Generate NDVI Rasters from USGS EarthExplorer Landsat 8











up vote
4
down vote

favorite












I've written the following using Python Dictionaries and Pathlib Module. I'd like to improve the first function: list_landsat_bands.



I've created a list of file patterns to match, which I then use Pathlib iterdir to iterate over each directory. The reason is that I need to group the Landsat bands retrieved from the pattern matching using Pathlib glob. (i.e. key = (tile number, date): values [tile_band4, tile_band5, tile_metadata (txt)]. I'd like to find a better way of generating the initial dictionary eliminating the nested for loops. Any suggestion if recursion could be used to improve the time complexity of the function. Any other suggestions for improving the Python module are also welcome.



enter image description here



NDVI: Raster Output



enter image description here



Landsat 8: Input Directory



enter image description here



Landsat 8 Tile: Directory



enter image description here



NDVI Rasters: Output Directory



'''
Created on 23 Sep 2017

Create NDVI Rasters

with TOA Reflectance

and Sun Angle

correction

@author: PeterW
'''
# import site-packages and modules
import re
import argparse
from pathlib import Path
import arcpy
from arcpy.sa import *


def list_landsat_bands(landsat_dir):
"""
Create a list of Landsat 8
tiles bands 4 & 5.
"""
# Determine how to prevent nested loops - Big 0 Notation
ndvi_bands = ['_B4.TIF', '_B5.TIF', '_MTL.txt']
landsat_bands = {}
p = Path(landsat_dir)
for directory in p.iterdir():
for pattern in ndvi_bands:
try:
match = '*{0}'.format(pattern)
landsat_band = directory.glob(match).next()
landsat_band_name = landsat_band.stem
landsat_key = re.findall('_(d{6})_(d{8})_d{8}',
str(landsat_band_name))[0]
landsat_bands.setdefault(landsat_key, ).append(str(landsat_band))
except (StopIteration, IndexError) as e:
pattern_name = re.findall('_(w+).', pattern)[0]
directory_name = str(directory.stem)
if type(e).__name__ == 'StopIteration':
msg = ('Landsat band: {0} not found in directory: {1}.'
.format(pattern_name, directory_name))
raise StopIteration(msg)
elif str(type(e).__name__) == 'IndexError':
msg = ('Landsat band: {0} has incorrect '
'Name (6 digits) or Year (8 digits) format.'
.format(landsat_band_name))
raise IndexError(msg)
return landsat_bands


def remove_zero_values(landsat_bands):
"""
Convert zero cell values
to NoData.
"""
arcpy.CheckOutExtension('Spatial')
for k, v in landsat_bands.iteritems():
red_band = SetNull(v[0], v[0], 'value=0')
NIR_band = SetNull(v[1], v[1], 'value=0')
v[0] = red_band
v[1] = NIR_band
arcpy.CheckInExtension('Spatial')


def extract_reflectance_coefficients(landsat_bands):
"""
Extract the reflectance
coefficients from metadata
txt file.
"""
for k, v in landsat_bands.iteritems():
with open(v[2]) as mlt:
lines = mlt.read().splitlines()
reflect_mult = float(lines[187].split('=')[1])
v[2] = reflect_mult
reflect_add = float(lines[196].split('=')[1])
v.append(reflect_add)
sun_elev = float(lines[76].split('=')[1])
v.append(sun_elev)


def toa_reflectance_correction(landsat_bands):
"""
Correct landsat 8
bands 4 & 5
for TOA reflectance
"""
arcpy.CheckOutExtension('Spatial')
for k, v in landsat_bands.iteritems():
reflect4 = (v[2]*v[0])+v[3]
v[0] = reflect4
reflect5 = (v[2]*v[1])+v[3]
v[1] = reflect5
arcpy.CheckInExtension('Spatial')


def sun_angle_correction(landsat_bands):
"""
Correct Landsat 8
bands 4 & 5
for sun angle
"""
arcpy.CheckOutExtension('Spatial')
for k, v in landsat_bands.iteritems():
sun4 = (v[0]/(Sin(v[4])))
v[0] = sun4
sun5 = (v[1]/(Sin(v[4])))
v[1] = sun5
arcpy.CheckInExtension('Spatial')


