An estimate for a 1d hyperbolic PDE












1












$begingroup$


Let $L, T, lambda> 0$ be fixed, and let $f in C^1([0,T];H^1(0,L))$, $g in C^1([0,T];H^1(0,L)) cap C^2([0,T];L^2(0,L))$ and $v^0 in H^1(0,L)$. Consider the problem
$$
begin{cases}
partial_t v + lambda partial_x v = f(x,t) & text{in }(0,L)times(0,T)\
v(0,t) = g(0,t) & text{on }(0,T)\
v(x,0) = v^0(x) & text{on }(0,L),
end{cases}
$$

where the unknown is $v colon (0,L)times (0,T) rightarrow mathbb{R}$. My question is:




Is it possible, or not, to obtain an inequality of the form
$$
|v(cdot, t)|_{H^1(0,L)} leq C big( |v^0|_{H^1(0,L)} + max_{tau in [0,T]}|g(cdot, tau)|_{H^1(0,L)} big),
$$

for $C>0$ independant of $v$, where $v in C^0([0,T]; H^1(0,L)) cap C^1([0,T]; L^2(0,L))$ is the solution to above problem?




Having in mind to latter use Gronwall's lemma, for $t in [0,T]$ fixed, I compute
begin{align*}
frac{mathrm{d}}{mathrm{d}t} int_0^L v(x,t)^2 dt &= 2 int_0^L v partial_tv dt \
&= 2 int_0^L v(- lambda partial_x v + f)dt \
&= - lambda int_0^L partial_x(v^2)dt + 2 int_0^L vf dt\
&= - lambda (v(L,t)^2 - v(0,t)^2) + 2 int_0^L vf dt\
&leq lambda g(0,t)^2 + |v(cdot, t)|_{L^2(0,L)}^2 + |f(cdot, t)|_{L^2(0,L)}^2 \
&leq lambda C_0 |g(cdot, t)|_{H^1(0,L)}^2 + |v(cdot, t)|_{L^2(0,L)}^2 + |f(cdot, t)|_{L^2(0,L)}^2,
end{align*}

where $C_0>0$ and Poincaré inequality is used for the last estimation. However, I do not know if it is possible to use a similar procedure for the $L^2$-norm of $partial_x v$. I tried the following computations:
begin{align*}
frac{mathrm{d}}{mathrm{d}t} int_0^L (partial_x v(x,t))^2 dt &= 2 int_0^L partial_x v partial_{xt }v dt \
&= 2 int_0^L partial_x v(- lambda partial_{xx} v + partial_x f)dt \
&= - lambda int_0^L partial_x(partial_x v^2)dt + 2 int_0^L partial_x v partial_x f dt\
&= - lambda (partial_x v(L,t)^2 - partial_x v(0,t)^2) + 2 int_0^L partial_x v partial_x f dt\
&leq partial_x v(0,t)^2 + |partial_x v(cdot, t)|_{L^2(0,L)}^2 + |f(cdot, t)|_{H^1(0,L)}^2,
end{align*}

and I do not know how to estimate the term $partial_x v(0,t)^2$ without making appear the time derivative of $g$.










share|cite|improve this question









$endgroup$

















    1












    $begingroup$


    Let $L, T, lambda> 0$ be fixed, and let $f in C^1([0,T];H^1(0,L))$, $g in C^1([0,T];H^1(0,L)) cap C^2([0,T];L^2(0,L))$ and $v^0 in H^1(0,L)$. Consider the problem
    $$
    begin{cases}
    partial_t v + lambda partial_x v = f(x,t) & text{in }(0,L)times(0,T)\
    v(0,t) = g(0,t) & text{on }(0,T)\
    v(x,0) = v^0(x) & text{on }(0,L),
    end{cases}
    $$

    where the unknown is $v colon (0,L)times (0,T) rightarrow mathbb{R}$. My question is:




    Is it possible, or not, to obtain an inequality of the form
    $$
    |v(cdot, t)|_{H^1(0,L)} leq C big( |v^0|_{H^1(0,L)} + max_{tau in [0,T]}|g(cdot, tau)|_{H^1(0,L)} big),
    $$

    for $C>0$ independant of $v$, where $v in C^0([0,T]; H^1(0,L)) cap C^1([0,T]; L^2(0,L))$ is the solution to above problem?




