Is it true that if $H_1$ and $H_2$ are isomorphic cyclic subgroups of $G$, then $G/H_1cong G/H_2$?
up vote
1
down vote
favorite
I have a question: it is true that if $H_1$ and $H_2$ are cyclic groups that are isomorphic, then $G/H_1$ is isomorphic to $G/H_2$? I know that if I remove the condition "cyclic groups", the given statement is false and there are numerous counterexamples that disproves it, but I don't know if my statement is true and I don't how to create a counterexample or to prove it. If it is true, can you give me a hint about how can this be proven?
For example, I just have shown that $Z_{12}/ langle 2 rangle$ is isomorphic to $Z_{12}/Z_6$ which is isomorphic to $Z_3$ (since both $langle 2 rangle$ and $Z_6$ are isomorphic). How this can be generalized?
group-theory normal-subgroups
add a comment |
up vote
1
down vote
favorite
I have a question: it is true that if $H_1$ and $H_2$ are cyclic groups that are isomorphic, then $G/H_1$ is isomorphic to $G/H_2$? I know that if I remove the condition "cyclic groups", the given statement is false and there are numerous counterexamples that disproves it, but I don't know if my statement is true and I don't how to create a counterexample or to prove it. If it is true, can you give me a hint about how can this be proven?
For example, I just have shown that $Z_{12}/ langle 2 rangle$ is isomorphic to $Z_{12}/Z_6$ which is isomorphic to $Z_3$ (since both $langle 2 rangle$ and $Z_6$ are isomorphic). How this can be generalized?
group-theory normal-subgroups
You haven't specified whether $G$ is abelian or whether your subgroups are normal or not, so it's ambiguous what you mean by "isomorphic" in your question. If $G$ is nonabelian the natural reading would be "isomorphic as $G$-sets," but it sounds like you intend $G$ to be abelian and to ask for an isomorphism of abelian groups.
– Qiaochu Yuan
yesterday
@QiaochuYuan Many people working in group theory (including myself) only write $G/N$ when $N$ is a normal subgroup of $G$. And the fact that reference is made to isomorphisms between two quotients strongly suggests that this convention is eing used here.
– Derek Holt
yesterday
I agree with Derek. In this particular case though, I think the OP has simply neglected to mention that $H_1$, $H_2$ are assumed to be normal subgroups of the group.
– the_fox
yesterday
@Derek: really? Then how do you refer to the transitive $G$-set with stabilizer $H$?
– Qiaochu Yuan
yesterday
I don't have a specific notation for that. But in any case that would (mildly) conflict with its meaning as a quotient group, because a group is not the same thing as a $G$-set.
– Derek Holt
yesterday
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
I have a question: it is true that if $H_1$ and $H_2$ are cyclic groups that are isomorphic, then $G/H_1$ is isomorphic to $G/H_2$? I know that if I remove the condition "cyclic groups", the given statement is false and there are numerous counterexamples that disproves it, but I don't know if my statement is true and I don't how to create a counterexample or to prove it. If it is true, can you give me a hint about how can this be proven?
For example, I just have shown that $Z_{12}/ langle 2 rangle$ is isomorphic to $Z_{12}/Z_6$ which is isomorphic to $Z_3$ (since both $langle 2 rangle$ and $Z_6$ are isomorphic). How this can be generalized?
group-theory normal-subgroups
I have a question: it is true that if $H_1$ and $H_2$ are cyclic groups that are isomorphic, then $G/H_1$ is isomorphic to $G/H_2$? I know that if I remove the condition "cyclic groups", the given statement is false and there are numerous counterexamples that disproves it, but I don't know if my statement is true and I don't how to create a counterexample or to prove it. If it is true, can you give me a hint about how can this be proven?
For example, I just have shown that $Z_{12}/ langle 2 rangle$ is isomorphic to $Z_{12}/Z_6$ which is isomorphic to $Z_3$ (since both $langle 2 rangle$ and $Z_6$ are isomorphic). How this can be generalized?
group-theory normal-subgroups
group-theory normal-subgroups
edited 2 days ago
Asaf Karagila♦
300k32420750
300k32420750
asked 2 days ago
user573497
15919
15919
You haven't specified whether $G$ is abelian or whether your subgroups are normal or not, so it's ambiguous what you mean by "isomorphic" in your question. If $G$ is nonabelian the natural reading would be "isomorphic as $G$-sets," but it sounds like you intend $G$ to be abelian and to ask for an isomorphism of abelian groups.
