Minimazation problem with norm and matrix












0












$begingroup$


In the context of principal component analysis, I got to the minimazation problem:



$$min_{A, (v_{i})} sum_{i=0}^n leftlVert X_{i}-Av_{i}rightrVert^2$$



for $X_1,...,X_nin mathbb{R}^p$



For the mean $bar{X}=0$ it has the solutions:



$$hat{v_{i}}=hat{A^T}X_{i}$$ $$hat{A}=(w_1,...,w_q)$$



where $W=(w_1,...,w_p)in mathbb{R^{ptimes p}}$, and $W*X*W^T$ the eigenvaluedecomposition.





Its a long time I didnt do calculus and optimazation. I tried to compute the derivative and got (with f being the function we want to minimize):



$$frac{partial{f}}{partial{A}}= sum_{i=0}^n 2*leftlVert X_{i}-Av_{i}rightrVert * v_k^T$$



and



$$frac{partial{f}}{partial{v_k}} = 2*leftlVert X_{k}-Av_{k}rightrVert * A$$



Setting this zero, I really have no clue how to get to the seolution.










share|cite|improve this question









$endgroup$












  • $begingroup$
    see here: stats.stackexchange.com/a/10260/55946
    $endgroup$
    – dimebucker
    Dec 10 '18 at 11:22










  • $begingroup$
    @dimebucker Thanks, that helps!
    $endgroup$
    – Losyres
    Dec 11 '18 at 14:54
















0












$begingroup$


In the context of principal component analysis, I got to the minimazation problem:



$$min_{A, (v_{i})} sum_{i=0}^n leftlVert X_{i}-Av_{i}rightrVert^2$$



for $X_1,...,X_nin mathbb{R}^p$



For the mean $bar{X}=0$ it has the solutions:



$$hat{v_{i}}=hat{A^T}X_{i}$$ $$hat{A}=(w_1,...,w_q)$$



where $W=(w_1,...,w_p)in mathbb{R^{ptimes p}}$, and $W*X*W^T$ the eigenvaluedecomposition.





Its a long time I didnt do calculus and optimazation. I tried to compute the derivative and got (with f being the function we want to minimize):



$$frac{partial{f}}{partial{A}}= sum_{i=0}^n 2*leftlVert X_{i}-Av_{i}rightrVert * v_k^T$$



and



$$frac{partial{f}}{partial{v_k}} = 2*leftlVert X_{k}-Av_{k}rightrVert * A$$



Setting this zero, I really have no clue how to get to the seolution.










share|cite|improve this question









$endgroup$












  • $begingroup$
    see here: stats.stackexchange.com/a/10260/55946
    $endgroup$
    – dimebucker
    Dec 10 '18 at 11:22










  • $begingroup$
    @dimebucker Thanks, that helps!
    $endgroup$
    – Losyres
    Dec 11 '18 at 14:54














0












0








0


1



$begingroup$


In the context of principal component analysis, I got to the minimazation problem:



$$min_{A, (v_{i})} sum_{i=0}^n leftlVert X_{i}-Av_{i}rightrVert^2$$



for $X_1,...,X_nin mathbb{R}^p$



For the mean $bar{X}=0$ it has the solutions:



$$hat{v_{i}}=hat{A^T}X_{i}$$ $$hat{A}=(w_1,...,w_q)$$



where $W=(w_1,...,w_p)in mathbb{R^{ptimes p}}$, and $W*X*W^T$ the eigenvaluedecomposition.





Its a long time I didnt do calculus and optimazation. I tried to compute the derivative and got (with f being the function we want to minimize):



$$frac{partial{f}}{partial{A}}= sum_{i=0}^n 2*leftlVert X_{i}-Av_{i}rightrVert * v_k^T$$



and



$$frac{partial{f}}{partial{v_k}} = 2*leftlVert X_{k}-Av_{k}rightrVert * A$$



Setting this zero, I really have no clue how to get to the seolution.










share|cite|improve this question









$endgroup$




In the context of principal component analysis, I got to the minimazation problem:



$$min_{A, (v_{i})} sum_{i=0}^n leftlVert X_{i}-Av_{i}rightrVert^2$$



for $X_1,...,X_nin mathbb{R}^p$



For the mean $bar{X}=0$ it has the solutions:



$$hat{v_{i}}=hat{A^T}X_{i}$$ $$hat{A}=(w_1,...,w_q)$$



where $W=(w_1,...,w_p)in mathbb{R^{ptimes p}}$, and $W*X*W^T$ the eigenvaluedecomposition.





Its a long time I didnt do calculus and optimazation. I tried to compute the derivative and got (with f being the function we want to minimize):



$$frac{partial{f}}{partial{A}}= sum_{i=0}^n 2*leftlVert X_{i}-Av_{i}rightrVert * v_k^T$$



and



$$frac{partial{f}}{partial{v_k}} = 2*leftlVert X_{k}-Av_{k}rightrVert * A$$



Setting this zero, I really have no clue how to get to the seolution.







optimization norm matrix-calculus






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 10 '18 at 11:13









LosyresLosyres

354




354












  • $begingroup$
    see here: stats.stackexchange.com/a/10260/55946
    $endgroup$
    – dimebucker
    Dec 10 '18 at 11:22










  • $begingroup$
    @dimebucker Thanks, that helps!
    $endgroup$
    – Losyres
    Dec 11 '18 at 14:54


















  • $begingroup$
    see here: stats.stackexchange.com/a/10260/55946
    $endgroup$
    – dimebucker
    Dec 10 '18 at 11:22










  • $begingroup$
    @dimebucker Thanks, that helps!
    $endgroup$
    – Losyres
    Dec 11 '18 at 14:54
















$begingroup$
see here: stats.stackexchange.com/a/10260/55946
$endgroup$
– dimebucker
Dec 10 '18 at 11:22




$begingroup$
see here: stats.stackexchange.com/a/10260/55946
$endgroup$
– dimebucker
Dec 10 '18 at 11:22












$begingroup$
@dimebucker Thanks, that helps!
$endgroup$
– Losyres
Dec 11 '18 at 14:54




$begingroup$
@dimebucker Thanks, that helps!
$endgroup$
– Losyres
Dec 11 '18 at 14:54










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033785%2fminimazation-problem-with-norm-and-matrix%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033785%2fminimazation-problem-with-norm-and-matrix%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Ellipse (mathématiques)

Quarter-circle Tiles

Mont Emei