An estimate for a 1d hyperbolic PDE
$begingroup$
Let $L, T, lambda> 0$ be fixed, and let $f in C^1([0,T];H^1(0,L))$, $g in C^1([0,T];H^1(0,L)) cap C^2([0,T];L^2(0,L))$ and $v^0 in H^1(0,L)$. Consider the problem
$$
begin{cases}
partial_t v + lambda partial_x v = f(x,t) & text{in }(0,L)times(0,T)\
v(0,t) = g(0,t) & text{on }(0,T)\
v(x,0) = v^0(x) & text{on }(0,L),
end{cases}
$$
where the unknown is $v colon (0,L)times (0,T) rightarrow mathbb{R}$. My question is:
Is it possible, or not, to obtain an inequality of the form
$$
|v(cdot, t)|_{H^1(0,L)} leq C big( |v^0|_{H^1(0,L)} + max_{tau in [0,T]}|g(cdot, tau)|_{H^1(0,L)} big),
$$
for $C>0$ independant of $v$, where $v in C^0([0,T]; H^1(0,L)) cap C^1([0,T]; L^2(0,L))$ is the solution to above problem?
Having in mind to latter use Gronwall's lemma, for $t in [0,T]$ fixed, I compute
begin{align*}
frac{mathrm{d}}{mathrm{d}t} int_0^L v(x,t)^2 dt &= 2 int_0^L v partial_tv dt \
&= 2 int_0^L v(- lambda partial_x v + f)dt \
&= - lambda int_0^L partial_x(v^2)dt + 2 int_0^L vf dt\
&= - lambda (v(L,t)^2 - v(0,t)^2) + 2 int_0^L vf dt\
&leq lambda g(0,t)^2 + |v(cdot, t)|_{L^2(0,L)}^2 + |f(cdot, t)|_{L^2(0,L)}^2 \
&leq lambda C_0 |g(cdot, t)|_{H^1(0,L)}^2 + |v(cdot, t)|_{L^2(0,L)}^2 + |f(cdot, t)|_{L^2(0,L)}^2,
end{align*}
where $C_0>0$ and Poincaré inequality is used for the last estimation. However, I do not know if it is possible to use a similar procedure for the $L^2$-norm of $partial_x v$. I tried the following computations:
begin{align*}
frac{mathrm{d}}{mathrm{d}t} int_0^L (partial_x v(x,t))^2 dt &= 2 int_0^L partial_x v partial_{xt }v dt \
&= 2 int_0^L partial_x v(- lambda partial_{xx} v + partial_x f)dt \
&= - lambda int_0^L partial_x(partial_x v^2)dt + 2 int_0^L partial_x v partial_x f dt\
&= - lambda (partial_x v(L,t)^2 - partial_x v(0,t)^2) + 2 int_0^L partial_x v partial_x f dt\
&leq partial_x v(0,t)^2 + |partial_x v(cdot, t)|_{L^2(0,L)}^2 + |f(cdot, t)|_{H^1(0,L)}^2,
end{align*}
and I do not know how to estimate the term $partial_x v(0,t)^2$ without making appear the time derivative of $g$.
pde estimation hyperbolic-equations
$endgroup$
add a comment |
$begingroup$
Let $L, T, lambda> 0$ be fixed, and let $f in C^1([0,T];H^1(0,L))$, $g in C^1([0,T];H^1(0,L)) cap C^2([0,T];L^2(0,L))$ and $v^0 in H^1(0,L)$. Consider the problem
$$
begin{cases}
partial_t v + lambda partial_x v = f(x,t) & text{in }(0,L)times(0,T)\
v(0,t) = g(0,t) & text{on }(0,T)\
v(x,0) = v^0(x) & text{on }(0,L),
end{cases}
$$
where the unknown is $v colon (0,L)times (0,T) rightarrow mathbb{R}$. My question is:
Is it possible, or not, to obtain an inequality of the form
$$
|v(cdot, t)|_{H^1(0,L)} leq C big( |v^0|_{H^1(0,L)} + max_{tau in [0,T]}|g(cdot, tau)|_{H^1(0,L)} big),
$$
for $C>0$ independant of $v$, where $v in C^0([0,T]; H^1(0,L)) cap C^1([0,T]; L^2(0,L))$ is the solution to above problem?