    Having in mind to latter use Gronwall's lemma, for $t in [0,T]$ fixed, I compute
    begin{align*}
    frac{mathrm{d}}{mathrm{d}t} int_0^L v(x,t)^2 dt &= 2 int_0^L v partial_tv dt \
    &= 2 int_0^L v(- lambda partial_x v + f)dt \
    &= - lambda int_0^L partial_x(v^2)dt + 2 int_0^L vf dt\
    &= - lambda (v(L,t)^2 - v(0,t)^2) + 2 int_0^L vf dt\
    &leq lambda g(0,t)^2 + |v(cdot, t)|_{L^2(0,L)}^2 + |f(cdot, t)|_{L^2(0,L)}^2 \
    &leq lambda C_0 |g(cdot, t)|_{H^1(0,L)}^2 + |v(cdot, t)|_{L^2(0,L)}^2 + |f(cdot, t)|_{L^2(0,L)}^2,
    end{align*}

    where $C_0>0$ and Poincaré inequality is used for the last estimation. However, I do not know if it is possible to use a similar procedure for the $L^2$-norm of $partial_x v$. I tried the following computations:
    begin{align*}
    frac{mathrm{d}}{mathrm{d}t} int_0^L (partial_x v(x,t))^2 dt &= 2 int_0^L partial_x v partial_{xt }v dt \
    &= 2 int_0^L partial_x v(- lambda partial_{xx} v + partial_x f)dt \
    &= - lambda int_0^L partial_x(partial_x v^2)dt + 2 int_0^L partial_x v partial_x f dt\
    &= - lambda (partial_x v(L,t)^2 - partial_x v(0,t)^2) + 2 int_0^L partial_x v partial_x f dt\
    &leq partial_x v(0,t)^2 + |partial_x v(cdot, t)|_{L^2(0,L)}^2 + |f(cdot, t)|_{H^1(0,L)}^2,
    end{align*}

    and I do not know how to estimate the term $partial_x v(0,t)^2$ without making appear the time derivative of $g$.










    share|cite|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$


      Let $L, T, lambda> 0$ be fixed, and let $f in C^1([0,T];H^1(0,L))$, $g in C^1([0,T];H^1(0,L)) cap C^2([0,T];L^2(0,L))$ and $v^0 in H^1(0,L)$. Consider the problem
      $$
      begin{cases}
      partial_t v + lambda partial_x v = f(x,t) & text{in }(0,L)times(0,T)\
      v(0,t) = g(0,t) & text{on }(0,T)\
      v(x,0) = v^0(x) & text{on }(0,L),
      end{cases}
      $$

      where the unknown is $v colon (0,L)times (0,T) rightarrow mathbb{R}$. My question is:




      Is it possible, or not, to obtain an inequality of the form
      $$
      |v(cdot, t)|_{H^1(0,L)} leq C big( |v^0|_{H^1(0,L)} + max_{tau in [0,T]}|g(cdot, tau)|_{H^1(0,L)} big),
      $$

      for $C>0$ independant of $v$, where $v in C^0([0,T]; H^1(0,L)) cap C^1([0,T]; L^2(0,L))$ is the solution to above problem?




      Having in mind to latter use Gronwall's lemma, for $t in [0,T]$ fixed, I compute
      begin{align*}
      frac{mathrm{d}}{mathrm{d}t} int_0^L v(x,t)^2 dt &= 2 int_0^L v partial_tv dt \
      &= 2 int_0^L v(- lambda partial_x v + f)dt \
      &= - lambda int_0^L partial_x(v^2)dt + 2 int_0^L vf dt\
      &= - lambda (v(L,t)^2 - v(0,t)^2) + 2 int_0^L vf dt\
      &leq lambda g(0,t)^2 + |v(cdot, t)|_{L^2(0,L)}^2 + |f(cdot, t)|_{L^2(0,L)}^2 \
      &leq lambda C_0 |g(cdot, t)|_{H^1(0,L)}^2 + |v(cdot, t)|_{L^2(0,L)}^2 + |f(cdot, t)|_{L^2(0,L)}^2,
      end{align*}

