Demonstrating an equivalent formula for $sin(x)/x$ using power series
$begingroup$
Would appreciate some ideas for the following:
"Prove that $frac{sin{x}}{x}=prod_{n=1}^{infty}cos{frac{x}{2^n}}$ using power series."
I'm aware this identity can be shown using trig identities and a telescoping product. Also, you can get another proof using the infinite product expressions $sin{x} = xprod_{k=1}^{infty} (1-frac{x^2}{k^2 pi^2})$ and $cos{x}=prod_{k=1, k text{odd}}^infty (1-frac{4x^2}{k^2 pi^2})$.
However, since the question explicitly mentions power series, I was wondering if there is a proof that directly uses power series? I've tried calculating some derivatives and coefficients but they seem to get pretty nasty.
power-series infinite-product
$endgroup$
add a comment |
$begingroup$
Would appreciate some ideas for the following:
"Prove that $frac{sin{x}}{x}=prod_{n=1}^{infty}cos{frac{x}{2^n}}$ using power series."
I'm aware this identity can be shown using trig identities and a telescoping product. Also, you can get another proof using the infinite product expressions $sin{x} = xprod_{k=1}^{infty} (1-frac{x^2}{k^2 pi^2})$ and $cos{x}=prod_{k=1, k text{odd}}^infty (1-frac{4x^2}{k^2 pi^2})$.
However, since the question explicitly mentions power series, I was wondering if there is a proof that directly uses power series? I've tried calculating some derivatives and coefficients but they seem to get pretty nasty.
power-series infinite-product
$endgroup$
$begingroup$
use Taylor series for sin at zero?
$endgroup$
– Dole
Dec 23 '18 at 6:26
$begingroup$
yeah, but the RHS is giving me trouble
$endgroup$
– Merk Zockerborg
Dec 23 '18 at 6:28
$begingroup$
Is there a nice power series for $log(cos x)$?
$endgroup$
– mathworker21
Dec 23 '18 at 6:44
add a comment |
$begingroup$
Would appreciate some ideas for the following:
"Prove that $frac{sin{x}}{x}=prod_{n=1}^{infty}cos{frac{x}{2^n}}$ using power series."
I'm aware this identity can be shown using trig identities and a telescoping product. Also, you can get another proof using the infinite product expressions $sin{x} = xprod_{k=1}^{infty} (1-frac{x^2}{k^2 pi^2})$ and $cos{x}=prod_{k=1, k text{odd}}^infty (1-frac{4x^2}{k^2 pi^2})$.
However, since the question explicitly mentions power series, I was wondering if there is a proof that directly uses power series? I've tried calculating some derivatives and coefficients but they seem to get pretty nasty.
power-series infinite-product
$endgroup$
Would appreciate some ideas for the following:
"Prove that $frac{sin{x}}{x}=prod_{n=1}^{infty}cos{frac{x}{2^n}}$ using power series."
I'm aware this identity can be shown using trig identities and a telescoping product. Also, you can get another proof using the infinite product expressions $sin{x} = xprod_{k=1}^{infty} (1-frac{x^2}{k^2 pi^2})$ and $cos{x}=prod_{k=1, k text{odd}}^infty (1-frac{4x^2}{k^2 pi^2})$.
However, since the question explicitly mentions power series, I was wondering if there is a proof that directly uses power series? I've tried calculating some derivatives and coefficients but they seem to get pretty nasty.
power-series infinite-product
power-series infinite-product
edited Dec 23 '18 at 6:30
Eevee Trainer
6,1531936
6,1531936
asked Dec 23 '18 at 6:17
Merk ZockerborgMerk Zockerborg
18310
18310
$begingroup$
use Taylor series for sin at zero?
$endgroup$
– Dole
Dec 23 '18 at 6:26
$begingroup$
yeah, but the RHS is giving me trouble
$endgroup$
– Merk Zockerborg
Dec 23 '18 at 6:28
$begingroup$
Is there a nice power series for $log(cos x)$?
$endgroup$
– mathworker21
Dec 23 '18 at 6:44
add a comment |
$begingroup$
use Taylor series for sin at zero?
$endgroup$
– Dole
Dec 23 '18 at 6:26
$begingroup$
yeah, but the RHS is giving me trouble
$endgroup$
– Merk Zockerborg
Dec 23 '18 at 6:28
$begingroup$
Is there a nice power series for $log(cos x)$?
$endgroup$
– mathworker21
Dec 23 '18 at 6:44
$begingroup$
use Taylor series for sin at zero?
$endgroup$
– Dole
Dec 23 '18 at 6:26
$begingroup$
use Taylor series for sin at zero?
$endgroup$
– Dole
Dec 23 '18 at 6:26
$begingroup$
yeah, but the RHS is giving me trouble
$endgroup$
– Merk Zockerborg
Dec 23 '18 at 6:28
$begingroup$
yeah, but the RHS is giving me trouble
$endgroup$
– Merk Zockerborg
Dec 23 '18 at 6:28
$begingroup$
Is there a nice power series for $log(cos x)$?
$endgroup$
– mathworker21
Dec 23 '18 at 6:44
$begingroup$
Is there a nice power series for $log(cos x)$?
