$lim_{ntoinfty}left(sum_{k=0}^{n-1}(zeta(2)-H_{k,2})-H_nright)=1$
up vote
5
down vote
favorite
I found this limit in a book, without any explanation:
$$lim_{ntoinfty}left(sum_{k=0}^{n-1}(zeta(2)-H_{k,2})-H_nright)=1$$
where $H_{k,2}:=sum_{j=1}^kfrac1{j^2}$. However Im unable to find the value of this limit from myself. After some work I get the equivalent expression
$$lim_{ntoinfty}sum_{k=0}^{n-1}sum_{j=k}^inftyfrac1{(j+1)^2(j+2)}$$
but anyway Im stuck here. Can someone show me a way to compute this limit? Thank you.
UPDATE: Wolfram Mathematica computed it value perfectly, so I guess there is some integral or algebraic identity from where to calculate it.
calculus limits special-functions
add a comment |
up vote
5
down vote
favorite
I found this limit in a book, without any explanation:
$$lim_{ntoinfty}left(sum_{k=0}^{n-1}(zeta(2)-H_{k,2})-H_nright)=1$$
where $H_{k,2}:=sum_{j=1}^kfrac1{j^2}$. However Im unable to find the value of this limit from myself. After some work I get the equivalent expression
$$lim_{ntoinfty}sum_{k=0}^{n-1}sum_{j=k}^inftyfrac1{(j+1)^2(j+2)}$$
but anyway Im stuck here. Can someone show me a way to compute this limit? Thank you.
UPDATE: Wolfram Mathematica computed it value perfectly, so I guess there is some integral or algebraic identity from where to calculate it.
calculus limits special-functions
add a comment |
up vote
5
down vote
favorite
up vote
5
down vote
favorite
I found this limit in a book, without any explanation:
$$lim_{ntoinfty}left(sum_{k=0}^{n-1}(zeta(2)-H_{k,2})-H_nright)=1$$
where $H_{k,2}:=sum_{j=1}^kfrac1{j^2}$. However Im unable to find the value of this limit from myself. After some work I get the equivalent expression
$$lim_{ntoinfty}sum_{k=0}^{n-1}sum_{j=k}^inftyfrac1{(j+1)^2(j+2)}$$
but anyway Im stuck here. Can someone show me a way to compute this limit? Thank you.
UPDATE: Wolfram Mathematica computed it value perfectly, so I guess there is some integral or algebraic identity from where to calculate it.
calculus limits special-functions
I found this limit in a book, without any explanation:
$$lim_{ntoinfty}left(sum_{k=0}^{n-1}(zeta(2)-H_{k,2})-H_nright)=1$$
where $H_{k,2}:=sum_{j=1}^kfrac1{j^2}$. However Im unable to find the value of this limit from myself. After some work I get the equivalent expression
$$lim_{ntoinfty}sum_{k=0}^{n-1}sum_{j=k}^inftyfrac1{(j+1)^2(j+2)}$$
but anyway Im stuck here. Can someone show me a way to compute this limit? Thank you.
UPDATE: Wolfram Mathematica computed it value perfectly, so I guess there is some integral or algebraic identity from where to calculate it.
calculus limits special-functions
calculus limits special-functions
edited Nov 17 at 23:20
asked Nov 17 at 22:05
Masacroso
12.2k41746
12.2k41746
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
up vote
3
down vote
accepted
Let's see:
$$begin{eqnarray*} sum_{k=0}^{n-1}left(zeta(2)-H_k^{(2)}right) &=& zeta(2)+sum_{k=1}^{n-1}left(zeta(2)-H_k^{(2)}right)\&stackrel{text{SBP}}{=}&zeta(2)+(n-1)(zeta(2)-H_{n-1}^{(2)})+sum_{k=1}^{n-2}frac{k}{(k+1)^2}\&=&zeta(2)+(n-1)(zeta(2)-H_{n-1}^{(2)})+(H_{n-1}-1)-sum_{k=1}^{n-2}frac{1}{(k+1)^2}\&=&n( zeta(2)-H_{n-1}^{(2)})+H_{n-1}end{eqnarray*}$$
hence the claim is equivalent to
$$ lim_{nto +infty} n(zeta(2)-H_{n-1}^{(2)}) = lim_{nto +infty}nsum_{mgeq n}frac{1}{m^2} = 1 $$
which is pretty clear since $sum_{mgeq n}frac{1}{m^2} = Oleft(frac{1}{n^2}right)+int_{n}^{+infty}frac{dx}{x^2}=frac{1}{n}+Oleft(frac{1}{n^2}right)$.