def calculate_ndvi(landsat_bands, output_dir):
"""
Generate NDVI from
preprocessed
landsat 8 bands 4 & 5
"""
arcpy.env.overwriteOutput = True
arcpy.CheckOutExtension('Spatial')
for f, v in landsat_bands.iteritems():
NDVI_name = '_'.join(f)
arcpy.AddMessage('Processing {0}.tif NDVI'.format(NDVI_name))
Num = Float(v[1] - v[0])
Denom = Float(v[1] + v[0])
NDVI_raster = Divide(Num, Denom)
NDVI_output = '{0}\{1}.tif'.format(output_dir, NDVI_name)
NDVI_raster.save(NDVI_output)
arcpy.CheckInExtension('Spatial')


def main(landsat_dir, output_dir):
"""
Determine NDVI for
each Landsat tile.
"""
landsat_bands = list_landsat_bands(landsat_dir)
print(landsat_bands)
remove_zero_values(landsat_bands)
extract_reflectance_coefficients(landsat_bands)
toa_reflectance_correction(landsat_bands)
sun_angle_correction(landsat_bands)
calculate_ndvi(landsat_bands, output_dir)


if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Calculate the NDVI for Landsat 8 tiles')
parser.add_argument('--landsat_dir', metavar='path', required=True,
help='Input Landsat 8 tile directory')
parser.add_argument('--output_dir', metavar='path', required=True,
help='Output NDVI directory')
args = parser.parse_args()
main(landsat_dir=args.landsat_dir,
output_dir=args.output_dir)









share|improve this question




























    up vote
    4
    down vote

    favorite












    I've written the following using Python Dictionaries and Pathlib Module. I'd like to improve the first function: list_landsat_bands.



    I've created a list of file patterns to match, which I then use Pathlib iterdir to iterate over each directory. The reason is that I need to group the Landsat bands retrieved from the pattern matching using Pathlib glob. (i.e. key = (tile number, date): values [tile_band4, tile_band5, tile_metadata (txt)]. I'd like to find a better way of generating the initial dictionary eliminating the nested for loops. Any suggestion if recursion could be used to improve the time complexity of the function. Any other suggestions for improving the Python module are also welcome.



    enter image description here



    NDVI: Raster Output



    enter image description here



    Landsat 8: Input Directory



    enter image description here



    Landsat 8 Tile: Directory



    enter image description here



    NDVI Rasters: Output Directory



    '''
    Created on 23 Sep 2017

    Create NDVI Rasters

    with TOA Reflectance

    and Sun Angle

    correction

    @author: PeterW
    '''
    # import site-packages and modules
    import re
    import argparse
    from pathlib import Path
    import arcpy
    from arcpy.sa import *


    def list_landsat_bands(landsat_dir):
    """
    Create a list of Landsat 8
    tiles bands 4 & 5.
    """
    # Determine how to prevent nested loops - Big 0 Notation
    ndvi_bands = ['_B4.TIF', '_B5.TIF', '_MTL.txt']
    landsat_bands = {}
    p = Path(landsat_dir)
    for directory in p.iterdir():
    for pattern in ndvi_bands:
    try:
    match = '*{0}'.format(pattern)
    landsat_band = directory.glob(match).next()
    landsat_band_name = landsat_band.stem
    landsat_key = re.findall('_(d{6})_(d{8})_d{8}',
    str(landsat_band_name))[0]
    landsat_bands.setdefault(landsat_key, ).append(str(landsat_band))
    except (StopIteration, IndexError) as e:
    pattern_name = re.findall('_(w+).', pattern)[0]
    directory_name = str(directory.stem)
    if type(e).__name__ == 'StopIteration':
    msg = ('Landsat band: {0} not found in directory: {1}.'
    .format(pattern_name, directory_name))
    raise StopIteration(msg)
    elif str(type(e).__name__) == 'IndexError':
    msg = ('Landsat band: {0} has incorrect '
    'Name (6 digits) or Year (8 digits) format.'
    .format(landsat_band_name))
    raise IndexError(msg)
    return landsat_bands


