Subset of $ell^2$ with distance property












8












$begingroup$


I'd been trying the following problem:




Prove that exists an infinite set $Asubset B(0,1)$ such that $|x-y|_2>sqrt{2}$ for all $x,y in A$.




My ideas always end in points with distance at most $sqrt{2}$.



I need hints, please.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Is there something missing in the question? If $A$ contains only two points $(1,0,0, ldots)$ and $(-1, 0, 0, ldots)$, does this not work?
    $endgroup$
    – angryavian
    Dec 5 '18 at 20:40










  • $begingroup$
    My mistake, A must be infinite.
    $endgroup$
    – Ángela Flores
    Dec 5 '18 at 20:40










  • $begingroup$
    @AlexR. $l^2$ refers to the space of sequences $(a_1, a_2, ldots)$ such that $sum_n a_n^2 < infty$.
    $endgroup$
    – angryavian
    Dec 5 '18 at 20:47










  • $begingroup$
    Nitpick: You might want to add $x ne y$ in the formulation of your question. Otherwise, it is not possible (obviously).
    $endgroup$
    – gerw
    Dec 6 '18 at 7:52










  • $begingroup$
    An interesting spinoff: How large can $$inf_{x,y in A, x ne y} |x-y|$$ be? Can this be larger than $sqrt{2}$?
    $endgroup$
    – gerw
    Dec 6 '18 at 8:04


















8












$begingroup$


I'd been trying the following problem:




Prove that exists an infinite set $Asubset B(0,1)$ such that $|x-y|_2>sqrt{2}$ for all $x,y in A$.




My ideas always end in points with distance at most $sqrt{2}$.



I need hints, please.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Is there something missing in the question? If $A$ contains only two points $(1,0,0, ldots)$ and $(-1, 0, 0, ldots)$, does this not work?
    $endgroup$
    – angryavian
    Dec 5 '18 at 20:40










  • $begingroup$
    My mistake, A must be infinite.
    $endgroup$
    – Ángela Flores
    Dec 5 '18 at 20:40










  • $begingroup$
    @AlexR. $l^2$ refers to the space of sequences $(a_1, a_2, ldots)$ such that $sum_n a_n^2 < infty$.
    $endgroup$
    – angryavian
    Dec 5 '18 at 20:47










  • $begingroup$
    Nitpick: You might want to add $x ne y$ in the formulation of your question. Otherwise, it is not possible (obviously).
    $endgroup$
    – gerw
    Dec 6 '18 at 7:52










  • $begingroup$
    An interesting spinoff: How large can $$inf_{x,y in A, x ne y} |x-y|$$ be? Can this be larger than $sqrt{2}$?
    $endgroup$
    – gerw
    Dec 6 '18 at 8:04
















8












8








8





$begingroup$


I'd been trying the following problem:




Prove that exists an infinite set $Asubset B(0,1)$ such that $|x-y|_2>sqrt{2}$ for all $x,y in A$.




My ideas always end in points with distance at most $sqrt{2}$.



I need hints, please.










share|cite|improve this question











$endgroup$




I'd been trying the following problem:




Prove that exists an infinite set $Asubset B(0,1)$ such that $|x-y|_2>sqrt{2}$ for all $x,y in A$.




My ideas always end in points with distance at most $sqrt{2}$.



I need hints, please.







functional-analysis hilbert-spaces lp-spaces






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 5 '18 at 22:43









Xander Henderson

14.3k103554




14.3k103554










asked Dec 5 '18 at 20:36









Ángela FloresÁngela Flores

26518




26518












  • $begingroup$
    Is there something missing in the question? If $A$ contains only two points $(1,0,0, ldots)$ and $(-1, 0, 0, ldots)$, does this not work?
    $endgroup$
    – angryavian
    Dec 5 '18 at 20:40










  • $begingroup$
    My mistake, A must be infinite.
    $endgroup$
    – Ángela Flores
    Dec 5 '18 at 20:40










