Integration of $-frac{32}{pi^2 k^2} int_k^{ksqrt2} a; L_2[a](sqrt{{a^2}/{k^2}-1}+arcsin(frac{k}{a});;) da$
up vote
0
down vote
favorite
Hi I'm trying to solve this integral:
$I=-frac{32}{pi^2 k^2} int_k^{ksqrt2} a ;L_2[a](;;sqrt{frac{a^2}{k^2}-1}+arcsin(frac{k}{a});;) da$
where k is a parameter constrained by $0<k<1/sqrt2$ and $L_2[a]$ is the dilogarithm function.
Working on the integral, basically using by parts, I have reduced the integral in the form:
$I=-frac{1}{3}frac{80}{pi^2}L_2[ksqrt2]+frac{1}{3}frac{24}{pi}(L_2[k]-L_2[ksqrt2])\
;;;;;;-frac{1}{3}frac{48}{pi^2 k^2} int_k^{ksqrt2} a;ln(1-a);arcsin(frac{k}{a}); da\
;;;;;;-frac{1}{3}frac{16}{pi^2 k} int_k^{ksqrt2} ;ln(1-a);sqrt{1-frac{k^2}{a^2}}; da\
;;;;;;-frac{1}{3}frac{32}{pi^2 k^3} int_k^{ksqrt2} a^2;ln(1-a);sqrt{1-frac{k^2}{a^2}}; da\$
The three remaining integrals don't contain the dilogarithm function and they look simpler compared to the first one anyway I'm not able to find their closed forms. Another strategy I have used to solve the integral has been to notice that between brakets there is something similar to the integral of $asin(x)$, so I have rewritten the integral as:
$I=-frac{32}{pi^2 k^3} int_k^{ksqrt2} int_0^{k/a} a^2 L_2[a]; arcsin(x) dx; da\
;;;;;-frac{32}{pi^2 k^3}int_k^{ksqrt2}a^2 L_2[a];da$
In this case the second integral is solvable while the first double integral can be splitted in two parts dividing the domain of integration into a rectangular domain (and I have a solution for that) and in a triangle like domain (actually not a triangle ) and in this other case I find some other integrals similar to the integrals emerged with the first strategy.
Can someone give me some advice.
integration logarithms trigonometric-integrals polylogarithm
add a comment |
up vote
0
down vote
favorite
Hi I'm trying to solve this integral:
$I=-frac{32}{pi^2 k^2} int_k^{ksqrt2} a ;L_2[a](;;sqrt{frac{a^2}{k^2}-1}+arcsin(frac{k}{a});;) da$
where k is a parameter constrained by $0<k<1/sqrt2$ and $L_2[a]$ is the dilogarithm function.
Working on the integral, basically using by parts, I have reduced the integral in the form:
$I=-frac{1}{3}frac{80}{pi^2}L_2[ksqrt2]+frac{1}{3}frac{24}{pi}(L_2[k]-L_2[ksqrt2])\
;;;;;;-frac{1}{3}frac{48}{pi^2 k^2} int_k^{ksqrt2} a;ln(1-a);arcsin(frac{k}{a}); da\
;;;;;;-frac{1}{3}frac{16}{pi^2 k} int_k^{ksqrt2} ;ln(1-a);sqrt{1-frac{k^2}{a^2}}; da\
;;;;;;-frac{1}{3}frac{32}{pi^2 k^3} int_k^{ksqrt2} a^2;ln(1-a);sqrt{1-frac{k^2}{a^2}}; da\$
The three remaining integrals don't contain the dilogarithm function and they look simpler compared to the first one anyway I'm not able to find their closed forms. Another strategy I have used to solve the integral has been to notice that between brakets there is something similar to the integral of $asin(x)$, so I have rewritten the integral as:
$I=-frac{32}{pi^2 k^3} int_k^{ksqrt2} int_0^{k/a} a^2 L_2[a]; arcsin(x) dx; da\
;;;;;-frac{32}{pi^2 k^3}int_k^{ksqrt2}a^2 L_2[a];da$
In this case the second integral is solvable while the first double integral can be splitted in two parts dividing the domain of integration into a rectangular domain (and I have a solution for that) and in a triangle like domain (actually not a triangle ) and in this other case I find some other integrals similar to the integrals emerged with the first strategy.
Can someone give me some advice.
integration logarithms trigonometric-integrals polylogarithm
When you write $asin(frac ka)$, do you mean $a$ times the sine of $frac ka$ (better written $asin(frac ka)$,$asin(frac ka)$
) or the arcsine of $frac ka$ (better written $arcsin(frac ka)$,$arcsin(frac ka)$
)?
– Henning Makholm
Nov 15 at 14:13
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Hi I'm trying to solve this integral:
$I=-frac{32}{pi^2 k^2} int_k^{ksqrt2} a ;L_2[a](;;sqrt{frac{a^2}{k^2}-1}+arcsin(frac{k}{a});;) da$
where k is a parameter constrained by $0<k<1/sqrt2$ and $L_2[a]$ is the dilogarithm function.
Working on the integral, basically using by parts, I have reduced the integral in the form:
$I=-frac{1}{3}frac{80}{pi^2}L_2[ksqrt2]+frac{1}{3}frac{24}{pi}(L_2[k]-L_2[ksqrt2])\
;;;;;;-frac{1}{3}frac{48}{pi^2 k^2} int_k^{ksqrt2} a;ln(1-a);arcsin(frac{k}{a}); da\
;;;;;;-frac{1}{3}frac{16}{pi^2 k} int_k^{ksqrt2} ;ln(1-a);sqrt{1-frac{k^2}{a^2}}; da\
;;;;;;-frac{1}{3}frac{32}{pi^2 k^3} int_k^{ksqrt2} a^2;ln(1-a);sqrt{1-frac{k^2}{a^2}}; da\$
The three remaining integrals don't contain the dilogarithm function and they look simpler compared to the first one anyway I'm not able to find their closed forms. Another strategy I have used to solve the integral has been to notice that between brakets there is something similar to the integral of $asin(x)$, so I have rewritten the integral as:
$I=-frac{32}{pi^2 k^3} int_k^{ksqrt2} int_0^{k/a} a^2 L_2[a]; arcsin(x) dx; da\
;;;;;-frac{32}{pi^2 k^3}int_k^{ksqrt2}a^2 L_2[a];da$
In this case the second integral is solvable while the first double integral can be splitted in two parts dividing the domain of integration into a rectangular domain (and I have a solution for that) and in a triangle like domain (actually not a triangle ) and in this other case I find some other integrals similar to the integrals emerged with the first strategy.
Can someone give me some advice.
integration logarithms trigonometric-integrals polylogarithm
Hi I'm trying to solve this integral:
$I=-frac{32}{pi^2 k^2} int_k^{ksqrt2} a ;L_2[a](;;sqrt{frac{a^2}{k^2}-1}+arcsin(frac{k}{a});;) da$
where k is a parameter constrained by $0<k<1/sqrt2$ and $L_2[a]$ is the dilogarithm function.
Working on the integral, basically using by parts, I have reduced the integral in the form:
$I=-frac{1}{3}frac{80}{pi^2}L_2[ksqrt2]+frac{1}{3}frac{24}{pi}(L_2[k]-L_2[ksqrt2])\
;;;;;;-frac{1}{3}frac{48}{pi^2 k^2} int_k^{ksqrt2} a;ln(1-a);arcsin(frac{k}{a}); da\
;;;;;;-frac{1}{3}frac{16}{pi^2 k} int_k^{ksqrt2} ;ln(1-a);sqrt{1-frac{k^2}{a^2}}; da\
;;;;;;-frac{1}{3}frac{32}{pi^2 k^3} int_k^{ksqrt2} a^2;ln(1-a);sqrt{1-frac{k^2}{a^2}}; da\$
The three remaining integrals don't contain the dilogarithm function and they look simpler compared to the first one anyway I'm not able to find their closed forms. Another strategy I have used to solve the integral has been to notice that between brakets there is something similar to the integral of $asin(x)$, so I have rewritten the integral as:
$I=-frac{32}{pi^2 k^3} int_k^{ksqrt2} int_0^{k/a} a^2 L_2[a]; arcsin(x) dx; da\
;;;;;-frac{32}{pi^2 k^3}int_k^{ksqrt2}a^2 L_2[a];da$
In this case the second integral is solvable while the first double integral can be splitted in two parts dividing the domain of integration into a rectangular domain (and I have a solution for that) and in a triangle like domain (actually not a triangle ) and in this other case I find some other integrals similar to the integrals emerged with the first strategy.
Can someone give me some advice.
integration logarithms trigonometric-integrals polylogarithm
integration logarithms trigonometric-integrals polylogarithm
edited Nov 15 at 15:55
asked Nov 15 at 14:08
marco
383
383
When you write $asin(frac ka)$, do you mean $a$ times the sine of $frac ka$ (better written $asin(frac ka)$,$asin(frac ka)$
) or the arcsine of $frac ka$ (better written $arcsin(frac ka)$,$arcsin(frac ka)$
)?
– Henning Makholm
Nov 15 at 14:13
add a comment |
When you write $asin(frac ka)$, do you mean $a$ times the sine of $frac ka$ (better written $asin(frac ka)$,$asin(frac ka)$
) or the arcsine of $frac ka$ (better written $arcsin(frac ka)$,$arcsin(frac ka)$
)?
– Henning Makholm
Nov 15 at 14:13
When you write $asin(frac ka)$, do you mean $a$ times the sine of $frac ka$ (better written $asin(frac ka)$,
$asin(frac ka)$
) or the arcsine of $frac ka$ (better written $arcsin(frac ka)$, $arcsin(frac ka)$
)?– Henning Makholm
Nov 15 at 14:13
When you write $asin(frac ka)$, do you mean $a$ times the sine of $frac ka$ (better written $asin(frac ka)$,
$asin(frac ka)$
) or the arcsine of $frac ka$ (better written $arcsin(frac ka)$, $arcsin(frac ka)$
)?– Henning Makholm
Nov 15 at 14:13
add a comment |
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2999751%2fintegration-of-frac32-pi2-k2-int-kk-sqrt2-a-l-2a-sqrta2-k%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
When you write $asin(frac ka)$, do you mean $a$ times the sine of $frac ka$ (better written $asin(frac ka)$,
$asin(frac ka)$
) or the arcsine of $frac ka$ (better written $arcsin(frac ka)$,$arcsin(frac ka)$
)?– Henning Makholm
Nov 15 at 14:13