Inverse fourier transform for function with three variables

Multi tool use
up vote
0
down vote
favorite
I'm following a textbook in which they introduce
$V_{p,q}(omega,tau,z)= frac{1}{2pi} int e^{-ih(tau-(p+q)z/c)}U_{p,q}(omega,h,z)dh$
where $p$ and $q$ are integers. How do I find an expression for $U_{p,q}$?
fourier-transform
New contributor
kroneckerdel69 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
add a comment |
up vote
0
down vote
favorite
I'm following a textbook in which they introduce
$V_{p,q}(omega,tau,z)= frac{1}{2pi} int e^{-ih(tau-(p+q)z/c)}U_{p,q}(omega,h,z)dh$
where $p$ and $q$ are integers. How do I find an expression for $U_{p,q}$?
fourier-transform
New contributor
kroneckerdel69 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I'm following a textbook in which they introduce
$V_{p,q}(omega,tau,z)= frac{1}{2pi} int e^{-ih(tau-(p+q)z/c)}U_{p,q}(omega,h,z)dh$
where $p$ and $q$ are integers. How do I find an expression for $U_{p,q}$?
fourier-transform
New contributor
kroneckerdel69 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
I'm following a textbook in which they introduce
$V_{p,q}(omega,tau,z)= frac{1}{2pi} int e^{-ih(tau-(p+q)z/c)}U_{p,q}(omega,h,z)dh$
where $p$ and $q$ are integers. How do I find an expression for $U_{p,q}$?
fourier-transform
fourier-transform
New contributor
kroneckerdel69 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
New contributor
kroneckerdel69 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
New contributor
kroneckerdel69 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
asked Nov 15 at 14:18
kroneckerdel69
85
85
New contributor
kroneckerdel69 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
New contributor
kroneckerdel69 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
kroneckerdel69 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
0
down vote
Using the Fourier Transform convention
$$mathscr{F}left{f(tau)right} = int_{-infty}^{infty} f(tau)e^{ihtau} dtau = hat{f}(h)$$
$$mathscr{F}^{-1}left{hat{f}(h)right} = dfrac{1}{2pi}int_{-infty}^{infty} hat{f}(h)e^{-ihtau} dh = f(tau)$$
Then
$$begin{align*}V_{p,q}left(omega,tau,zright)&= frac{1}{2pi} int_{-infty}^{infty} e^{-ih(tau - (p+q)z/c)}U_{p,q}left(omega,h,zright)dh\
\
&= frac{1}{2pi} int_{-infty}^{infty} e^{-ihtau}e^{ihfrac{(p+q)z}{c}}U_{p,q}left(omega,h,zright)dh\
\
&= mathscr{F}^{-1}left{e^{ihfrac{(p+q)z}{c}}U_{p,q}left(omega,h,zright)right}\
\
mathscr{F}left{V_{p,q}left(omega,tau,zright)right} &=e^{ihfrac{(p+q)z}{c}}U_{p,q}left(omega,h,zright) \
\
e^{-ihfrac{(p+q)z}{c}}mathscr{F}left{V_{p,q}left(omega,tau,zright)right} &=U_{p,q}left(omega,h,zright) \
\
e^{-ihfrac{(p+q)z}{c}}int_{-infty}^{infty}e^{ihtau}V_{p,q}left(omega,tau,zright)dtau &=U_{p,q}left(omega,h,zright) \
\int_{-infty}^{infty}e^{ihleft(tau-frac{(p+q)z}{c}right)}V_{p,q}left(omega,tau,zright)dtau &=U_{p,q}left(omega,h,zright) \
end{align*}$$
which shouldn't be a surprise.
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
Using the Fourier Transform convention
$$mathscr{F}left{f(tau)right} = int_{-infty}^{infty} f(tau)e^{ihtau} dtau = hat{f}(h)$$
$$mathscr{F}^{-1}left{hat{f}(h)right} = dfrac{1}{2pi}int_{-infty}^{infty} hat{f}(h)e^{-ihtau} dh = f(tau)$$
Then
$$begin{align*}V_{p,q}left(omega,tau,zright)&= frac{1}{2pi} int_{-infty}^{infty} e^{-ih(tau - (p+q)z/c)}U_{p,q}left(omega,h,zright)dh\
\
&= frac{1}{2pi} int_{-infty}^{infty} e^{-ihtau}e^{ihfrac{(p+q)z}{c}}U_{p,q}left(omega,h,zright)dh\
\
&= mathscr{F}^{-1}left{e^{ihfrac{(p+q)z}{c}}U_{p,q}left(omega,h,zright)right}\
\
mathscr{F}left{V_{p,q}left(omega,tau,zright)right} &=e^{ihfrac{(p+q)z}{c}}U_{p,q}left(omega,h,zright) \
\
e^{-ihfrac{(p+q)z}{c}}mathscr{F}left{V_{p,q}left(omega,tau,zright)right} &=U_{p,q}left(omega,h,zright) \
\
e^{-ihfrac{(p+q)z}{c}}int_{-infty}^{infty}e^{ihtau}V_{p,q}left(omega,tau,zright)dtau &=U_{p,q}left(omega,h,zright) \
\int_{-infty}^{infty}e^{ihleft(tau-frac{(p+q)z}{c}right)}V_{p,q}left(omega,tau,zright)dtau &=U_{p,q}left(omega,h,zright) \
end{align*}$$
which shouldn't be a surprise.
add a comment |
up vote
0
down vote
Using the Fourier Transform convention
$$mathscr{F}left{f(tau)right} = int_{-infty}^{infty} f(tau)e^{ihtau} dtau = hat{f}(h)$$
$$mathscr{F}^{-1}left{hat{f}(h)right} = dfrac{1}{2pi}int_{-infty}^{infty} hat{f}(h)e^{-ihtau} dh = f(tau)$$
Then
$$begin{align*}V_{p,q}left(omega,tau,zright)&= frac{1}{2pi} int_{-infty}^{infty} e^{-ih(tau - (p+q)z/c)}U_{p,q}left(omega,h,zright)dh\
\
&= frac{1}{2pi} int_{-infty}^{infty} e^{-ihtau}e^{ihfrac{(p+q)z}{c}}U_{p,q}left(omega,h,zright)dh\
\
&= mathscr{F}^{-1}left{e^{ihfrac{(p+q)z}{c}}U_{p,q}left(omega,h,zright)right}\
\
mathscr{F}left{V_{p,q}left(omega,tau,zright)right} &=e^{ihfrac{(p+q)z}{c}}U_{p,q}left(omega,h,zright) \
\
e^{-ihfrac{(p+q)z}{c}}mathscr{F}left{V_{p,q}left(omega,tau,zright)right} &=U_{p,q}left(omega,h,zright) \
\
e^{-ihfrac{(p+q)z}{c}}int_{-infty}^{infty}e^{ihtau}V_{p,q}left(omega,tau,zright)dtau &=U_{p,q}left(omega,h,zright) \
\int_{-infty}^{infty}e^{ihleft(tau-frac{(p+q)z}{c}right)}V_{p,q}left(omega,tau,zright)dtau &=U_{p,q}left(omega,h,zright) \
end{align*}$$
which shouldn't be a surprise.
add a comment |
up vote
0
down vote
up vote
0
down vote
Using the Fourier Transform convention
$$mathscr{F}left{f(tau)right} = int_{-infty}^{infty} f(tau)e^{ihtau} dtau = hat{f}(h)$$
$$mathscr{F}^{-1}left{hat{f}(h)right} = dfrac{1}{2pi}int_{-infty}^{infty} hat{f}(h)e^{-ihtau} dh = f(tau)$$
Then
$$begin{align*}V_{p,q}left(omega,tau,zright)&= frac{1}{2pi} int_{-infty}^{infty} e^{-ih(tau - (p+q)z/c)}U_{p,q}left(omega,h,zright)dh\
\
&= frac{1}{2pi} int_{-infty}^{infty} e^{-ihtau}e^{ihfrac{(p+q)z}{c}}U_{p,q}left(omega,h,zright)dh\
\
&= mathscr{F}^{-1}left{e^{ihfrac{(p+q)z}{c}}U_{p,q}left(omega,h,zright)right}\
\
mathscr{F}left{V_{p,q}left(omega,tau,zright)right} &=e^{ihfrac{(p+q)z}{c}}U_{p,q}left(omega,h,zright) \
\
e^{-ihfrac{(p+q)z}{c}}mathscr{F}left{V_{p,q}left(omega,tau,zright)right} &=U_{p,q}left(omega,h,zright) \
\
e^{-ihfrac{(p+q)z}{c}}int_{-infty}^{infty}e^{ihtau}V_{p,q}left(omega,tau,zright)dtau &=U_{p,q}left(omega,h,zright) \
\int_{-infty}^{infty}e^{ihleft(tau-frac{(p+q)z}{c}right)}V_{p,q}left(omega,tau,zright)dtau &=U_{p,q}left(omega,h,zright) \
end{align*}$$
which shouldn't be a surprise.
Using the Fourier Transform convention
$$mathscr{F}left{f(tau)right} = int_{-infty}^{infty} f(tau)e^{ihtau} dtau = hat{f}(h)$$
$$mathscr{F}^{-1}left{hat{f}(h)right} = dfrac{1}{2pi}int_{-infty}^{infty} hat{f}(h)e^{-ihtau} dh = f(tau)$$
Then
$$begin{align*}V_{p,q}left(omega,tau,zright)&= frac{1}{2pi} int_{-infty}^{infty} e^{-ih(tau - (p+q)z/c)}U_{p,q}left(omega,h,zright)dh\
\
&= frac{1}{2pi} int_{-infty}^{infty} e^{-ihtau}e^{ihfrac{(p+q)z}{c}}U_{p,q}left(omega,h,zright)dh\
\
&= mathscr{F}^{-1}left{e^{ihfrac{(p+q)z}{c}}U_{p,q}left(omega,h,zright)right}\
\
mathscr{F}left{V_{p,q}left(omega,tau,zright)right} &=e^{ihfrac{(p+q)z}{c}}U_{p,q}left(omega,h,zright) \
\
e^{-ihfrac{(p+q)z}{c}}mathscr{F}left{V_{p,q}left(omega,tau,zright)right} &=U_{p,q}left(omega,h,zright) \
\
e^{-ihfrac{(p+q)z}{c}}int_{-infty}^{infty}e^{ihtau}V_{p,q}left(omega,tau,zright)dtau &=U_{p,q}left(omega,h,zright) \
\int_{-infty}^{infty}e^{ihleft(tau-frac{(p+q)z}{c}right)}V_{p,q}left(omega,tau,zright)dtau &=U_{p,q}left(omega,h,zright) \
end{align*}$$
which shouldn't be a surprise.
answered Nov 16 at 14:19
Andy Walls
1,289126
1,289126
add a comment |
add a comment |
kroneckerdel69 is a new contributor. Be nice, and check out our Code of Conduct.
kroneckerdel69 is a new contributor. Be nice, and check out our Code of Conduct.
kroneckerdel69 is a new contributor. Be nice, and check out our Code of Conduct.
kroneckerdel69 is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2999759%2finverse-fourier-transform-for-function-with-three-variables%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
OhyyT7riRA85 AnfkUceDhgH,htvTCoJH Te0Dh,mB6zDEerhVZc,2rH9u4L10H5w1K56MIIzmN,8n2Q1Ew t