Demonstrating an equivalent formula for $sin(x)/x$ using power series












1












$begingroup$


Would appreciate some ideas for the following:



"Prove that $frac{sin{x}}{x}=prod_{n=1}^{infty}cos{frac{x}{2^n}}$ using power series."



I'm aware this identity can be shown using trig identities and a telescoping product. Also, you can get another proof using the infinite product expressions $sin{x} = xprod_{k=1}^{infty} (1-frac{x^2}{k^2 pi^2})$ and $cos{x}=prod_{k=1, k text{odd}}^infty (1-frac{4x^2}{k^2 pi^2})$.



However, since the question explicitly mentions power series, I was wondering if there is a proof that directly uses power series? I've tried calculating some derivatives and coefficients but they seem to get pretty nasty.










share|cite|improve this question











$endgroup$












  • $begingroup$
    use Taylor series for sin at zero?
    $endgroup$
    – Dole
    Dec 23 '18 at 6:26












  • $begingroup$
    yeah, but the RHS is giving me trouble
    $endgroup$
    – Merk Zockerborg
    Dec 23 '18 at 6:28










  • $begingroup$
    Is there a nice power series for $log(cos x)$?
    $endgroup$
    – mathworker21
    Dec 23 '18 at 6:44
















1












$begingroup$


Would appreciate some ideas for the following:



"Prove that $frac{sin{x}}{x}=prod_{n=1}^{infty}cos{frac{x}{2^n}}$ using power series."



I'm aware this identity can be shown using trig identities and a telescoping product. Also, you can get another proof using the infinite product expressions $sin{x} = xprod_{k=1}^{infty} (1-frac{x^2}{k^2 pi^2})$ and $cos{x}=prod_{k=1, k text{odd}}^infty (1-frac{4x^2}{k^2 pi^2})$.



However, since the question explicitly mentions power series, I was wondering if there is a proof that directly uses power series? I've tried calculating some derivatives and coefficients but they seem to get pretty nasty.










share|cite|improve this question











$endgroup$












  • $begingroup$
    use Taylor series for sin at zero?
    $endgroup$
    – Dole
    Dec 23 '18 at 6:26












  • $begingroup$
    yeah, but the RHS is giving me trouble
    $endgroup$
    – Merk Zockerborg
    Dec 23 '18 at 6:28










  • $begingroup$
    Is there a nice power series for $log(cos x)$?
    $endgroup$
    – mathworker21
    Dec 23 '18 at 6:44














1












1








1


1



$begingroup$


Would appreciate some ideas for the following:



"Prove that $frac{sin{x}}{x}=prod_{n=1}^{infty}cos{frac{x}{2^n}}$ using power series."



I'm aware this identity can be shown using trig identities and a telescoping product. Also, you can get another proof using the infinite product expressions $sin{x} = xprod_{k=1}^{infty} (1-frac{x^2}{k^2 pi^2})$ and $cos{x}=prod_{k=1, k text{odd}}^infty (1-frac{4x^2}{k^2 pi^2})$.



However, since the question explicitly mentions power series, I was wondering if there is a proof that directly uses power series? I've tried calculating some derivatives and coefficients but they seem to get pretty nasty.










share|cite|improve this question











$endgroup$




Would appreciate some ideas for the following:



"Prove that $frac{sin{x}}{x}=prod_{n=1}^{infty}cos{frac{x}{2^n}}$ using power series."



I'm aware this identity can be shown using trig identities and a telescoping product. Also, you can get another proof using the infinite product expressions $sin{x} = xprod_{k=1}^{infty} (1-frac{x^2}{k^2 pi^2})$ and $cos{x}=prod_{k=1, k text{odd}}^infty (1-frac{4x^2}{k^2 pi^2})$.



However, since the question explicitly mentions power series, I was wondering if there is a proof that directly uses power series? I've tried calculating some derivatives and coefficients but they seem to get pretty nasty.







power-series infinite-product






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 23 '18 at 6:30









Eevee Trainer

6,1531936




6,1531936










asked Dec 23 '18 at 6:17









Merk ZockerborgMerk Zockerborg

18310




18310












  • $begingroup$
    use Taylor series for sin at zero?
    $endgroup$
    – Dole
    Dec 23 '18 at 6:26












  • $begingroup$
    yeah, but the RHS is giving me trouble
    $endgroup$
    – Merk Zockerborg
    Dec 23 '18 at 6:28










  • $begingroup$
    Is there a nice power series for $log(cos x)$?
    $endgroup$
    – mathworker21
    Dec 23 '18 at 6:44


















  • $begingroup$
    use Taylor series for sin at zero?
    $endgroup$
    – Dole
    Dec 23 '18 at 6:26












  • $begingroup$
    yeah, but the RHS is giving me trouble
    $endgroup$
    – Merk Zockerborg
    Dec 23 '18 at 6:28










  • $begingroup$
    Is there a nice power series for $log(cos x)$?
    $endgroup$
    – mathworker21
    Dec 23 '18 at 6:44
















$begingroup$
use Taylor series for sin at zero?
$endgroup$
– Dole
Dec 23 '18 at 6:26






$begingroup$
use Taylor series for sin at zero?
$endgroup$
– Dole
Dec 23 '18 at 6:26














$begingroup$
yeah, but the RHS is giving me trouble
$endgroup$
– Merk Zockerborg
Dec 23 '18 at 6:28




$begingroup$
yeah, but the RHS is giving me trouble
$endgroup$
– Merk Zockerborg
Dec 23 '18 at 6:28












$begingroup$
Is there a nice power series for $log(cos x)$?
$endgroup$
– mathworker21
Dec 23 '18 at 6:44




$begingroup$
Is there a nice power series for $log(cos x)$?
$endgroup$
– mathworker21
Dec 23 '18 at 6:44










2 Answers
2






active

oldest

votes


















1












$begingroup$

Using the fact that $sin(2x)=2sin(x)cos(x)$ we have $cos(x)=frac{sin(2x)}{2sin(x)}$.



Define $p_n(x):=prodlimits_{j=1}^n cos(frac{x}{2^j})$ and note that $cos(frac{x}{2^j})=dfrac{sin(frac{x}{2^{j-1}})}{2sin(frac{x}{2^j})}$ for each $j$.



Now, $p_n(x)=frac{1}{2^n}frac{sin(x)}{sin(frac{x}{2^n})}=frac{sin(x)}{x}dfrac{frac{x}{2^n}}{sin(frac{x}{2^n})}$ and $p_n(x)to_n frac{sin(x)}{x}$






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    HINT



    $cos z= e^{iz}(1+e^{-2iz})/2$ so $ln cos z=cdots$






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050104%2fdemonstrating-an-equivalent-formula-for-sinx-x-using-power-series%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      1












      $begingroup$

      Using the fact that $sin(2x)=2sin(x)cos(x)$ we have $cos(x)=frac{sin(2x)}{2sin(x)}$.



      Define $p_n(x):=prodlimits_{j=1}^n cos(frac{x}{2^j})$ and note that $cos(frac{x}{2^j})=dfrac{sin(frac{x}{2^{j-1}})}{2sin(frac{x}{2^j})}$ for each $j$.



      Now, $p_n(x)=frac{1}{2^n}frac{sin(x)}{sin(frac{x}{2^n})}=frac{sin(x)}{x}dfrac{frac{x}{2^n}}{sin(frac{x}{2^n})}$ and $p_n(x)to_n frac{sin(x)}{x}$






      share|cite|improve this answer









      $endgroup$


















        1












        $begingroup$

        Using the fact that $sin(2x)=2sin(x)cos(x)$ we have $cos(x)=frac{sin(2x)}{2sin(x)}$.



        Define $p_n(x):=prodlimits_{j=1}^n cos(frac{x}{2^j})$ and note that $cos(frac{x}{2^j})=dfrac{sin(frac{x}{2^{j-1}})}{2sin(frac{x}{2^j})}$ for each $j$.



        Now, $p_n(x)=frac{1}{2^n}frac{sin(x)}{sin(frac{x}{2^n})}=frac{sin(x)}{x}dfrac{frac{x}{2^n}}{sin(frac{x}{2^n})}$ and $p_n(x)to_n frac{sin(x)}{x}$






        share|cite|improve this answer









        $endgroup$
















          1












          1








          1





          $begingroup$

          Using the fact that $sin(2x)=2sin(x)cos(x)$ we have $cos(x)=frac{sin(2x)}{2sin(x)}$.



          Define $p_n(x):=prodlimits_{j=1}^n cos(frac{x}{2^j})$ and note that $cos(frac{x}{2^j})=dfrac{sin(frac{x}{2^{j-1}})}{2sin(frac{x}{2^j})}$ for each $j$.



          Now, $p_n(x)=frac{1}{2^n}frac{sin(x)}{sin(frac{x}{2^n})}=frac{sin(x)}{x}dfrac{frac{x}{2^n}}{sin(frac{x}{2^n})}$ and $p_n(x)to_n frac{sin(x)}{x}$






          share|cite|improve this answer









          $endgroup$



          Using the fact that $sin(2x)=2sin(x)cos(x)$ we have $cos(x)=frac{sin(2x)}{2sin(x)}$.



          Define $p_n(x):=prodlimits_{j=1}^n cos(frac{x}{2^j})$ and note that $cos(frac{x}{2^j})=dfrac{sin(frac{x}{2^{j-1}})}{2sin(frac{x}{2^j})}$ for each $j$.



          Now, $p_n(x)=frac{1}{2^n}frac{sin(x)}{sin(frac{x}{2^n})}=frac{sin(x)}{x}dfrac{frac{x}{2^n}}{sin(frac{x}{2^n})}$ and $p_n(x)to_n frac{sin(x)}{x}$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 23 '18 at 7:00









          Martín Vacas VignoloMartín Vacas Vignolo

          3,816623




          3,816623























              0












              $begingroup$

              HINT



              $cos z= e^{iz}(1+e^{-2iz})/2$ so $ln cos z=cdots$






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                HINT



                $cos z= e^{iz}(1+e^{-2iz})/2$ so $ln cos z=cdots$






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  HINT



                  $cos z= e^{iz}(1+e^{-2iz})/2$ so $ln cos z=cdots$






                  share|cite|improve this answer









                  $endgroup$



                  HINT



                  $cos z= e^{iz}(1+e^{-2iz})/2$ so $ln cos z=cdots$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Dec 23 '18 at 10:08









                  G CabG Cab

                  19.6k31239




                  19.6k31239






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050104%2fdemonstrating-an-equivalent-formula-for-sinx-x-using-power-series%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Quarter-circle Tiles

                      build a pushdown automaton that recognizes the reverse language of a given pushdown automaton?

                      Mont Emei