    def remove_zero_values(landsat_bands):
    """
    Convert zero cell values
    to NoData.
    """
    arcpy.CheckOutExtension('Spatial')
    for k, v in landsat_bands.iteritems():
    red_band = SetNull(v[0], v[0], 'value=0')
    NIR_band = SetNull(v[1], v[1], 'value=0')
    v[0] = red_band
    v[1] = NIR_band
    arcpy.CheckInExtension('Spatial')


    def extract_reflectance_coefficients(landsat_bands):
    """
    Extract the reflectance
    coefficients from metadata
    txt file.
    """
    for k, v in landsat_bands.iteritems():
    with open(v[2]) as mlt:
    lines = mlt.read().splitlines()
    reflect_mult = float(lines[187].split('=')[1])
    v[2] = reflect_mult
    reflect_add = float(lines[196].split('=')[1])
    v.append(reflect_add)
    sun_elev = float(lines[76].split('=')[1])
    v.append(sun_elev)


    def toa_reflectance_correction(landsat_bands):
    """
    Correct landsat 8
    bands 4 & 5
    for TOA reflectance
    """
    arcpy.CheckOutExtension('Spatial')
    for k, v in landsat_bands.iteritems():
    reflect4 = (v[2]*v[0])+v[3]
    v[0] = reflect4
    reflect5 = (v[2]*v[1])+v[3]
    v[1] = reflect5
    arcpy.CheckInExtension('Spatial')


    def sun_angle_correction(landsat_bands):
    """
    Correct Landsat 8
    bands 4 & 5
    for sun angle
    """
    arcpy.CheckOutExtension('Spatial')
    for k, v in landsat_bands.iteritems():
    sun4 = (v[0]/(Sin(v[4])))
    v[0] = sun4
    sun5 = (v[1]/(Sin(v[4])))
    v[1] = sun5
    arcpy.CheckInExtension('Spatial')


    def calculate_ndvi(landsat_bands, output_dir):
    """
    Generate NDVI from
    preprocessed
    landsat 8 bands 4 & 5
    """
    arcpy.env.overwriteOutput = True
    arcpy.CheckOutExtension('Spatial')
    for f, v in landsat_bands.iteritems():
    NDVI_name = '_'.join(f)
    arcpy.AddMessage('Processing {0}.tif NDVI'.format(NDVI_name))
    Num = Float(v[1] - v[0])
    Denom = Float(v[1] + v[0])
    NDVI_raster = Divide(Num, Denom)
    NDVI_output = '{0}\{1}.tif'.format(output_dir, NDVI_name)
    NDVI_raster.save(NDVI_output)
    arcpy.CheckInExtension('Spatial')


    def main(landsat_dir, output_dir):
    """
    Determine NDVI for
    each Landsat tile.
    """
    landsat_bands = list_landsat_bands(landsat_dir)
    print(landsat_bands)
    remove_zero_values(landsat_bands)
    extract_reflectance_coefficients(landsat_bands)
    toa_reflectance_correction(landsat_bands)
    sun_angle_correction(landsat_bands)
    calculate_ndvi(landsat_bands, output_dir)


    if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='Calculate the NDVI for Landsat 8 tiles')
    parser.add_argument('--landsat_dir', metavar='path', required=True,
    help='Input Landsat 8 tile directory')
    parser.add_argument('--output_dir', metavar='path', required=True,
    help='Output NDVI directory')
    args = parser.parse_args()
    main(landsat_dir=args.landsat_dir,
    output_dir=args.output_dir)









    share|improve this question


























      up vote
      4
      down vote

      favorite









      up vote
      4
      down vote

      favorite











      I've written the following using Python Dictionaries and Pathlib Module. I'd like to improve the first function: list_landsat_bands.