Having in mind to latter use Gronwall's lemma, for $t in [0,T]$ fixed, I compute
begin{align*}
frac{mathrm{d}}{mathrm{d}t} int_0^L v(x,t)^2 dt &= 2 int_0^L v partial_tv dt \
&= 2 int_0^L v(- lambda partial_x v + f)dt \
&= - lambda int_0^L partial_x(v^2)dt + 2 int_0^L vf dt\
&= - lambda (v(L,t)^2 - v(0,t)^2) + 2 int_0^L vf dt\
&leq lambda g(0,t)^2 + |v(cdot, t)|_{L^2(0,L)}^2 + |f(cdot, t)|_{L^2(0,L)}^2 \
&leq lambda C_0 |g(cdot, t)|_{H^1(0,L)}^2 + |v(cdot, t)|_{L^2(0,L)}^2 + |f(cdot, t)|_{L^2(0,L)}^2,
end{align*}
where $C_0>0$ and Poincaré inequality is used for the last estimation. However, I do not know if it is possible to use a similar procedure for the $L^2$-norm of $partial_x v$. I tried the following computations:
begin{align*}
frac{mathrm{d}}{mathrm{d}t} int_0^L (partial_x v(x,t))^2 dt &= 2 int_0^L partial_x v partial_{xt }v dt \
&= 2 int_0^L partial_x v(- lambda partial_{xx} v + partial_x f)dt \
&= - lambda int_0^L partial_x(partial_x v^2)dt + 2 int_0^L partial_x v partial_x f dt\
&= - lambda (partial_x v(L,t)^2 - partial_x v(0,t)^2) + 2 int_0^L partial_x v partial_x f dt\
&leq partial_x v(0,t)^2 + |partial_x v(cdot, t)|_{L^2(0,L)}^2 + |f(cdot, t)|_{H^1(0,L)}^2,
end{align*}
and I do not know how to estimate the term $partial_x v(0,t)^2$ without making appear the time derivative of $g$.
pde estimation hyperbolic-equations
$endgroup$
add a comment |
$begingroup$
Let $L, T, lambda> 0$ be fixed, and let $f in C^1([0,T];H^1(0,L))$, $g in C^1([0,T];H^1(0,L)) cap C^2([0,T];L^2(0,L))$ and $v^0 in H^1(0,L)$. Consider the problem
$$
begin{cases}
partial_t v + lambda partial_x v = f(x,t) & text{in }(0,L)times(0,T)\
v(0,t) = g(0,t) & text{on }(0,T)\
v(x,0) = v^0(x) & text{on }(0,L),
end{cases}
$$
where the unknown is $v colon (0,L)times (0,T) rightarrow mathbb{R}$. My question is:
Is it possible, or not, to obtain an inequality of the form
$$
|v(cdot, t)|_{H^1(0,L)} leq C big( |v^0|_{H^1(0,L)} + max_{tau in [0,T]}|g(cdot, tau)|_{H^1(0,L)} big),
$$
for $C>0$ independant of $v$, where $v in C^0([0,T]; H^1(0,L)) cap C^1([0,T]; L^2(0,L))$ is the solution to above problem?
Having in mind to latter use Gronwall's lemma, for $t in [0,T]$ fixed, I compute
begin{align*}
frac{mathrm{d}}{mathrm{d}t} int_0^L v(x,t)^2 dt &= 2 int_0^L v partial_tv dt \
&= 2 int_0^L v(- lambda partial_x v + f)dt \
&= - lambda int_0^L partial_x(v^2)dt + 2 int_0^L vf dt\
&= - lambda (v(L,t)^2 - v(0,t)^2) + 2 int_0^L vf dt\
&leq lambda g(0,t)^2 + |v(cdot, t)|_{L^2(0,L)}^2 + |f(cdot, t)|_{L^2(0,L)}^2 \
&leq lambda C_0 |g(cdot, t)|_{H^1(0,L)}^2 + |v(cdot, t)|_{L^2(0,L)}^2 + |f(cdot, t)|_{L^2(0,L)}^2,
end{align*}
where $C_0>0$ and Poincaré inequality is used for the last estimation. However, I do not know if it is possible to use a similar procedure for the $L^2$-norm of $partial_x v$. I tried the following computations:
begin{align*}
frac{mathrm{d}}{mathrm{d}t} int_0^L (partial_x v(x,t))^2 dt &= 2 int_0^L partial_x v partial_{xt }v dt \
&= 2 int_0^L partial_x v(- lambda partial_{xx} v + partial_x f)dt \
&= - lambda int_0^L partial_x(partial_x v^2)dt + 2 int_0^L partial_x v partial_x f dt\
&= - lambda (partial_x v(L,t)^2 - partial_x v(0,t)^2) + 2 int_0^L partial_x v partial_x f dt\
&leq partial_x v(0,t)^2 + |partial_x v(cdot, t)|_{L^2(0,L)}^2 + |f(cdot, t)|_{H^1(0,L)}^2,
end{align*}
and I do not know how to estimate the term $partial_x v(0,t)^2$ without making appear the time derivative of $g$.