– Qiaochu Yuan
yesterday
@QiaochuYuan Many people working in group theory (including myself) only write $G/N$ when $N$ is a normal subgroup of $G$. And the fact that reference is made to isomorphisms between two quotients strongly suggests that this convention is eing used here.
– Derek Holt
yesterday
I agree with Derek. In this particular case though, I think the OP has simply neglected to mention that $H_1$, $H_2$ are assumed to be normal subgroups of the group.
– the_fox
yesterday
@Derek: really? Then how do you refer to the transitive $G$-set with stabilizer $H$?
– Qiaochu Yuan
yesterday
I don't have a specific notation for that. But in any case that would (mildly) conflict with its meaning as a quotient group, because a group is not the same thing as a $G$-set.
– Derek Holt
yesterday
add a comment |
You haven't specified whether $G$ is abelian or whether your subgroups are normal or not, so it's ambiguous what you mean by "isomorphic" in your question. If $G$ is nonabelian the natural reading would be "isomorphic as $G$-sets," but it sounds like you intend $G$ to be abelian and to ask for an isomorphism of abelian groups.
– Qiaochu Yuan
yesterday
@QiaochuYuan Many people working in group theory (including myself) only write $G/N$ when $N$ is a normal subgroup of $G$. And the fact that reference is made to isomorphisms between two quotients strongly suggests that this convention is eing used here.
– Derek Holt
yesterday
I agree with Derek. In this particular case though, I think the OP has simply neglected to mention that $H_1$, $H_2$ are assumed to be normal subgroups of the group.
– the_fox
yesterday
@Derek: really? Then how do you refer to the transitive $G$-set with stabilizer $H$?
– Qiaochu Yuan
yesterday
I don't have a specific notation for that. But in any case that would (mildly) conflict with its meaning as a quotient group, because a group is not the same thing as a $G$-set.
– Derek Holt
yesterday
You haven't specified whether $G$ is abelian or whether your subgroups are normal or not, so it's ambiguous what you mean by "isomorphic" in your question. If $G$ is nonabelian the natural reading would be "isomorphic as $G$-sets," but it sounds like you intend $G$ to be abelian and to ask for an isomorphism of abelian groups.
– Qiaochu Yuan
yesterday
You haven't specified whether $G$ is abelian or whether your subgroups are normal or not, so it's ambiguous what you mean by "isomorphic" in your question. If $G$ is nonabelian the natural reading would be "isomorphic as $G$-sets," but it sounds like you intend $G$ to be abelian and to ask for an isomorphism of abelian groups.
– Qiaochu Yuan
yesterday
@QiaochuYuan Many people working in group theory (including myself) only write $G/N$ when $N$ is a normal subgroup of $G$. And the fact that reference is made to isomorphisms between two quotients strongly suggests that this convention is eing used here.
– Derek Holt
yesterday
@QiaochuYuan Many people working in group theory (including myself) only write $G/N$ when $N$ is a normal subgroup of $G$. And the fact that reference is made to isomorphisms between two quotients strongly suggests that this convention is eing used here.
– Derek Holt
yesterday
I agree with Derek. In this particular case though, I think the OP has simply neglected to mention that $H_1$, $H_2$ are assumed to be normal subgroups of the group.
– the_fox
yesterday
I agree with Derek. In this particular case though, I think the OP has simply neglected to mention that $H_1$, $H_2$ are assumed to be normal subgroups of the group.
– the_fox
yesterday
@Derek: really? Then how do you refer to the transitive $G$-set with stabilizer $H$?
– Qiaochu Yuan
yesterday
@Derek: really? Then how do you refer to the transitive $G$-set with stabilizer $H$?
– Qiaochu Yuan
yesterday
I don't have a specific notation for that. But in any case that would (mildly) conflict with its meaning as a quotient group, because a group is not the same thing as a $G$-set.
– Derek Holt
yesterday
I don't have a specific notation for that. But in any case that would (mildly) conflict with its meaning as a quotient group, because a group is not the same thing as a $G$-set.
– Derek Holt
yesterday
add a comment |
2 Answers
2
active
oldest
votes
up vote
8
down vote
No, that's not true. Take $G = C_2 times C_4$ and note that since $G$ is abelian, every subgroup of $G$ is normal in $G$. Let $H = C_2$ be the first direct factor of $G$ and $K$ be the unique subgroup of order $2$ of $C_4$. Obviously, $H cong K$ since both have order $2$, but $G/H cong C_4$ while $G/K cong C_2 times C_2$.
add a comment |
up vote
2
down vote
Did you try cyclic subgroups of the additive group of integers $mathbb{Z}$?