  • $begingroup$
    @AlexR. $l^2$ refers to the space of sequences $(a_1, a_2, ldots)$ such that $sum_n a_n^2 < infty$.
    $endgroup$
    – angryavian
    Dec 5 '18 at 20:47










  • $begingroup$
    Nitpick: You might want to add $x ne y$ in the formulation of your question. Otherwise, it is not possible (obviously).
    $endgroup$
    – gerw
    Dec 6 '18 at 7:52










  • $begingroup$
    An interesting spinoff: How large can $$inf_{x,y in A, x ne y} |x-y|$$ be? Can this be larger than $sqrt{2}$?
    $endgroup$
    – gerw
    Dec 6 '18 at 8:04




















  • $begingroup$
    Is there something missing in the question? If $A$ contains only two points $(1,0,0, ldots)$ and $(-1, 0, 0, ldots)$, does this not work?
    $endgroup$
    – angryavian
    Dec 5 '18 at 20:40










  • $begingroup$
    My mistake, A must be infinite.
    $endgroup$
    – Ángela Flores
    Dec 5 '18 at 20:40










  • $begingroup$
    @AlexR. $l^2$ refers to the space of sequences $(a_1, a_2, ldots)$ such that $sum_n a_n^2 < infty$.
    $endgroup$
    – angryavian
    Dec 5 '18 at 20:47










  • $begingroup$
    Nitpick: You might want to add $x ne y$ in the formulation of your question. Otherwise, it is not possible (obviously).
    $endgroup$
    – gerw
    Dec 6 '18 at 7:52










  • $begingroup$
    An interesting spinoff: How large can $$inf_{x,y in A, x ne y} |x-y|$$ be? Can this be larger than $sqrt{2}$?
    $endgroup$
    – gerw
    Dec 6 '18 at 8:04


















$begingroup$
Is there something missing in the question? If $A$ contains only two points $(1,0,0, ldots)$ and $(-1, 0, 0, ldots)$, does this not work?
$endgroup$
– angryavian
Dec 5 '18 at 20:40




$begingroup$
Is there something missing in the question? If $A$ contains only two points $(1,0,0, ldots)$ and $(-1, 0, 0, ldots)$, does this not work?
$endgroup$
– angryavian
Dec 5 '18 at 20:40












$begingroup$
My mistake, A must be infinite.
$endgroup$
– Ángela Flores
Dec 5 '18 at 20:40




$begingroup$
My mistake, A must be infinite.
$endgroup$
– Ángela Flores
Dec 5 '18 at 20:40












$begingroup$
@AlexR. $l^2$ refers to the space of sequences $(a_1, a_2, ldots)$ such that $sum_n a_n^2 < infty$.
$endgroup$
– angryavian
Dec 5 '18 at 20:47




$begingroup$
@AlexR. $l^2$ refers to the space of sequences $(a_1, a_2, ldots)$ such that $sum_n a_n^2 < infty$.
$endgroup$
– angryavian
Dec 5 '18 at 20:47












$begingroup$
Nitpick: You might want to add $x ne y$ in the formulation of your question. Otherwise, it is not possible (obviously).
$endgroup$
– gerw
Dec 6 '18 at 7:52




$begingroup$
Nitpick: You might want to add $x ne y$ in the formulation of your question. Otherwise, it is not possible (obviously).
$endgroup$
– gerw
Dec 6 '18 at 7:52












$begingroup$
An interesting spinoff: How large can $$inf_{x,y in A, x ne y} |x-y|$$ be? Can this be larger than $sqrt{2}$?
$endgroup$
– gerw
Dec 6 '18 at 8:04






$begingroup$
An interesting spinoff: How large can $$inf_{x,y in A, x ne y} |x-y|$$ be? Can this be larger than $sqrt{2}$?
$endgroup$
– gerw
Dec 6 '18 at 8:04












1 Answer
1






active

oldest

votes


















2












$begingroup$

Recall that $ell^2$ is a Hilbert space with the natural inner product. Note that:
$$||x-y||^2=||x||^2+||y||^2-2langle x,yrangle,$$
in particular, if $x,yin S$ ($S$ the set of points with norm equal to $1$)
$$||x-y||^2=2(1-langle x,yrangle).$$



So it is enough to find an infinite family $B$ in $ell^2$ such that their inner product is $langle x,yrangle<0$ for all $x,yin B$, $xneq y$. Since you can consider
$$A=leftlbrace x/||x||;:;xin B, xneq 0rightrbrace,$$
and we have for $x/||x||$, $y/||y||$, $x,yin Bsetminus{0}$ the following
begin{align} ||x-y||^2 & = 2left( 1- frac{1}{||x||cdot||y||}langle x,yrangleright) \ & > 2.end{align}



Let $f:mathbb{N}tomathbb{N}:nmapsto n!$. Clearly $f(n)^2-nf(n-1)^2>0$. Now, let $(e_n)_n$ the standard basis of $ell^2$, and we define
$$u_n=f(n)e_n-sum_{k=1}^{n-1}f(k)e_k.$$
The set $B$ will be the set of the $u_n$'s. Let's check that for every pair of distinct natural numbers $n,m$ it is satisfied that $langle u_n,u_mrangle<0$. In fact
begin{align}langle u_n,u_mrangle & = leftlangle f(n)e_n-sum_{k=1}^{n-1}f(k)e_k,f(m)e_n-sum_{j=1}^{m-1}f(j)e_jrightrangle \ & = leftlangle f(n)e_n, f(m)e_mrightrangle-leftlangle f(n)e_n,sum_{j=1}^{m-1}f(j)e_jrightrangle \ & + leftlanglesum_{k=1}^{n-1}f(k)e_k,sum_{j=1}^{m-1}f(j)e_jrightrangle-leftlangle sum_{k=1}^{n-1}f(k)e_k, f(m)e_mrightrangle \ & = sum_{k=1}^{n-1}sum_{j=1}^{m-1}f(k)f(j)langle e_k,e_jrangle-f(m)^2 \ & = sum_{j=1}^{m-1}f(k)^2-f(m)^2 \ &leq mf(m-1)-f(m)^2 \ & < 0.end{align}






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3027616%2fsubset-of-ell2-with-distance-property%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    Recall that $ell^2$ is a Hilbert space with the natural inner product. Note that:
    $$||x-y||^2=||x||^2+||y||^2-2langle x,yrangle,$$
    in particular, if $x,yin S$ ($S$ the set of points with norm equal to $1$)
    $$||x-y||^2=2(1-langle x,yrangle).$$



    So it is enough to find an infinite family $B$ in $ell^2$ such that their inner product is $langle x,yrangle<0$ for all $x,yin B$, $xneq y$. Since you can consider
    $$A=leftlbrace x/||x||;:;xin B, xneq 0rightrbrace,$$
    and we have for $x/||x||$, $y/||y||$, $x,yin Bsetminus{0}$ the following
    begin{align} ||x-y||^2 & = 2left( 1- frac{1}{||x||cdot||y||}langle x,yrangleright) \ & > 2.end{align}



    Let $f:mathbb{N}tomathbb{N}:nmapsto n!$. Clearly $f(n)^2-nf(n-1)^2>0$. Now, let $(e_n)_n$ the standard basis of $ell^2$, and we define
    $$u_n=f(n)e_n-sum_{k=1}^{n-1}f(k)e_k.$$
    The set $B$ will be the set of the $u_n$'s. Let's check that for every pair of distinct natural numbers $n,m$ it is satisfied that $langle u_n,u_mrangle<0$. In fact
    begin{align}langle u_n,u_mrangle & = leftlangle f(n)e_n-sum_{k=1}^{n-1}f(k)e_k,f(m)e_n-sum_{j=1}^{m-1}f(j)e_jrightrangle \ & = leftlangle f(n)e_n, f(m)e_mrightrangle-leftlangle f(n)e_n,sum_{j=1}^{m-1}f(j)e_jrightrangle \ & + leftlanglesum_{k=1}^{n-1}f(k)e_k,sum_{j=1}^{m-1}f(j)e_jrightrangle-leftlangle sum_{k=1}^{n-1}f(k)e_k, f(m)e_mrightrangle \ & = sum_{k=1}^{n-1}sum_{j=1}^{m-1}f(k)f(j)langle e_k,e_jrangle-f(m)^2 \ & = sum_{j=1}^{m-1}f(k)^2-f(m)^2 \ &leq mf(m-1)-f(m)^2 \ & < 0.end{align}






    share|cite|improve this answer









    $endgroup$


















      2












      $begingroup$

      Recall that $ell^2$ is a Hilbert space with the natural inner product. Note that:
      $$||x-y||^2=||x||^2+||y||^2-2langle x,yrangle,$$
      in particular, if $x,yin S$ ($S$ the set of points with norm equal to $1$)
      $$||x-y||^2=2(1-langle x,yrangle).$$



      So it is enough to find an infinite family $B$ in $ell^2$ such that their inner product is $langle x,yrangle<0$ for all $x,yin B$, $xneq y$. Since you can consider
      $$A=leftlbrace x/||x||;:;xin B, xneq 0rightrbrace,$$
      and we have for $x/||x||$, $y/||y||$, $x,yin Bsetminus{0}$ the following
      begin{align} ||x-y||^2 & = 2left( 1- frac{1}{||x||cdot||y||}langle x,yrangleright) \ & > 2.end{align}



      Let $f:mathbb{N}tomathbb{N}:nmapsto n!$. Clearly $f(n)^2-nf(n-1)^2>0$. Now, let $(e_n)_n$ the standard basis of $ell^2$, and we define
      $$u_n=f(n)e_n-sum_{k=1}^{n-1}f(k)e_k.$$
      The set $B$ will be the set of the $u_n$'s. Let's check that for every pair of distinct natural numbers $n,m$ it is satisfied that $langle u_n,u_mrangle<0$. In fact
      begin{align}langle u_n,u_mrangle & = leftlangle f(n)e_n-sum_{k=1}^{n-1}f(k)e_k,f(m)e_n-sum_{j=1}^{m-1}f(j)e_jrightrangle \ & = leftlangle f(n)e_n, f(m)e_mrightrangle-leftlangle f(n)e_n,sum_{j=1}^{m-1}f(j)e_jrightrangle \ & + leftlanglesum_{k=1}^{n-1}f(k)e_k,sum_{j=1}^{m-1}f(j)e_jrightrangle-leftlangle sum_{k=1}^{n-1}f(k)e_k, f(m)e_mrightrangle \ & = sum_{k=1}^{n-1}sum_{j=1}^{m-1}f(k)f(j)langle e_k,e_jrangle-f(m)^2 \ & = sum_{j=1}^{m-1}f(k)^2-f(m)^2 \ &leq mf(m-1)-f(m)^2 \ & < 0.end{align}






      share|cite|improve this answer









      $endgroup$
















        2












        2








        2





        $begingroup$

        Recall that $ell^2$ is a Hilbert space with the natural inner product. Note that:
        $$||x-y||^2=||x||^2+||y||^2-2langle x,yrangle,$$
        in particular, if $x,yin S$ ($S$ the set of points with norm equal to $1$)
        $$||x-y||^2=2(1-langle x,yrangle).$$



        So it is enough to find an infinite family $B$ in $ell^2$ such that their inner product is $langle x,yrangle<0$ for all $x,yin B$, $xneq y$. Since you can consider
        $$A=leftlbrace x/||x||;:;xin B, xneq 0rightrbrace,$$
        and we have for $x/||x||$, $y/||y||$, $x,yin Bsetminus{0}$ the following
        begin{align} ||x-y||^2 & = 2left( 1- frac{1}{||x||cdot||y||}langle x,yrangleright) \ & > 2.end{align}