pde estimation hyperbolic-equations
$endgroup$
Let $L, T, lambda> 0$ be fixed, and let $f in C^1([0,T];H^1(0,L))$, $g in C^1([0,T];H^1(0,L)) cap C^2([0,T];L^2(0,L))$ and $v^0 in H^1(0,L)$. Consider the problem
$$
begin{cases}
partial_t v + lambda partial_x v = f(x,t) & text{in }(0,L)times(0,T)\
v(0,t) = g(0,t) & text{on }(0,T)\
v(x,0) = v^0(x) & text{on }(0,L),
end{cases}
$$
where the unknown is $v colon (0,L)times (0,T) rightarrow mathbb{R}$. My question is:
Is it possible, or not, to obtain an inequality of the form
$$
|v(cdot, t)|_{H^1(0,L)} leq C big( |v^0|_{H^1(0,L)} + max_{tau in [0,T]}|g(cdot, tau)|_{H^1(0,L)} big),
$$
for $C>0$ independant of $v$, where $v in C^0([0,T]; H^1(0,L)) cap C^1([0,T]; L^2(0,L))$ is the solution to above problem?
Having in mind to latter use Gronwall's lemma, for $t in [0,T]$ fixed, I compute
begin{align*}
frac{mathrm{d}}{mathrm{d}t} int_0^L v(x,t)^2 dt &= 2 int_0^L v partial_tv dt \
&= 2 int_0^L v(- lambda partial_x v + f)dt \
&= - lambda int_0^L partial_x(v^2)dt + 2 int_0^L vf dt\
&= - lambda (v(L,t)^2 - v(0,t)^2) + 2 int_0^L vf dt\
&leq lambda g(0,t)^2 + |v(cdot, t)|_{L^2(0,L)}^2 + |f(cdot, t)|_{L^2(0,L)}^2 \
&leq lambda C_0 |g(cdot, t)|_{H^1(0,L)}^2 + |v(cdot, t)|_{L^2(0,L)}^2 + |f(cdot, t)|_{L^2(0,L)}^2,
end{align*}
where $C_0>0$ and Poincaré inequality is used for the last estimation. However, I do not know if it is possible to use a similar procedure for the $L^2$-norm of $partial_x v$. I tried the following computations:
begin{align*}
frac{mathrm{d}}{mathrm{d}t} int_0^L (partial_x v(x,t))^2 dt &= 2 int_0^L partial_x v partial_{xt }v dt \
&= 2 int_0^L partial_x v(- lambda partial_{xx} v + partial_x f)dt \
&= - lambda int_0^L partial_x(partial_x v^2)dt + 2 int_0^L partial_x v partial_x f dt\
&= - lambda (partial_x v(L,t)^2 - partial_x v(0,t)^2) + 2 int_0^L partial_x v partial_x f dt\
&leq partial_x v(0,t)^2 + |partial_x v(cdot, t)|_{L^2(0,L)}^2 + |f(cdot, t)|_{H^1(0,L)}^2,
end{align*}
and I do not know how to estimate the term $partial_x v(0,t)^2$ without making appear the time derivative of $g$.
pde estimation hyperbolic-equations
pde estimation hyperbolic-equations
asked Dec 10 '18 at 9:31
user344045user344045
285
285
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033688%2fan-estimate-for-a-1d-hyperbolic-pde%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033688%2fan-estimate-for-a-1d-hyperbolic-pde%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown