Hatcher Ex $0.25$, the homotopy equivalence of suspension of a CW complex
$begingroup$
Exercise $0.25$:
If $X$ is a CW complex with components $X_alpha$, show that the suspension $SX$ is homotopy equivalent to $Ylor_alpha SX_alpha$ for some graph $Y$.
In the case that $X$ is a finite graph, show that $SX$ is homotopy equivalent to a wedge sum of circles and $2$-spheres.
Edit: It's not hard actually, from the basic examples to find what graph $Y$ is.
general-topology algebraic-topology cw-complexes
$endgroup$
add a comment |
$begingroup$
Exercise $0.25$:
If $X$ is a CW complex with components $X_alpha$, show that the suspension $SX$ is homotopy equivalent to $Ylor_alpha SX_alpha$ for some graph $Y$.
In the case that $X$ is a finite graph, show that $SX$ is homotopy equivalent to a wedge sum of circles and $2$-spheres.
Edit: It's not hard actually, from the basic examples to find what graph $Y$ is.
general-topology algebraic-topology cw-complexes
$endgroup$
$begingroup$
Consider the case where $X$ is two points -- say $+1$ and $-1$ on the number line. The suspension adds two more points, one above the line and one below, and connects each to the points of $X$, yielding a diamond, which is topologically a circle. So it's certainly possible. You might want to think through the case where $X$ consists of just 3 points on the number line. Unrelated: What does that subscript "alpha" on the join $U vee_alpha SX_alpha$ mean?
$endgroup$
– John Hughes
Oct 30 '18 at 17:57
$begingroup$
@JohnHughes Thanks for your time and help. I misunderstood the definition of $SX$.
$endgroup$
– Andrews
Oct 31 '18 at 8:44
2
$begingroup$
If you have found your answer, you can write an answer to your own question (and even accept it after a delay). It could be useful for others. In any case, avoid modifying the title like you did.
$endgroup$
– Arnaud D.
Oct 31 '18 at 11:15
$begingroup$
@ArnaudD. OK.Thanks.
$endgroup$
– Andrews
Oct 31 '18 at 11:21
1
$begingroup$
I agree,,,writing up your answer (without completely solving the problem, which would lessen the value of Hatcher's book to future students) would be a great way to give back to MSE (and to solidify your own understanding of the point on which you were confused).
$endgroup$
– John Hughes
Oct 31 '18 at 15:40
add a comment |
$begingroup$
Exercise $0.25$:
If $X$ is a CW complex with components $X_alpha$, show that the suspension $SX$ is homotopy equivalent to $Ylor_alpha SX_alpha$ for some graph $Y$.
In the case that $X$ is a finite graph, show that $SX$ is homotopy equivalent to a wedge sum of circles and $2$-spheres.
Edit: It's not hard actually, from the basic examples to find what graph $Y$ is.
general-topology algebraic-topology cw-complexes
$endgroup$
Exercise $0.25$:
If $X$ is a CW complex with components $X_alpha$, show that the suspension $SX$ is homotopy equivalent to $Ylor_alpha SX_alpha$ for some graph $Y$.
In the case that $X$ is a finite graph, show that $SX$ is homotopy equivalent to a wedge sum of circles and $2$-spheres.
Edit: It's not hard actually, from the basic examples to find what graph $Y$ is.
general-topology algebraic-topology cw-complexes
general-topology algebraic-topology cw-complexes
edited Dec 5 '18 at 22:18
Andrews
asked Oct 30 '18 at 17:44
AndrewsAndrews
3791317
3791317
$begingroup$
Consider the case where $X$ is two points -- say $+1$ and $-1$ on the number line. The suspension adds two more points, one above the line and one below, and connects each to the points of $X$, yielding a diamond, which is topologically a circle. So it's certainly possible. You might want to think through the case where $X$ consists of just 3 points on the number line. Unrelated: What does that subscript "alpha" on the join $U vee_alpha SX_alpha$ mean?
$endgroup$
– John Hughes
Oct 30 '18 at 17:57
$begingroup$
@JohnHughes Thanks for your time and help. I misunderstood the definition of $SX$.
$endgroup$
– Andrews
Oct 31 '18 at 8:44
2
$begingroup$
If you have found your answer, you can write an answer to your own question (and even accept it after a delay). It could be useful for others. In any case, avoid modifying the title like you did.
$endgroup$
– Arnaud D.
Oct 31 '18 at 11:15
$begingroup$
@ArnaudD. OK.Thanks.
$endgroup$
– Andrews
Oct 31 '18 at 11:21
1
$begingroup$
I agree,,,writing up your answer (without completely solving the problem, which would lessen the value of Hatcher's book to future students) would be a great way to give back to MSE (and to solidify your own understanding of the point on which you were confused).
$endgroup$
– John Hughes
Oct 31 '18 at 15:40
add a comment |
$begingroup$
Consider the case where $X$ is two points -- say $+1$ and $-1$ on the number line. The suspension adds two more points, one above the line and one below, and connects each to the points of $X$, yielding a diamond, which is topologically a circle. So it's certainly possible. You might want to think through the case where $X$ consists of just 3 points on the number line. Unrelated: What does that subscript "alpha" on the join $U vee_alpha SX_alpha$ mean?
$endgroup$
– John Hughes
Oct 30 '18 at 17:57
$begingroup$
@JohnHughes Thanks for your time and help. I misunderstood the definition of $SX$.
$endgroup$
– Andrews
Oct 31 '18 at 8:44
2
$begingroup$
If you have found your answer, you can write an answer to your own question (and even accept it after a delay). It could be useful for others. In any case, avoid modifying the title like you did.
$endgroup$
– Arnaud D.
Oct 31 '18 at 11:15
$begingroup$
@ArnaudD. OK.Thanks.
$endgroup$
– Andrews
Oct 31 '18 at 11:21
1
$begingroup$
I agree,,,writing up your answer (without completely solving the problem, which would lessen the value of Hatcher's book to future students) would be a great way to give back to MSE (and to solidify your own understanding of the point on which you were confused).
$endgroup$
– John Hughes
Oct 31 '18 at 15:40
$begingroup$
Consider the case where $X$ is two points -- say $+1$ and $-1$ on the number line. The suspension adds two more points, one above the line and one below, and connects each to the points of $X$, yielding a diamond, which is topologically a circle. So it's certainly possible. You might want to think through the case where $X$ consists of just 3 points on the number line. Unrelated: What does that subscript "alpha" on the join $U vee_alpha SX_alpha$ mean?
$endgroup$
– John Hughes
Oct 30 '18 at 17:57
$begingroup$
Consider the case where $X$ is two points -- say $+1$ and $-1$ on the number line. The suspension adds two more points, one above the line and one below, and connects each to the points of $X$, yielding a diamond, which is topologically a circle. So it's certainly possible. You might want to think through the case where $X$ consists of just 3 points on the number line. Unrelated: What does that subscript "alpha" on the join $U vee_alpha SX_alpha$ mean?
$endgroup$
– John Hughes
Oct 30 '18 at 17:57
$begingroup$
@JohnHughes Thanks for your time and help. I misunderstood the definition of $SX$.
$endgroup$
– Andrews
Oct 31 '18 at 8:44
$begingroup$
@JohnHughes Thanks for your time and help. I misunderstood the definition of $SX$.
$endgroup$
– Andrews
Oct 31 '18 at 8:44
2
2
$begingroup$
If you have found your answer, you can write an answer to your own question (and even accept it after a delay). It could be useful for others. In any case, avoid modifying the title like you did.
$endgroup$
– Arnaud D.
Oct 31 '18 at 11:15
$begingroup$
If you have found your answer, you can write an answer to your own question (and even accept it after a delay). It could be useful for others. In any case, avoid modifying the title like you did.
$endgroup$
– Arnaud D.
Oct 31 '18 at 11:15
$begingroup$
@ArnaudD. OK.Thanks.
$endgroup$
– Andrews
Oct 31 '18 at 11:21
$begingroup$
@ArnaudD. OK.Thanks.
$endgroup$
– Andrews
Oct 31 '18 at 11:21
1
1
$begingroup$
I agree,,,writing up your answer (without completely solving the problem, which would lessen the value of Hatcher's book to future students) would be a great way to give back to MSE (and to solidify your own understanding of the point on which you were confused).
$endgroup$
– John Hughes
Oct 31 '18 at 15:40
$begingroup$
I agree,,,writing up your answer (without completely solving the problem, which would lessen the value of Hatcher's book to future students) would be a great way to give back to MSE (and to solidify your own understanding of the point on which you were confused).
$endgroup$
– John Hughes
Oct 31 '18 at 15:40
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2977996%2fhatcher-ex-0-25-the-homotopy-equivalence-of-suspension-of-a-cw-complex%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2977996%2fhatcher-ex-0-25-the-homotopy-equivalence-of-suspension-of-a-cw-complex%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Consider the case where $X$ is two points -- say $+1$ and $-1$ on the number line. The suspension adds two more points, one above the line and one below, and connects each to the points of $X$, yielding a diamond, which is topologically a circle. So it's certainly possible. You might want to think through the case where $X$ consists of just 3 points on the number line. Unrelated: What does that subscript "alpha" on the join $U vee_alpha SX_alpha$ mean?
$endgroup$
– John Hughes
Oct 30 '18 at 17:57
$begingroup$
@JohnHughes Thanks for your time and help. I misunderstood the definition of $SX$.
$endgroup$
– Andrews
Oct 31 '18 at 8:44
2
$begingroup$
If you have found your answer, you can write an answer to your own question (and even accept it after a delay). It could be useful for others. In any case, avoid modifying the title like you did.
$endgroup$
– Arnaud D.
Oct 31 '18 at 11:15
$begingroup$
@ArnaudD. OK.Thanks.
$endgroup$
– Andrews
Oct 31 '18 at 11:21
1
$begingroup$
I agree,,,writing up your answer (without completely solving the problem, which would lessen the value of Hatcher's book to future students) would be a great way to give back to MSE (and to solidify your own understanding of the point on which you were confused).
$endgroup$
– John Hughes
Oct 31 '18 at 15:40