$text{SBP}$ stands for Summation By Parts, of course.
add a comment |
up vote
2
down vote
Considering your last expression $$a_n=sum_{k=0}^{n-1}sum_{j=k}^inftyfrac1{(j+1)^2(j+2)}$$
$$sum_{j=k}^inftyfrac1{(j+1)^2(j+2)}=psi ^{(1)}(k+1)-frac{1}{k+1}$$ making
$$a_n=n ,psi ^{(1)}(n+1)$$ the expansion of which being
$$a_n=1-frac{1}{2 n}+frac{1}{6 n^2}+Oleft(frac{1}{n^4}right)$$
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
3
down vote
accepted
Let's see:
$$begin{eqnarray*} sum_{k=0}^{n-1}left(zeta(2)-H_k^{(2)}right) &=& zeta(2)+sum_{k=1}^{n-1}left(zeta(2)-H_k^{(2)}right)\&stackrel{text{SBP}}{=}&zeta(2)+(n-1)(zeta(2)-H_{n-1}^{(2)})+sum_{k=1}^{n-2}frac{k}{(k+1)^2}\&=&zeta(2)+(n-1)(zeta(2)-H_{n-1}^{(2)})+(H_{n-1}-1)-sum_{k=1}^{n-2}frac{1}{(k+1)^2}\&=&n( zeta(2)-H_{n-1}^{(2)})+H_{n-1}end{eqnarray*}$$
hence the claim is equivalent to
$$ lim_{nto +infty} n(zeta(2)-H_{n-1}^{(2)}) = lim_{nto +infty}nsum_{mgeq n}frac{1}{m^2} = 1 $$
which is pretty clear since $sum_{mgeq n}frac{1}{m^2} = Oleft(frac{1}{n^2}right)+int_{n}^{+infty}frac{dx}{x^2}=frac{1}{n}+Oleft(frac{1}{n^2}right)$.
$text{SBP}$ stands for Summation By Parts, of course.
add a comment |
up vote
3
down vote
accepted
Let's see:
$$begin{eqnarray*} sum_{k=0}^{n-1}left(zeta(2)-H_k^{(2)}right) &=& zeta(2)+sum_{k=1}^{n-1}left(zeta(2)-H_k^{(2)}right)\&stackrel{text{SBP}}{=}&zeta(2)+(n-1)(zeta(2)-H_{n-1}^{(2)})+sum_{k=1}^{n-2}frac{k}{(k+1)^2}\&=&zeta(2)+(n-1)(zeta(2)-H_{n-1}^{(2)})+(H_{n-1}-1)-sum_{k=1}^{n-2}frac{1}{(k+1)^2}\&=&n( zeta(2)-H_{n-1}^{(2)})+H_{n-1}end{eqnarray*}$$
hence the claim is equivalent to
$$ lim_{nto +infty} n(zeta(2)-H_{n-1}^{(2)}) = lim_{nto +infty}nsum_{mgeq n}frac{1}{m^2} = 1 $$
which is pretty clear since $sum_{mgeq n}frac{1}{m^2} = Oleft(frac{1}{n^2}right)+int_{n}^{+infty}frac{dx}{x^2}=frac{1}{n}+Oleft(frac{1}{n^2}right)$.
$text{SBP}$ stands for Summation By Parts, of course.
add a comment |
up vote
3
down vote
accepted
up vote
3
down vote
accepted
Let's see:
$$begin{eqnarray*} sum_{k=0}^{n-1}left(zeta(2)-H_k^{(2)}right) &=& zeta(2)+sum_{k=1}^{n-1}left(zeta(2)-H_k^{(2)}right)\&stackrel{text{SBP}}{=}&zeta(2)+(n-1)(zeta(2)-H_{n-1}^{(2)})+sum_{k=1}^{n-2}frac{k}{(k+1)^2}\&=&zeta(2)+(n-1)(zeta(2)-H_{n-1}^{(2)})+(H_{n-1}-1)-sum_{k=1}^{n-2}frac{1}{(k+1)^2}\&=&n( zeta(2)-H_{n-1}^{(2)})+H_{n-1}end{eqnarray*}$$
hence the claim is equivalent to
$$ lim_{nto +infty} n(zeta(2)-H_{n-1}^{(2)}) = lim_{nto +infty}nsum_{mgeq n}frac{1}{m^2} = 1 $$
which is pretty clear since $sum_{mgeq n}frac{1}{m^2} = Oleft(frac{1}{n^2}right)+int_{n}^{+infty}frac{dx}{x^2}=frac{1}{n}+Oleft(frac{1}{n^2}right)$.
