-g(x)rightrvert^pmathrm dmu(x)right)^{1/p}lt varepsilon$, or equivalently, there exists a sequence $left(g_nright)_{ngeqslant 1}$ of elements of $S$ such that $lim_{nto +infty}leftlVert f-g_nrightrVert_p=0$.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3055285%2fwhich-convergence-when-discussing-density-in-lp%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    A subset $S$ of $mathbb L^pleft(X,mathcal F,muright)$ is dense in $mathbb L^pleft(X,mathcal F,muright)$ if for each element $f$ of $mathbb L^pleft(X,mathcal F,muright)$ and each positive $varepsilon$, there exists an element $g$ of $S$ such that $leftlVert f-grightrVert_p:=left(int_Xleftlvert f(x)-g(x)rightrvert^pmathrm dmu(x)right)^{1/p}lt varepsilon$, or equivalently, there exists a sequence $left(g_nright)_{ngeqslant 1}$ of elements of $S$ such that $lim_{nto +infty}leftlVert f-g_nrightrVert_p=0$.






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      A subset $S$ of $mathbb L^pleft(X,mathcal F,muright)$ is dense in $mathbb L^pleft(X,mathcal F,muright)$ if for each element $f$ of $mathbb L^pleft(X,mathcal F,muright)$ and each positive $varepsilon$, there exists an element $g$ of $S$ such that $leftlVert f-grightrVert_p:=left(int_Xleftlvert f(x)-g(x)rightrvert^pmathrm dmu(x)right)^{1/p}lt varepsilon$, or equivalently, there exists a sequence $left(g_nright)_{ngeqslant 1}$ of elements of $S$ such that $lim_{nto +infty}leftlVert f-g_nrightrVert_p=0$.






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        A subset $S$ of $mathbb L^pleft(X,mathcal F,muright)$ is dense in $mathbb L^pleft(X,mathcal F,muright)$ if for each element $f$ of $mathbb L^pleft(X,mathcal F,muright)$ and each positive $varepsilon$, there exists an element $g$ of $S$ such that $leftlVert f-grightrVert_p:=left(int_Xleftlvert f(x)-g(x)rightrvert^pmathrm dmu(x)right)^{1/p}lt varepsilon$, or equivalently, there exists a sequence $left(g_nright)_{ngeqslant 1}$ of elements of $S$ such that $lim_{nto +infty}leftlVert f-g_nrightrVert_p=0$.






        share|cite|improve this answer









        $endgroup$



        A subset $S$ of $mathbb L^pleft(X,mathcal F,muright)$ is dense in $mathbb L^pleft(X,mathcal F,muright)$ if for each element $f$ of $mathbb L^pleft(X,mathcal F,muright)$ and each positive $varepsilon$, there exists an element $g$ of $S$ such that $leftlVert f-grightrVert_p:=left(int_Xleftlvert f(x)-g(x)rightrvert^pmathrm dmu(x)right)^{1/p}lt varepsilon$, or equivalently, there exists a sequence $left(g_nright)_{ngeqslant 1}$ of elements of $S$ such that $lim_{nto +infty}leftlVert f-g_nrightrVert_p=0$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 21 at 10:07









        Davide GiraudoDavide Giraudo

        127k16151264




        127k16151264






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3055285%2fwhich-convergence-when-discussing-density-in-lp%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Ellipse (mathématiques)

            Quarter-circle Tiles

            Mont Emei