Convergence Uniform / Holder continuous











up vote
0
down vote

favorite












Let $f: R->R$ be a $2L-periodic$ function. Suppose there are 'The positive constant and $α$ $∈$ $(0, 1)$
such that
$| f (x) - f (y) | ≤ A(| x - y |^α + | x - y |) $∀ x,y $ and ∈ [-L, L].$
Show that $Sn$ converges uniformly to $f$ in any compact set of $R$



I was thinking of proving that $ f $ is continuous holder,
soon satisfies the Dini test, then $ Sn $ converges to $ f $.
But how can I ensure that convergence is uniform?
Should I use the fact that f is bounded variation?










share|cite|improve this question


























    up vote
    0
    down vote

    favorite












    Let $f: R->R$ be a $2L-periodic$ function. Suppose there are 'The positive constant and $α$ $∈$ $(0, 1)$
    such that
    $| f (x) - f (y) | ≤ A(| x - y |^α + | x - y |) $∀ x,y $ and ∈ [-L, L].$
    Show that $Sn$ converges uniformly to $f$ in any compact set of $R$



    I was thinking of proving that $ f $ is continuous holder,
    soon satisfies the Dini test, then $ Sn $ converges to $ f $.
    But how can I ensure that convergence is uniform?
    Should I use the fact that f is bounded variation?










    share|cite|improve this question
























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      Let $f: R->R$ be a $2L-periodic$ function. Suppose there are 'The positive constant and $α$ $∈$ $(0, 1)$
      such that
      $| f (x) - f (y) | ≤ A(| x - y |^α + | x - y |) $∀ x,y $ and ∈ [-L, L].$
      Show that $Sn$ converges uniformly to $f$ in any compact set of $R$



      I was thinking of proving that $ f $ is continuous holder,
      soon satisfies the Dini test, then $ Sn $ converges to $ f $.
      But how can I ensure that convergence is uniform?
      Should I use the fact that f is bounded variation?










      share|cite|improve this question













      Let $f: R->R$ be a $2L-periodic$ function. Suppose there are 'The positive constant and $α$ $∈$ $(0, 1)$
      such that
      $| f (x) - f (y) | ≤ A(| x - y |^α + | x - y |) $∀ x,y $ and ∈ [-L, L].$
      Show that $Sn$ converges uniformly to $f$ in any compact set of $R$



      I was thinking of proving that $ f $ is continuous holder,
      soon satisfies the Dini test, then $ Sn $ converges to $ f $.
      But how can I ensure that convergence is uniform?
      Should I use the fact that f is bounded variation?







      real-analysis fourier-analysis






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Nov 17 at 22:28









      justlearningmath

      175




      175



























          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














           

          draft saved


          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3002892%2fconvergence-uniform-holder-continuous%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown






























          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















           

          draft saved


          draft discarded



















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3002892%2fconvergence-uniform-holder-continuous%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Ellipse (mathématiques)

          Quarter-circle Tiles

          Mont Emei