      where $C_0>0$ and Poincaré inequality is used for the last estimation. However, I do not know if it is possible to use a similar procedure for the $L^2$-norm of $partial_x v$. I tried the following computations:
      begin{align*}
      frac{mathrm{d}}{mathrm{d}t} int_0^L (partial_x v(x,t))^2 dt &= 2 int_0^L partial_x v partial_{xt }v dt \
      &= 2 int_0^L partial_x v(- lambda partial_{xx} v + partial_x f)dt \
      &= - lambda int_0^L partial_x(partial_x v^2)dt + 2 int_0^L partial_x v partial_x f dt\
      &= - lambda (partial_x v(L,t)^2 - partial_x v(0,t)^2) + 2 int_0^L partial_x v partial_x f dt\
      &leq partial_x v(0,t)^2 + |partial_x v(cdot, t)|_{L^2(0,L)}^2 + |f(cdot, t)|_{H^1(0,L)}^2,
      end{align*}

      and I do not know how to estimate the term $partial_x v(0,t)^2$ without making appear the time derivative of $g$.










      share|cite|improve this question









      $endgroup$




      Let $L, T, lambda> 0$ be fixed, and let $f in C^1([0,T];H^1(0,L))$, $g in C^1([0,T];H^1(0,L)) cap C^2([0,T];L^2(0,L))$ and $v^0 in H^1(0,L)$. Consider the problem
      $$
      begin{cases}
      partial_t v + lambda partial_x v = f(x,t) & text{in }(0,L)times(0,T)\
      v(0,t) = g(0,t) & text{on }(0,T)\
      v(x,0) = v^0(x) & text{on }(0,L),
      end{cases}
      $$

      where the unknown is $v colon (0,L)times (0,T) rightarrow mathbb{R}$. My question is:




      Is it possible, or not, to obtain an inequality of the form
      $$
      |v(cdot, t)|_{H^1(0,L)} leq C big( |v^0|_{H^1(0,L)} + max_{tau in [0,T]}|g(cdot, tau)|_{H^1(0,L)} big),
      $$

      for $C>0$ independant of $v$, where $v in C^0([0,T]; H^1(0,L)) cap C^1([0,T]; L^2(0,L))$ is the solution to above problem?




      Having in mind to latter use Gronwall's lemma, for $t in [0,T]$ fixed, I compute
      begin{align*}
      frac{mathrm{d}}{mathrm{d}t} int_0^L v(x,t)^2 dt &= 2 int_0^L v partial_tv dt \
      &= 2 int_0^L v(- lambda partial_x v + f)dt \
      &= - lambda int_0^L partial_x(v^2)dt + 2 int_0^L vf dt\
      &= - lambda (v(L,t)^2 - v(0,t)^2) + 2 int_0^L vf dt\
      &leq lambda g(0,t)^2 + |v(cdot, t)|_{L^2(0,L)}^2 + |f(cdot, t)|_{L^2(0,L)}^2 \
      &leq lambda C_0 |g(cdot, t)|_{H^1(0,L)}^2 + |v(cdot, t)|_{L^2(0,L)}^2 + |f(cdot, t)|_{L^2(0,L)}^2,
      end{align*}

      where $C_0>0$ and Poincaré inequality is used for the last estimation. However, I do not know if it is possible to use a similar procedure for the $L^2$-norm of $partial_x v$. I tried the following computations:
      begin{align*}
      frac{mathrm{d}}{mathrm{d}t} int_0^L (partial_x v(x,t))^2 dt &= 2 int_0^L partial_x v partial_{xt }v dt \
      &= 2 int_0^L partial_x v(- lambda partial_{xx} v + partial_x f)dt \
      &= - lambda int_0^L partial_x(partial_x v^2)dt + 2 int_0^L partial_x v partial_x f dt\
      &= - lambda (partial_x v(L,t)^2 - partial_x v(0,t)^2) + 2 int_0^L partial_x v partial_x f dt\
      &leq partial_x v(0,t)^2 + |partial_x v(cdot, t)|_{L^2(0,L)}^2 + |f(cdot, t)|_{H^1(0,L)}^2,
      end{align*}

      and I do not know how to estimate the term $partial_x v(0,t)^2$ without making appear the time derivative of $g$.







      pde estimation hyperbolic-equations






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 10 '18 at 9:31









      user344045user344045

      285




      285






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033688%2fan-estimate-for-a-1d-hyperbolic-pde%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033688%2fan-estimate-for-a-1d-hyperbolic-pde%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Ellipse (mathématiques)

          Quarter-circle Tiles

          Mont Emei