But what about integers mod n? I edited my question and I found very interesting that observation about the isomorphism about quotient groups.
– user573497
2 days ago
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
8
down vote
No, that's not true. Take $G = C_2 times C_4$ and note that since $G$ is abelian, every subgroup of $G$ is normal in $G$. Let $H = C_2$ be the first direct factor of $G$ and $K$ be the unique subgroup of order $2$ of $C_4$. Obviously, $H cong K$ since both have order $2$, but $G/H cong C_4$ while $G/K cong C_2 times C_2$.
add a comment |
up vote
8
down vote
No, that's not true. Take $G = C_2 times C_4$ and note that since $G$ is abelian, every subgroup of $G$ is normal in $G$. Let $H = C_2$ be the first direct factor of $G$ and $K$ be the unique subgroup of order $2$ of $C_4$. Obviously, $H cong K$ since both have order $2$, but $G/H cong C_4$ while $G/K cong C_2 times C_2$.
add a comment |
up vote
8
down vote
up vote
8
down vote
No, that's not true. Take $G = C_2 times C_4$ and note that since $G$ is abelian, every subgroup of $G$ is normal in $G$. Let $H = C_2$ be the first direct factor of $G$ and $K$ be the unique subgroup of order $2$ of $C_4$. Obviously, $H cong K$ since both have order $2$, but $G/H cong C_4$ while $G/K cong C_2 times C_2$.
No, that's not true. Take $G = C_2 times C_4$ and note that since $G$ is abelian, every subgroup of $G$ is normal in $G$. Let $H = C_2$ be the first direct factor of $G$ and $K$ be the unique subgroup of order $2$ of $C_4$. Obviously, $H cong K$ since both have order $2$, but $G/H cong C_4$ while $G/K cong C_2 times C_2$.
answered 2 days ago
the_fox
2,1761429
2,1761429
add a comment |
add a comment |
up vote
2
down vote
Did you try cyclic subgroups of the additive group of integers $mathbb{Z}$?
But what about integers mod n? I edited my question and I found very interesting that observation about the isomorphism about quotient groups.
– user573497
2 days ago
add a comment |
up vote
2
down vote
Did you try cyclic subgroups of the additive group of integers $mathbb{Z}$?
But what about integers mod n? I edited my question and I found very interesting that observation about the isomorphism about quotient groups.
– user573497
2 days ago
add a comment |
up vote
2
down vote
up vote
2
down vote
Did you try cyclic subgroups of the additive group of integers $mathbb{Z}$?
Did you try cyclic subgroups of the additive group of integers $mathbb{Z}$?
answered 2 days ago
Bartosz Malman
7181520
7181520
But what about integers mod n? I edited my question and I found very interesting that observation about the isomorphism about quotient groups.
– user573497
2 days ago
add a comment |
But what about integers mod n? I edited my question and I found very interesting that observation about the isomorphism about quotient groups.
– user573497
2 days ago
But what about integers mod n? I edited my question and I found very interesting that observation about the isomorphism about quotient groups.
– user573497
2 days ago
But what about integers mod n? I edited my question and I found very interesting that observation about the isomorphism about quotient groups.
– user573497
2 days ago
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3012280%2fis-it-true-that-if-h-1-and-h-2-are-isomorphic-cyclic-subgroups-of-g-then%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
You haven't specified whether $G$ is abelian or whether your subgroups are normal or not, so it's ambiguous what you mean by "isomorphic" in your question. If $G$ is nonabelian the natural reading would be "isomorphic as $G$-sets," but it sounds like you intend $G$ to be abelian and to ask for an isomorphism of abelian groups.
– Qiaochu Yuan
yesterday
@QiaochuYuan Many people working in group theory (including myself) only write $G/N$ when $N$ is a normal subgroup of $G$. And the fact that reference is made to isomorphisms between two quotients strongly suggests that this convention is eing used here.
– Derek Holt
yesterday
I agree with Derek. In this particular case though, I think the OP has simply neglected to mention that $H_1$, $H_2$ are assumed to be normal subgroups of the group.
– the_fox
yesterday
@Derek: really? Then how do you refer to the transitive $G$-set with stabilizer $H$?
– Qiaochu Yuan
yesterday
I don't have a specific notation for that. But in any case that would (mildly) conflict with its meaning as a quotient group, because a group is not the same thing as a $G$-set.
– Derek Holt
yesterday