Inverse fourier transform for function with three variables











up vote
0
down vote

favorite












I'm following a textbook in which they introduce



$V_{p,q}(omega,tau,z)= frac{1}{2pi} int e^{-ih(tau-(p+q)z/c)}U_{p,q}(omega,h,z)dh$



where $p$ and $q$ are integers. How do I find an expression for $U_{p,q}$?










share|cite|improve this question







New contributor




kroneckerdel69 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
























    up vote
    0
    down vote

    favorite












    I'm following a textbook in which they introduce



    $V_{p,q}(omega,tau,z)= frac{1}{2pi} int e^{-ih(tau-(p+q)z/c)}U_{p,q}(omega,h,z)dh$



    where $p$ and $q$ are integers. How do I find an expression for $U_{p,q}$?










    share|cite|improve this question







    New contributor




    kroneckerdel69 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.






















      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      I'm following a textbook in which they introduce



      $V_{p,q}(omega,tau,z)= frac{1}{2pi} int e^{-ih(tau-(p+q)z/c)}U_{p,q}(omega,h,z)dh$



      where $p$ and $q$ are integers. How do I find an expression for $U_{p,q}$?










      share|cite|improve this question







      New contributor




      kroneckerdel69 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      I'm following a textbook in which they introduce



      $V_{p,q}(omega,tau,z)= frac{1}{2pi} int e^{-ih(tau-(p+q)z/c)}U_{p,q}(omega,h,z)dh$



      where $p$ and $q$ are integers. How do I find an expression for $U_{p,q}$?







      fourier-transform






      share|cite|improve this question







      New contributor




      kroneckerdel69 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|cite|improve this question







      New contributor




      kroneckerdel69 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|cite|improve this question




      share|cite|improve this question






      New contributor




      kroneckerdel69 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked Nov 15 at 14:18









      kroneckerdel69

      85




      85




      New contributor




      kroneckerdel69 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      kroneckerdel69 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      kroneckerdel69 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          0
          down vote













          Using the Fourier Transform convention



          $$mathscr{F}left{f(tau)right} = int_{-infty}^{infty} f(tau)e^{ihtau} dtau = hat{f}(h)$$
          $$mathscr{F}^{-1}left{hat{f}(h)right} = dfrac{1}{2pi}int_{-infty}^{infty} hat{f}(h)e^{-ihtau} dh = f(tau)$$
          Then



          $$begin{align*}V_{p,q}left(omega,tau,zright)&= frac{1}{2pi} int_{-infty}^{infty} e^{-ih(tau - (p+q)z/c)}U_{p,q}left(omega,h,zright)dh\
          \
          &= frac{1}{2pi} int_{-infty}^{infty} e^{-ihtau}e^{ihfrac{(p+q)z}{c}}U_{p,q}left(omega,h,zright)dh\
          \
          &= mathscr{F}^{-1}left{e^{ihfrac{(p+q)z}{c}}U_{p,q}left(omega,h,zright)right}\
          \
          mathscr{F}left{V_{p,q}left(omega,tau,zright)right} &=e^{ihfrac{(p+q)z}{c}}U_{p,q}left(omega,h,zright) \
          \
          e^{-ihfrac{(p+q)z}{c}}mathscr{F}left{V_{p,q}left(omega,tau,zright)right} &=U_{p,q}left(omega,h,zright) \
          \
          e^{-ihfrac{(p+q)z}{c}}int_{-infty}^{infty}e^{ihtau}V_{p,q}left(omega,tau,zright)dtau &=U_{p,q}left(omega,h,zright) \
          \int_{-infty}^{infty}e^{ihleft(tau-frac{(p+q)z}{c}right)}V_{p,q}left(omega,tau,zright)dtau &=U_{p,q}left(omega,h,zright) \
          end{align*}$$



          which shouldn't be a surprise.






          share|cite|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });






            kroneckerdel69 is a new contributor. Be nice, and check out our Code of Conduct.










             

            draft saved


            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2999759%2finverse-fourier-transform-for-function-with-three-variables%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            0
            down vote













            Using the Fourier Transform convention



            $$mathscr{F}left{f(tau)right} = int_{-infty}^{infty} f(tau)e^{ihtau} dtau = hat{f}(h)$$
            $$mathscr{F}^{-1}left{hat{f}(h)right} = dfrac{1}{2pi}int_{-infty}^{infty} hat{f}(h)e^{-ihtau} dh = f(tau)$$
            Then



            $$begin{align*}V_{p,q}left(omega,tau,zright)&= frac{1}{2pi} int_{-infty}^{infty} e^{-ih(tau - (p+q)z/c)}U_{p,q}left(omega,h,zright)dh\
            \
            &= frac{1}{2pi} int_{-infty}^{infty} e^{-ihtau}e^{ihfrac{(p+q)z}{c}}U_{p,q}left(omega,h,zright)dh\
            \
            &= mathscr{F}^{-1}left{e^{ihfrac{(p+q)z}{c}}U_{p,q}left(omega,h,zright)right}\
            \
            mathscr{F}left{V_{p,q}left(omega,tau,zright)right} &=e^{ihfrac{(p+q)z}{c}}U_{p,q}left(omega,h,zright) \
            \
            e^{-ihfrac{(p+q)z}{c}}mathscr{F}left{V_{p,q}left(omega,tau,zright)right} &=U_{p,q}left(omega,h,zright) \
            \
            e^{-ihfrac{(p+q)z}{c}}int_{-infty}^{infty}e^{ihtau}V_{p,q}left(omega,tau,zright)dtau &=U_{p,q}left(omega,h,zright) \
            \int_{-infty}^{infty}e^{ihleft(tau-frac{(p+q)z}{c}right)}V_{p,q}left(omega,tau,zright)dtau &=U_{p,q}left(omega,h,zright) \
            end{align*}$$



            which shouldn't be a surprise.






            share|cite|improve this answer

























              up vote
              0
              down vote













              Using the Fourier Transform convention



              $$mathscr{F}left{f(tau)right} = int_{-infty}^{infty} f(tau)e^{ihtau} dtau = hat{f}(h)$$
              $$mathscr{F}^{-1}left{hat{f}(h)right} = dfrac{1}{2pi}int_{-infty}^{infty} hat{f}(h)e^{-ihtau} dh = f(tau)$$
              Then



              $$begin{align*}V_{p,q}left(omega,tau,zright)&= frac{1}{2pi} int_{-infty}^{infty} e^{-ih(tau - (p+q)z/c)}U_{p,q}left(omega,h,zright)dh\
              \
              &= frac{1}{2pi} int_{-infty}^{infty} e^{-ihtau}e^{ihfrac{(p+q)z}{c}}U_{p,q}left(omega,h,zright)dh\
              \
              &= mathscr{F}^{-1}left{e^{ihfrac{(p+q)z}{c}}U_{p,q}left(omega,h,zright)right}\
              \
              mathscr{F}left{V_{p,q}left(omega,tau,zright)right} &=e^{ihfrac{(p+q)z}{c}}U_{p,q}left(omega,h,zright) \
              \
              e^{-ihfrac{(p+q)z}{c}}mathscr{F}left{V_{p,q}left(omega,tau,zright)right} &=U_{p,q}left(omega,h,zright) \
              \
              e^{-ihfrac{(p+q)z}{c}}int_{-infty}^{infty}e^{ihtau}V_{p,q}left(omega,tau,zright)dtau &=U_{p,q}left(omega,h,zright) \
              \int_{-infty}^{infty}e^{ihleft(tau-frac{(p+q)z}{c}right)}V_{p,q}left(omega,tau,zright)dtau &=U_{p,q}left(omega,h,zright) \
              end{align*}$$



              which shouldn't be a surprise.






              share|cite|improve this answer























                up vote
                0
                down vote










                up vote
                0
                down vote









                Using the Fourier Transform convention



                $$mathscr{F}left{f(tau)right} = int_{-infty}^{infty} f(tau)e^{ihtau} dtau = hat{f}(h)$$
                $$mathscr{F}^{-1}left{hat{f}(h)right} = dfrac{1}{2pi}int_{-infty}^{infty} hat{f}(h)e^{-ihtau} dh = f(tau)$$
                Then



                $$begin{align*}V_{p,q}left(omega,tau,zright)&= frac{1}{2pi} int_{-infty}^{infty} e^{-ih(tau - (p+q)z/c)}U_{p,q}left(omega,h,zright)dh\
                \
                &= frac{1}{2pi} int_{-infty}^{infty} e^{-ihtau}e^{ihfrac{(p+q)z}{c}}U_{p,q}left(omega,h,zright)dh\
                \
                &= mathscr{F}^{-1}left{e^{ihfrac{(p+q)z}{c}}U_{p,q}left(omega,h,zright)right}\
                \
                mathscr{F}left{V_{p,q}left(omega,tau,zright)right} &=e^{ihfrac{(p+q)z}{c}}U_{p,q}left(omega,h,zright) \
                \
                e^{-ihfrac{(p+q)z}{c}}mathscr{F}left{V_{p,q}left(omega,tau,zright)right} &=U_{p,q}left(omega,h,zright) \
                \
                e^{-ihfrac{(p+q)z}{c}}int_{-infty}^{infty}e^{ihtau}V_{p,q}left(omega,tau,zright)dtau &=U_{p,q}left(omega,h,zright) \
                \int_{-infty}^{infty}e^{ihleft(tau-frac{(p+q)z}{c}right)}V_{p,q}left(omega,tau,zright)dtau &=U_{p,q}left(omega,h,zright) \
                end{align*}$$



                which shouldn't be a surprise.






                share|cite|improve this answer












                Using the Fourier Transform convention



                $$mathscr{F}left{f(tau)right} = int_{-infty}^{infty} f(tau)e^{ihtau} dtau = hat{f}(h)$$
                $$mathscr{F}^{-1}left{hat{f}(h)right} = dfrac{1}{2pi}int_{-infty}^{infty} hat{f}(h)e^{-ihtau} dh = f(tau)$$
                Then



                $$begin{align*}V_{p,q}left(omega,tau,zright)&= frac{1}{2pi} int_{-infty}^{infty} e^{-ih(tau - (p+q)z/c)}U_{p,q}left(omega,h,zright)dh\
                \
                &= frac{1}{2pi} int_{-infty}^{infty} e^{-ihtau}e^{ihfrac{(p+q)z}{c}}U_{p,q}left(omega,h,zright)dh\
                \
                &= mathscr{F}^{-1}left{e^{ihfrac{(p+q)z}{c}}U_{p,q}left(omega,h,zright)right}\
                \
                mathscr{F}left{V_{p,q}left(omega,tau,zright)right} &=e^{ihfrac{(p+q)z}{c}}U_{p,q}left(omega,h,zright) \
                \
                e^{-ihfrac{(p+q)z}{c}}mathscr{F}left{V_{p,q}left(omega,tau,zright)right} &=U_{p,q}left(omega,h,zright) \
                \
                e^{-ihfrac{(p+q)z}{c}}int_{-infty}^{infty}e^{ihtau}V_{p,q}left(omega,tau,zright)dtau &=U_{p,q}left(omega,h,zright) \
                \int_{-infty}^{infty}e^{ihleft(tau-frac{(p+q)z}{c}right)}V_{p,q}left(omega,tau,zright)dtau &=U_{p,q}left(omega,h,zright) \
                end{align*}$$



                which shouldn't be a surprise.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Nov 16 at 14:19









                Andy Walls

                1,289126




                1,289126






















                    kroneckerdel69 is a new contributor. Be nice, and check out our Code of Conduct.










                     

                    draft saved


                    draft discarded


















                    kroneckerdel69 is a new contributor. Be nice, and check out our Code of Conduct.













                    kroneckerdel69 is a new contributor. Be nice, and check out our Code of Conduct.












                    kroneckerdel69 is a new contributor. Be nice, and check out our Code of Conduct.















                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2999759%2finverse-fourier-transform-for-function-with-three-variables%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Quarter-circle Tiles

                    build a pushdown automaton that recognizes the reverse language of a given pushdown automaton?

                    Mont Emei