      I've created a list of file patterns to match, which I then use Pathlib iterdir to iterate over each directory. The reason is that I need to group the Landsat bands retrieved from the pattern matching using Pathlib glob. (i.e. key = (tile number, date): values [tile_band4, tile_band5, tile_metadata (txt)]. I'd like to find a better way of generating the initial dictionary eliminating the nested for loops. Any suggestion if recursion could be used to improve the time complexity of the function. Any other suggestions for improving the Python module are also welcome.



      enter image description here



      NDVI: Raster Output



      enter image description here



      Landsat 8: Input Directory



      enter image description here



      Landsat 8 Tile: Directory



      enter image description here



      NDVI Rasters: Output Directory



      '''
      Created on 23 Sep 2017

      Create NDVI Rasters

      with TOA Reflectance

      and Sun Angle

      correction

      @author: PeterW
      '''
      # import site-packages and modules
      import re
      import argparse
      from pathlib import Path
      import arcpy
      from arcpy.sa import *


      def list_landsat_bands(landsat_dir):
      """
      Create a list of Landsat 8
      tiles bands 4 & 5.
      """
      # Determine how to prevent nested loops - Big 0 Notation
      ndvi_bands = ['_B4.TIF', '_B5.TIF', '_MTL.txt']
      landsat_bands = {}
      p = Path(landsat_dir)
      for directory in p.iterdir():
      for pattern in ndvi_bands:
      try:
      match = '*{0}'.format(pattern)
      landsat_band = directory.glob(match).next()
      landsat_band_name = landsat_band.stem
      landsat_key = re.findall('_(d{6})_(d{8})_d{8}',
      str(landsat_band_name))[0]
      landsat_bands.setdefault(landsat_key, ).append(str(landsat_band))
      except (StopIteration, IndexError) as e:
      pattern_name = re.findall('_(w+).', pattern)[0]
      directory_name = str(directory.stem)
      if type(e).__name__ == 'StopIteration':
      msg = ('Landsat band: {0} not found in directory: {1}.'
      .format(pattern_name, directory_name))
      raise StopIteration(msg)
      elif str(type(e).__name__) == 'IndexError':
      msg = ('Landsat band: {0} has incorrect '
      'Name (6 digits) or Year (8 digits) format.'
      .format(landsat_band_name))
      raise IndexError(msg)
      return landsat_bands


      def remove_zero_values(landsat_bands):
      """
      Convert zero cell values
      to NoData.
      """
      arcpy.CheckOutExtension('Spatial')
      for k, v in landsat_bands.iteritems():
      red_band = SetNull(v[0], v[0], 'value=0')
      NIR_band = SetNull(v[1], v[1], 'value=0')
      v[0] = red_band
      v[1] = NIR_band
      arcpy.CheckInExtension('Spatial')


      def extract_reflectance_coefficients(landsat_bands):
      """
      Extract the reflectance
      coefficients from metadata
      txt file.
      """
      for k, v in landsat_bands.iteritems():
      with open(v[2]) as mlt:
      lines = mlt.read().splitlines()
      reflect_mult = float(lines[187].split('=')[1])
      v[2] = reflect_mult
      reflect_add = float(lines[196].split('=')[1])
      v.append(reflect_add)
      sun_elev = float(lines[76].split('=')[1])
      v.append(sun_elev)


      def toa_reflectance_correction(landsat_bands):
      """
      Correct landsat 8
      bands 4 & 5
      for TOA reflectance
      """
      arcpy.CheckOutExtension('Spatial')
      for k, v in landsat_bands.iteritems():
      reflect4 = (v[2]*v[0])+v[3]
      v[0] = reflect4
      reflect5 = (v[2]*v[1])+v[3]
      v[1] = reflect5
      arcpy.CheckInExtension('Spatial')


      def sun_angle_correction(landsat_bands):
      """
      Correct Landsat 8
      bands 4 & 5
      for sun angle
      """
      arcpy.CheckOutExtension('Spatial')
      for k, v in landsat_bands.iteritems():
      sun4 = (v[0]/(Sin(v[4])))
      v[0] = sun4
      sun5 = (v[1]/(Sin(v[4])))
      v[1] = sun5
      arcpy.CheckInExtension('Spatial')