        Let $f:mathbb{N}tomathbb{N}:nmapsto n!$. Clearly $f(n)^2-nf(n-1)^2>0$. Now, let $(e_n)_n$ the standard basis of $ell^2$, and we define
        $$u_n=f(n)e_n-sum_{k=1}^{n-1}f(k)e_k.$$
        The set $B$ will be the set of the $u_n$'s. Let's check that for every pair of distinct natural numbers $n,m$ it is satisfied that $langle u_n,u_mrangle<0$. In fact
        begin{align}langle u_n,u_mrangle & = leftlangle f(n)e_n-sum_{k=1}^{n-1}f(k)e_k,f(m)e_n-sum_{j=1}^{m-1}f(j)e_jrightrangle \ & = leftlangle f(n)e_n, f(m)e_mrightrangle-leftlangle f(n)e_n,sum_{j=1}^{m-1}f(j)e_jrightrangle \ & + leftlanglesum_{k=1}^{n-1}f(k)e_k,sum_{j=1}^{m-1}f(j)e_jrightrangle-leftlangle sum_{k=1}^{n-1}f(k)e_k, f(m)e_mrightrangle \ & = sum_{k=1}^{n-1}sum_{j=1}^{m-1}f(k)f(j)langle e_k,e_jrangle-f(m)^2 \ & = sum_{j=1}^{m-1}f(k)^2-f(m)^2 \ &leq mf(m-1)-f(m)^2 \ & < 0.end{align}






        share|cite|improve this answer









        $endgroup$



        Recall that $ell^2$ is a Hilbert space with the natural inner product. Note that:
        $$||x-y||^2=||x||^2+||y||^2-2langle x,yrangle,$$
        in particular, if $x,yin S$ ($S$ the set of points with norm equal to $1$)
        $$||x-y||^2=2(1-langle x,yrangle).$$



        So it is enough to find an infinite family $B$ in $ell^2$ such that their inner product is $langle x,yrangle<0$ for all $x,yin B$, $xneq y$. Since you can consider
        $$A=leftlbrace x/||x||;:;xin B, xneq 0rightrbrace,$$
        and we have for $x/||x||$, $y/||y||$, $x,yin Bsetminus{0}$ the following
        begin{align} ||x-y||^2 & = 2left( 1- frac{1}{||x||cdot||y||}langle x,yrangleright) \ & > 2.end{align}



        Let $f:mathbb{N}tomathbb{N}:nmapsto n!$. Clearly $f(n)^2-nf(n-1)^2>0$. Now, let $(e_n)_n$ the standard basis of $ell^2$, and we define
        $$u_n=f(n)e_n-sum_{k=1}^{n-1}f(k)e_k.$$
        The set $B$ will be the set of the $u_n$'s. Let's check that for every pair of distinct natural numbers $n,m$ it is satisfied that $langle u_n,u_mrangle<0$. In fact
        begin{align}langle u_n,u_mrangle & = leftlangle f(n)e_n-sum_{k=1}^{n-1}f(k)e_k,f(m)e_n-sum_{j=1}^{m-1}f(j)e_jrightrangle \ & = leftlangle f(n)e_n, f(m)e_mrightrangle-leftlangle f(n)e_n,sum_{j=1}^{m-1}f(j)e_jrightrangle \ & + leftlanglesum_{k=1}^{n-1}f(k)e_k,sum_{j=1}^{m-1}f(j)e_jrightrangle-leftlangle sum_{k=1}^{n-1}f(k)e_k, f(m)e_mrightrangle \ & = sum_{k=1}^{n-1}sum_{j=1}^{m-1}f(k)f(j)langle e_k,e_jrangle-f(m)^2 \ & = sum_{j=1}^{m-1}f(k)^2-f(m)^2 \ &leq mf(m-1)-f(m)^2 \ & < 0.end{align}







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 5 '18 at 23:24









        José Alejandro Aburto AranedaJosé Alejandro Aburto Araneda

        802110




        802110






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3027616%2fsubset-of-ell2-with-distance-property%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Ellipse (mathématiques)

            Quarter-circle Tiles

            Mont Emei