$text{SBP}$ stands for Summation By Parts, of course.
Let's see:
$$begin{eqnarray*} sum_{k=0}^{n-1}left(zeta(2)-H_k^{(2)}right) &=& zeta(2)+sum_{k=1}^{n-1}left(zeta(2)-H_k^{(2)}right)\&stackrel{text{SBP}}{=}&zeta(2)+(n-1)(zeta(2)-H_{n-1}^{(2)})+sum_{k=1}^{n-2}frac{k}{(k+1)^2}\&=&zeta(2)+(n-1)(zeta(2)-H_{n-1}^{(2)})+(H_{n-1}-1)-sum_{k=1}^{n-2}frac{1}{(k+1)^2}\&=&n( zeta(2)-H_{n-1}^{(2)})+H_{n-1}end{eqnarray*}$$
hence the claim is equivalent to
$$ lim_{nto +infty} n(zeta(2)-H_{n-1}^{(2)}) = lim_{nto +infty}nsum_{mgeq n}frac{1}{m^2} = 1 $$
which is pretty clear since $sum_{mgeq n}frac{1}{m^2} = Oleft(frac{1}{n^2}right)+int_{n}^{+infty}frac{dx}{x^2}=frac{1}{n}+Oleft(frac{1}{n^2}right)$.
$text{SBP}$ stands for Summation By Parts, of course.
answered Nov 17 at 23:23
Jack D'Aurizio
283k33275653
283k33275653
add a comment |
add a comment |
up vote
2
down vote
Considering your last expression $$a_n=sum_{k=0}^{n-1}sum_{j=k}^inftyfrac1{(j+1)^2(j+2)}$$
$$sum_{j=k}^inftyfrac1{(j+1)^2(j+2)}=psi ^{(1)}(k+1)-frac{1}{k+1}$$ making
$$a_n=n ,psi ^{(1)}(n+1)$$ the expansion of which being
$$a_n=1-frac{1}{2 n}+frac{1}{6 n^2}+Oleft(frac{1}{n^4}right)$$
add a comment |
up vote
2
down vote
Considering your last expression $$a_n=sum_{k=0}^{n-1}sum_{j=k}^inftyfrac1{(j+1)^2(j+2)}$$
$$sum_{j=k}^inftyfrac1{(j+1)^2(j+2)}=psi ^{(1)}(k+1)-frac{1}{k+1}$$ making
$$a_n=n ,psi ^{(1)}(n+1)$$ the expansion of which being
$$a_n=1-frac{1}{2 n}+frac{1}{6 n^2}+Oleft(frac{1}{n^4}right)$$
add a comment |
up vote
2
down vote
up vote
2
down vote
Considering your last expression $$a_n=sum_{k=0}^{n-1}sum_{j=k}^inftyfrac1{(j+1)^2(j+2)}$$
$$sum_{j=k}^inftyfrac1{(j+1)^2(j+2)}=psi ^{(1)}(k+1)-frac{1}{k+1}$$ making
$$a_n=n ,psi ^{(1)}(n+1)$$ the expansion of which being
$$a_n=1-frac{1}{2 n}+frac{1}{6 n^2}+Oleft(frac{1}{n^4}right)$$
Considering your last expression $$a_n=sum_{k=0}^{n-1}sum_{j=k}^inftyfrac1{(j+1)^2(j+2)}$$
$$sum_{j=k}^inftyfrac1{(j+1)^2(j+2)}=psi ^{(1)}(k+1)-frac{1}{k+1}$$ making
$$a_n=n ,psi ^{(1)}(n+1)$$ the expansion of which being
$$a_n=1-frac{1}{2 n}+frac{1}{6 n^2}+Oleft(frac{1}{n^4}right)$$
answered Nov 18 at 6:06
Claude Leibovici
116k1156131
116k1156131
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3002874%2flim-n-to-infty-left-sum-k-0n-1-zeta2-h-k-2-h-n-right-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown