Integration of $-frac{32}{pi^2 k^2} int_k^{ksqrt2} a; L_2[a](sqrt{{a^2}/{k^2}-1}+arcsin(frac{k}{a});;) da$











up vote
0
down vote

favorite












Hi I'm trying to solve this integral:



$I=-frac{32}{pi^2 k^2} int_k^{ksqrt2} a ;L_2[a](;;sqrt{frac{a^2}{k^2}-1}+arcsin(frac{k}{a});;) da$



where k is a parameter constrained by $0<k<1/sqrt2$ and $L_2[a]$ is the dilogarithm function.



Working on the integral, basically using by parts, I have reduced the integral in the form:



$I=-frac{1}{3}frac{80}{pi^2}L_2[ksqrt2]+frac{1}{3}frac{24}{pi}(L_2[k]-L_2[ksqrt2])\
;;;;;;-frac{1}{3}frac{48}{pi^2 k^2} int_k^{ksqrt2} a;ln(1-a);arcsin(frac{k}{a}); da\
;;;;;;-frac{1}{3}frac{16}{pi^2 k} int_k^{ksqrt2} ;ln(1-a);sqrt{1-frac{k^2}{a^2}}; da\
;;;;;;-frac{1}{3}frac{32}{pi^2 k^3} int_k^{ksqrt2} a^2;ln(1-a);sqrt{1-frac{k^2}{a^2}}; da\$



The three remaining integrals don't contain the dilogarithm function and they look simpler compared to the first one anyway I'm not able to find their closed forms. Another strategy I have used to solve the integral has been to notice that between brakets there is something similar to the integral of $asin(x)$, so I have rewritten the integral as:



$I=-frac{32}{pi^2 k^3} int_k^{ksqrt2} int_0^{k/a} a^2 L_2[a]; arcsin(x) dx; da\
;;;;;-frac{32}{pi^2 k^3}int_k^{ksqrt2}a^2 L_2[a];da$



In this case the second integral is solvable while the first double integral can be splitted in two parts dividing the domain of integration into a rectangular domain (and I have a solution for that) and in a triangle like domain (actually not a triangle ) and in this other case I find some other integrals similar to the integrals emerged with the first strategy.



Can someone give me some advice.










share|cite|improve this question
























  • When you write $asin(frac ka)$, do you mean $a$ times the sine of $frac ka$ (better written $asin(frac ka)$, $asin(frac ka)$) or the arcsine of $frac ka$ (better written $arcsin(frac ka)$, $arcsin(frac ka)$)?
    – Henning Makholm
    Nov 15 at 14:13

















up vote
0
down vote

favorite












Hi I'm trying to solve this integral:



$I=-frac{32}{pi^2 k^2} int_k^{ksqrt2} a ;L_2[a](;;sqrt{frac{a^2}{k^2}-1}+arcsin(frac{k}{a});;) da$



where k is a parameter constrained by $0<k<1/sqrt2$ and $L_2[a]$ is the dilogarithm function.



Working on the integral, basically using by parts, I have reduced the integral in the form:



$I=-frac{1}{3}frac{80}{pi^2}L_2[ksqrt2]+frac{1}{3}frac{24}{pi}(L_2[k]-L_2[ksqrt2])\
;;;;;;-frac{1}{3}frac{48}{pi^2 k^2} int_k^{ksqrt2} a;ln(1-a);arcsin(frac{k}{a}); da\
;;;;;;-frac{1}{3}frac{16}{pi^2 k} int_k^{ksqrt2} ;ln(1-a);sqrt{1-frac{k^2}{a^2}}; da\
;;;;;;-frac{1}{3}frac{32}{pi^2 k^3} int_k^{ksqrt2} a^2;ln(1-a);sqrt{1-frac{k^2}{a^2}}; da\$



The three remaining integrals don't contain the dilogarithm function and they look simpler compared to the first one anyway I'm not able to find their closed forms. Another strategy I have used to solve the integral has been to notice that between brakets there is something similar to the integral of $asin(x)$, so I have rewritten the integral as:



$I=-frac{32}{pi^2 k^3} int_k^{ksqrt2} int_0^{k/a} a^2 L_2[a]; arcsin(x) dx; da\
;;;;;-frac{32}{pi^2 k^3}int_k^{ksqrt2}a^2 L_2[a];da$



In this case the second integral is solvable while the first double integral can be splitted in two parts dividing the domain of integration into a rectangular domain (and I have a solution for that) and in a triangle like domain (actually not a triangle ) and in this other case I find some other integrals similar to the integrals emerged with the first strategy.



Can someone give me some advice.










share|cite|improve this question
























  • When you write $asin(frac ka)$, do you mean $a$ times the sine of $frac ka$ (better written $asin(frac ka)$, $asin(frac ka)$) or the arcsine of $frac ka$ (better written $arcsin(frac ka)$, $arcsin(frac ka)$)?
    – Henning Makholm
    Nov 15 at 14:13















up vote
0
down vote

favorite









up vote
0
down vote

favorite











Hi I'm trying to solve this integral:



$I=-frac{32}{pi^2 k^2} int_k^{ksqrt2} a ;L_2[a](;;sqrt{frac{a^2}{k^2}-1}+arcsin(frac{k}{a});;) da$



where k is a parameter constrained by $0<k<1/sqrt2$ and $L_2[a]$ is the dilogarithm function.



Working on the integral, basically using by parts, I have reduced the integral in the form:



$I=-frac{1}{3}frac{80}{pi^2}L_2[ksqrt2]+frac{1}{3}frac{24}{pi}(L_2[k]-L_2[ksqrt2])\
;;;;;;-frac{1}{3}frac{48}{pi^2 k^2} int_k^{ksqrt2} a;ln(1-a);arcsin(frac{k}{a}); da\
;;;;;;-frac{1}{3}frac{16}{pi^2 k} int_k^{ksqrt2} ;ln(1-a);sqrt{1-frac{k^2}{a^2}}; da\
;;;;;;-frac{1}{3}frac{32}{pi^2 k^3} int_k^{ksqrt2} a^2;ln(1-a);sqrt{1-frac{k^2}{a^2}}; da\$



The three remaining integrals don't contain the dilogarithm function and they look simpler compared to the first one anyway I'm not able to find their closed forms. Another strategy I have used to solve the integral has been to notice that between brakets there is something similar to the integral of $asin(x)$, so I have rewritten the integral as:



$I=-frac{32}{pi^2 k^3} int_k^{ksqrt2} int_0^{k/a} a^2 L_2[a]; arcsin(x) dx; da\
;;;;;-frac{32}{pi^2 k^3}int_k^{ksqrt2}a^2 L_2[a];da$



In this case the second integral is solvable while the first double integral can be splitted in two parts dividing the domain of integration into a rectangular domain (and I have a solution for that) and in a triangle like domain (actually not a triangle ) and in this other case I find some other integrals similar to the integrals emerged with the first strategy.



Can someone give me some advice.










share|cite|improve this question















Hi I'm trying to solve this integral:



$I=-frac{32}{pi^2 k^2} int_k^{ksqrt2} a ;L_2[a](;;sqrt{frac{a^2}{k^2}-1}+arcsin(frac{k}{a});;) da$



where k is a parameter constrained by $0<k<1/sqrt2$ and $L_2[a]$ is the dilogarithm function.



Working on the integral, basically using by parts, I have reduced the integral in the form:



$I=-frac{1}{3}frac{80}{pi^2}L_2[ksqrt2]+frac{1}{3}frac{24}{pi}(L_2[k]-L_2[ksqrt2])\
;;;;;;-frac{1}{3}frac{48}{pi^2 k^2} int_k^{ksqrt2} a;ln(1-a);arcsin(frac{k}{a}); da\
;;;;;;-frac{1}{3}frac{16}{pi^2 k} int_k^{ksqrt2} ;ln(1-a);sqrt{1-frac{k^2}{a^2}}; da\
;;;;;;-frac{1}{3}frac{32}{pi^2 k^3} int_k^{ksqrt2} a^2;ln(1-a);sqrt{1-frac{k^2}{a^2}}; da\$



The three remaining integrals don't contain the dilogarithm function and they look simpler compared to the first one anyway I'm not able to find their closed forms. Another strategy I have used to solve the integral has been to notice that between brakets there is something similar to the integral of $asin(x)$, so I have rewritten the integral as:



$I=-frac{32}{pi^2 k^3} int_k^{ksqrt2} int_0^{k/a} a^2 L_2[a]; arcsin(x) dx; da\
;;;;;-frac{32}{pi^2 k^3}int_k^{ksqrt2}a^2 L_2[a];da$



In this case the second integral is solvable while the first double integral can be splitted in two parts dividing the domain of integration into a rectangular domain (and I have a solution for that) and in a triangle like domain (actually not a triangle ) and in this other case I find some other integrals similar to the integrals emerged with the first strategy.



Can someone give me some advice.







integration logarithms trigonometric-integrals polylogarithm






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 15 at 15:55

























asked Nov 15 at 14:08









marco

383




383












  • When you write $asin(frac ka)$, do you mean $a$ times the sine of $frac ka$ (better written $asin(frac ka)$, $asin(frac ka)$) or the arcsine of $frac ka$ (better written $arcsin(frac ka)$, $arcsin(frac ka)$)?
    – Henning Makholm
    Nov 15 at 14:13




















  • When you write $asin(frac ka)$, do you mean $a$ times the sine of $frac ka$ (better written $asin(frac ka)$, $asin(frac ka)$) or the arcsine of $frac ka$ (better written $arcsin(frac ka)$, $arcsin(frac ka)$)?
    – Henning Makholm
    Nov 15 at 14:13


















When you write $asin(frac ka)$, do you mean $a$ times the sine of $frac ka$ (better written $asin(frac ka)$, $asin(frac ka)$) or the arcsine of $frac ka$ (better written $arcsin(frac ka)$, $arcsin(frac ka)$)?
– Henning Makholm
Nov 15 at 14:13






When you write $asin(frac ka)$, do you mean $a$ times the sine of $frac ka$ (better written $asin(frac ka)$, $asin(frac ka)$) or the arcsine of $frac ka$ (better written $arcsin(frac ka)$, $arcsin(frac ka)$)?
– Henning Makholm
Nov 15 at 14:13

















active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














 

draft saved


draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2999751%2fintegration-of-frac32-pi2-k2-int-kk-sqrt2-a-l-2a-sqrta2-k%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown






























active

oldest

votes













active

oldest

votes









active

oldest

votes






active

oldest

votes
















 

draft saved


draft discarded



















































 


draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2999751%2fintegration-of-frac32-pi2-k2-int-kk-sqrt2-a-l-2a-sqrta2-k%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Ellipse (mathématiques)

Quarter-circle Tiles

Mont Emei