$endgroup$
– mathworker21
Dec 23 '18 at 6:44
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Using the fact that $sin(2x)=2sin(x)cos(x)$ we have $cos(x)=frac{sin(2x)}{2sin(x)}$.
Define $p_n(x):=prodlimits_{j=1}^n cos(frac{x}{2^j})$ and note that $cos(frac{x}{2^j})=dfrac{sin(frac{x}{2^{j-1}})}{2sin(frac{x}{2^j})}$ for each $j$.
Now, $p_n(x)=frac{1}{2^n}frac{sin(x)}{sin(frac{x}{2^n})}=frac{sin(x)}{x}dfrac{frac{x}{2^n}}{sin(frac{x}{2^n})}$ and $p_n(x)to_n frac{sin(x)}{x}$
$endgroup$
add a comment |
$begingroup$
HINT
$cos z= e^{iz}(1+e^{-2iz})/2$ so $ln cos z=cdots$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050104%2fdemonstrating-an-equivalent-formula-for-sinx-x-using-power-series%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Using the fact that $sin(2x)=2sin(x)cos(x)$ we have $cos(x)=frac{sin(2x)}{2sin(x)}$.
Define $p_n(x):=prodlimits_{j=1}^n cos(frac{x}{2^j})$ and note that $cos(frac{x}{2^j})=dfrac{sin(frac{x}{2^{j-1}})}{2sin(frac{x}{2^j})}$ for each $j$.
Now, $p_n(x)=frac{1}{2^n}frac{sin(x)}{sin(frac{x}{2^n})}=frac{sin(x)}{x}dfrac{frac{x}{2^n}}{sin(frac{x}{2^n})}$ and $p_n(x)to_n frac{sin(x)}{x}$
$endgroup$
add a comment |
$begingroup$
Using the fact that $sin(2x)=2sin(x)cos(x)$ we have $cos(x)=frac{sin(2x)}{2sin(x)}$.
Define $p_n(x):=prodlimits_{j=1}^n cos(frac{x}{2^j})$ and note that $cos(frac{x}{2^j})=dfrac{sin(frac{x}{2^{j-1}})}{2sin(frac{x}{2^j})}$ for each $j$.
Now, $p_n(x)=frac{1}{2^n}frac{sin(x)}{sin(frac{x}{2^n})}=frac{sin(x)}{x}dfrac{frac{x}{2^n}}{sin(frac{x}{2^n})}$ and $p_n(x)to_n frac{sin(x)}{x}$
$endgroup$
add a comment |
$begingroup$
Using the fact that $sin(2x)=2sin(x)cos(x)$ we have $cos(x)=frac{sin(2x)}{2sin(x)}$.
Define $p_n(x):=prodlimits_{j=1}^n cos(frac{x}{2^j})$ and note that $cos(frac{x}{2^j})=dfrac{sin(frac{x}{2^{j-1}})}{2sin(frac{x}{2^j})}$ for each $j$.
Now, $p_n(x)=frac{1}{2^n}frac{sin(x)}{sin(frac{x}{2^n})}=frac{sin(x)}{x}dfrac{frac{x}{2^n}}{sin(frac{x}{2^n})}$ and $p_n(x)to_n frac{sin(x)}{x}$
$endgroup$
Using the fact that $sin(2x)=2sin(x)cos(x)$ we have $cos(x)=frac{sin(2x)}{2sin(x)}$.
Define $p_n(x):=prodlimits_{j=1}^n cos(frac{x}{2^j})$ and note that $cos(frac{x}{2^j})=dfrac{sin(frac{x}{2^{j-1}})}{2sin(frac{x}{2^j})}$ for each $j$.
Now, $p_n(x)=frac{1}{2^n}frac{sin(x)}{sin(frac{x}{2^n})}=frac{sin(x)}{x}dfrac{frac{x}{2^n}}{sin(frac{x}{2^n})}$ and $p_n(x)to_n frac{sin(x)}{x}$
answered Dec 23 '18 at 7:00
Martín Vacas VignoloMartín Vacas Vignolo
3,816623
3,816623
add a comment |
add a comment |
$begingroup$
HINT
$cos z= e^{iz}(1+e^{-2iz})/2$ so $ln cos z=cdots$
$endgroup$
add a comment |
$begingroup$
HINT
$cos z= e^{iz}(1+e^{-2iz})/2$ so $ln cos z=cdots$
$endgroup$
add a comment |
$begingroup$
HINT
$cos z= e^{iz}(1+e^{-2iz})/2$ so $ln cos z=cdots$
$endgroup$
HINT
$cos z= e^{iz}(1+e^{-2iz})/2$ so $ln cos z=cdots$
answered Dec 23 '18 at 10:08
G CabG Cab
19.6k31239
19.6k31239
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050104%2fdemonstrating-an-equivalent-formula-for-sinx-x-using-power-series%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
use Taylor series for sin at zero?
$endgroup$
– Dole
Dec 23 '18 at 6:26
$begingroup$
yeah, but the RHS is giving me trouble
$endgroup$
– Merk Zockerborg
Dec 23 '18 at 6:28
$begingroup$
Is there a nice power series for $log(cos x)$?
$endgroup$
– mathworker21
Dec 23 '18 at 6:44