      def calculate_ndvi(landsat_bands, output_dir):
      """
      Generate NDVI from
      preprocessed
      landsat 8 bands 4 & 5
      """
      arcpy.env.overwriteOutput = True
      arcpy.CheckOutExtension('Spatial')
      for f, v in landsat_bands.iteritems():
      NDVI_name = '_'.join(f)
      arcpy.AddMessage('Processing {0}.tif NDVI'.format(NDVI_name))
      Num = Float(v[1] - v[0])
      Denom = Float(v[1] + v[0])
      NDVI_raster = Divide(Num, Denom)
      NDVI_output = '{0}\{1}.tif'.format(output_dir, NDVI_name)
      NDVI_raster.save(NDVI_output)
      arcpy.CheckInExtension('Spatial')


      def main(landsat_dir, output_dir):
      """
      Determine NDVI for
      each Landsat tile.
      """
      landsat_bands = list_landsat_bands(landsat_dir)
      print(landsat_bands)
      remove_zero_values(landsat_bands)
      extract_reflectance_coefficients(landsat_bands)
      toa_reflectance_correction(landsat_bands)
      sun_angle_correction(landsat_bands)
      calculate_ndvi(landsat_bands, output_dir)


      if __name__ == '__main__':
      parser = argparse.ArgumentParser(description='Calculate the NDVI for Landsat 8 tiles')
      parser.add_argument('--landsat_dir', metavar='path', required=True,
      help='Input Landsat 8 tile directory')
      parser.add_argument('--output_dir', metavar='path', required=True,
      help='Output NDVI directory')
      args = parser.parse_args()
      main(landsat_dir=args.landsat_dir,
      output_dir=args.output_dir)









      share|improve this question















      I've written the following using Python Dictionaries and Pathlib Module. I'd like to improve the first function: list_landsat_bands.



      I've created a list of file patterns to match, which I then use Pathlib iterdir to iterate over each directory. The reason is that I need to group the Landsat bands retrieved from the pattern matching using Pathlib glob. (i.e. key = (tile number, date): values [tile_band4, tile_band5, tile_metadata (txt)]. I'd like to find a better way of generating the initial dictionary eliminating the nested for loops. Any suggestion if recursion could be used to improve the time complexity of the function. Any other suggestions for improving the Python module are also welcome.



      enter image description here



      NDVI: Raster Output



      enter image description here



      Landsat 8: Input Directory



      enter image description here



      Landsat 8 Tile: Directory



      enter image description here



      NDVI Rasters: Output Directory



      '''
      Created on 23 Sep 2017

      Create NDVI Rasters

      with TOA Reflectance

      and Sun Angle

      correction

      @author: PeterW
      '''
      # import site-packages and modules
      import re
      import argparse
      from pathlib import Path
      import arcpy
      from arcpy.sa import *


      def list_landsat_bands(landsat_dir):
      """
      Create a list of Landsat 8
      tiles bands 4 & 5.
      """
      # Determine how to prevent nested loops - Big 0 Notation
      ndvi_bands = ['_B4.TIF', '_B5.TIF', '_MTL.txt']
      landsat_bands = {}
      p = Path(landsat_dir)
      for directory in p.iterdir():
      for pattern in ndvi_bands:
      try:
      match = '*{0}'.format(pattern)
      landsat_band = directory.glob(match).next()
      landsat_band_name = landsat_band.stem
      landsat_key = re.findall('_(d{6})_(d{8})_d{8}',
      str(landsat_band_name))[0]
      landsat_bands.setdefault(landsat_key, ).append(str(landsat_band))
      except (StopIteration, IndexError) as e:
      pattern_name = re.findall('_(w+).', pattern)[0]
      directory_name = str(directory.stem)
      if type(e).__name__ == 'StopIteration':
      msg = ('Landsat band: {0} not found in directory: {1}.'
      .format(pattern_name, directory_name))
      raise StopIteration(msg)
      elif str(type(e).__name__) == 'IndexError':
      msg = ('Landsat band: {0} has incorrect '
      'Name (6 digits) or Year (8 digits) format.'
      .format(landsat_band_name))
      raise IndexError(msg)
      return landsat_bands


      def remove_zero_values(landsat_bands):
      """
      Convert zero cell values
      to NoData.
      """
      arcpy.CheckOutExtension('Spatial')
      for k, v in landsat_bands.iteritems():
      red_band = SetNull(v[0], v[0], 'value=0')
      NIR_band = SetNull(v[1], v[1], 'value=0')
      v[0] = red_band
      v[1] = NIR_band
      arcpy.CheckInExtension('Spatial')


      def extract_reflectance_coefficients(landsat_bands):
      """
      Extract the reflectance
      coefficients from metadata
      txt file.
      """
      for k, v in landsat_bands.iteritems():
      with open(v[2]) as mlt:
      lines = mlt.read().splitlines()
      reflect_mult = float(lines[187].split('=')[1])
      v[2] = reflect_mult
      reflect_add = float(lines[196].split('=')[1])
      v.append(reflect_add)
      sun_elev = float(lines[76].split('=')[1])
      v.append(sun_elev)


      def toa_reflectance_correction(landsat_bands):
      """
      Correct landsat 8
      bands 4 & 5
      for TOA reflectance
      """
      arcpy.CheckOutExtension('Spatial')
      for k, v in landsat_bands.iteritems():
      reflect4 = (v[2]*v[0])+v[3]
      v[0] = reflect4
      reflect5 = (v[2]*v[1])+v[3]
      v[1] = reflect5
      arcpy.CheckInExtension('Spatial')


      def sun_angle_correction(landsat_bands):
      """
      Correct Landsat 8
      bands 4 & 5
      for sun angle
      """
      arcpy.CheckOutExtension('Spatial')
      for k, v in landsat_bands.iteritems():
      sun4 = (v[0]/(Sin(v[4])))
      v[0] = sun4
      sun5 = (v[1]/(Sin(v[4])))
      v[1] = sun5
      arcpy.CheckInExtension('Spatial')


      def calculate_ndvi(landsat_bands, output_dir):
      """
      Generate NDVI from
      preprocessed
      landsat 8 bands 4 & 5
      """
      arcpy.env.overwriteOutput = True
      arcpy.CheckOutExtension('Spatial')
      for f, v in landsat_bands.iteritems():
      NDVI_name = '_'.join(f)
      arcpy.AddMessage('Processing {0}.tif NDVI'.format(NDVI_name))
      Num = Float(v[1] - v[0])
      Denom = Float(v[1] + v[0])
      NDVI_raster = Divide(Num, Denom)
      NDVI_output = '{0}\{1}.tif'.format(output_dir, NDVI_name)
      NDVI_raster.save(NDVI_output)
      arcpy.CheckInExtension('Spatial')


      def main(landsat_dir, output_dir):
      """
      Determine NDVI for
      each Landsat tile.
      """
      landsat_bands = list_landsat_bands(landsat_dir)
      print(landsat_bands)
      remove_zero_values(landsat_bands)
      extract_reflectance_coefficients(landsat_bands)
      toa_reflectance_correction(landsat_bands)
      sun_angle_correction(landsat_bands)
      calculate_ndvi(landsat_bands, output_dir)


      if __name__ == '__main__':
      parser = argparse.ArgumentParser(description='Calculate the NDVI for Landsat 8 tiles')
      parser.add_argument('--landsat_dir', metavar='path', required=True,
      help='Input Landsat 8 tile directory')
      parser.add_argument('--output_dir', metavar='path', required=True,
      help='Output NDVI directory')
      args = parser.parse_args()
      main(landsat_dir=args.landsat_dir,
      output_dir=args.output_dir)






      python file-system geospatial arcpy






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Nov 16 at 12:59









      rolfl

      90.6k13190393




      90.6k13190393










      asked Sep 23 '17 at 21:21









      Peter Wilson

      705




      705



























          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "196"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














           

          draft saved


          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f176397%2fgenerate-ndvi-rasters-from-usgs-earthexplorer-landsat-8%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown






























          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















           

          draft saved


          draft discarded



















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f176397%2fgenerate-ndvi-rasters-from-usgs-earthexplorer-landsat-8%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Ellipse (mathématiques)

          Quarter-circle Tiles

          Mont Emei