$f(a)=f(b)=f_{+}'(a)=f_{-}'(b)=0$ and $|f''(x)|le M$. Show that $|f(x)|le frac{M(b-a)^2}{16}$.












3












$begingroup$


Let $f:left[a, bright]tomathbb{R}$ be twice differentiable.



Suppose $f(a)=f(b)=f_{+}'(a)=f_{-}'(b)=0$ and $|f''(x)|le M$.



Show that $|f(x)|le frac{M(b-a)^2}{16}$.



My try:



From taylor expansion we have
$f(x)=frac{f''(xi _1)}{2}(x-a)^2$ and $f(x)=frac{f''(xi _2)}{2}(x-b)^2$.



Then $|f(x)|lefrac{M}{2}(x-a)^2$ and $|f(x)|lefrac{M}{2}(x-b)^2$



So $|f(x)|lemin{(frac{M}{2}(x-a)^2,frac{M}{2}(x-b)^2)}lefrac{M}{8}(b-a)^2$



But this conclusion is weaker than the aim.



And I thought through using
$$f(c)=frac{f''(xi )}{2}(c-a)(c-b)$$
I can say$$|f(x)|lefrac{M}{8}(b-a)^2$$
which only uses the condition that $f(a)=f(b)=0$ and is still weaker.



Any hints? Thank you in advance!










share|cite|improve this question











$endgroup$

















    3












    $begingroup$


    Let $f:left[a, bright]tomathbb{R}$ be twice differentiable.



    Suppose $f(a)=f(b)=f_{+}'(a)=f_{-}'(b)=0$ and $|f''(x)|le M$.



    Show that $|f(x)|le frac{M(b-a)^2}{16}$.



    My try:



    From taylor expansion we have
    $f(x)=frac{f''(xi _1)}{2}(x-a)^2$ and $f(x)=frac{f''(xi _2)}{2}(x-b)^2$.



    Then $|f(x)|lefrac{M}{2}(x-a)^2$ and $|f(x)|lefrac{M}{2}(x-b)^2$



    So $|f(x)|lemin{(frac{M}{2}(x-a)^2,frac{M}{2}(x-b)^2)}lefrac{M}{8}(b-a)^2$



    But this conclusion is weaker than the aim.



    And I thought through using
    $$f(c)=frac{f''(xi )}{2}(c-a)(c-b)$$
    I can say$$|f(x)|lefrac{M}{8}(b-a)^2$$
    which only uses the condition that $f(a)=f(b)=0$ and is still weaker.



    Any hints? Thank you in advance!










    share|cite|improve this question











    $endgroup$















      3












      3








      3


      2



      $begingroup$


      Let $f:left[a, bright]tomathbb{R}$ be twice differentiable.



      Suppose $f(a)=f(b)=f_{+}'(a)=f_{-}'(b)=0$ and $|f''(x)|le M$.



      Show that $|f(x)|le frac{M(b-a)^2}{16}$.



      My try:



      From taylor expansion we have
      $f(x)=frac{f''(xi _1)}{2}(x-a)^2$ and $f(x)=frac{f''(xi _2)}{2}(x-b)^2$.



      Then $|f(x)|lefrac{M}{2}(x-a)^2$ and $|f(x)|lefrac{M}{2}(x-b)^2$



      So $|f(x)|lemin{(frac{M}{2}(x-a)^2,frac{M}{2}(x-b)^2)}lefrac{M}{8}(b-a)^2$



      But this conclusion is weaker than the aim.



      And I thought through using
      $$f(c)=frac{f''(xi )}{2}(c-a)(c-b)$$
      I can say$$|f(x)|lefrac{M}{8}(b-a)^2$$
      which only uses the condition that $f(a)=f(b)=0$ and is still weaker.



      Any hints? Thank you in advance!










      share|cite|improve this question











      $endgroup$




      Let $f:left[a, bright]tomathbb{R}$ be twice differentiable.



      Suppose $f(a)=f(b)=f_{+}'(a)=f_{-}'(b)=0$ and $|f''(x)|le M$.



      Show that $|f(x)|le frac{M(b-a)^2}{16}$.



      My try:



      From taylor expansion we have
      $f(x)=frac{f''(xi _1)}{2}(x-a)^2$ and $f(x)=frac{f''(xi _2)}{2}(x-b)^2$.



      Then $|f(x)|lefrac{M}{2}(x-a)^2$ and $|f(x)|lefrac{M}{2}(x-b)^2$



      So $|f(x)|lemin{(frac{M}{2}(x-a)^2,frac{M}{2}(x-b)^2)}lefrac{M}{8}(b-a)^2$



      But this conclusion is weaker than the aim.



      And I thought through using
      $$f(c)=frac{f''(xi )}{2}(c-a)(c-b)$$
      I can say$$|f(x)|lefrac{M}{8}(b-a)^2$$
      which only uses the condition that $f(a)=f(b)=0$ and is still weaker.



      Any hints? Thank you in advance!







      real-analysis






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 23 '18 at 3:58







      Zero

















      asked Dec 23 '18 at 3:20









      ZeroZero

      34810




      34810






















          2 Answers
          2






          active

          oldest

          votes


















          4












          $begingroup$

          Let $c in [a, b]$ be a point where $|f(x)|$ attains its maximum value on the interval. If $c=a$ or $c=b$ then $f$ is identically zero and we are done. Now assume $a < c < b$, then $f'(c) = 0$. We have to show that $|f(c)| le frac{M(b-a)^2}{16}$.



          Case 1: If $a < c le frac{a+b}2$ then we can proceed as follows:



          $f_{+}'(a) = f'(c) =0$ and $|f''(x)|le M$ implies
          $$
          |f'(x)| le M min(x-a, c-x ) quad text{for } a < x < c
          $$

          and therefore, using $f(a) = 0$,
          $$
          |f(c)| le int_a^c |f'(x)| , dt le M int_a^c min(x-a, c-x ) , dt \
          = M left( int_a^{(a+c)/2} (x-a), dt + int_{(a+c)/2}^c (c-x) , dt right) \
          = M frac{(c-a)^2}8 le M frac{(b-a)^2}{16} , .
          $$



          Case 2: If $frac{a+b}2 le c < b$ then we can estimate
          $$
          |f(c)| le int_c^b |f'(x)| , dt
          $$

          in the same way.






          share|cite|improve this answer











          $endgroup$





















            0












            $begingroup$

            I thought the method I mentioned can be modified.



            Let $f(x_0)=displaystylemax_{[a,b]} f$, we aim to prove $f(x_0)lefrac{M}{16}(b-a)^2$.



            Proof: According to the definition, we have $f'(x_0)=0$.



            Without losing generality, we assume that $x_0in[a,frac{a+b}{2}]$



            Because $|f'(x)|le M$, we have
            $$f(x)le frac{1}{2}M(x-a)^2$$
            In addition,
            $$f(x)ge f(x_0)-frac{1}{2}M(x-x_0)^2$$
            which leads to $$f(x_0)lefrac{M}{16}(b-a)^2$$






            share|cite|improve this answer











            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050034%2ffa-fb-f-a-f-b-0-and-fx-le-m-show-that-fx-le-fra%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              4












              $begingroup$

              Let $c in [a, b]$ be a point where $|f(x)|$ attains its maximum value on the interval. If $c=a$ or $c=b$ then $f$ is identically zero and we are done. Now assume $a < c < b$, then $f'(c) = 0$. We have to show that $|f(c)| le frac{M(b-a)^2}{16}$.



              Case 1: If $a < c le frac{a+b}2$ then we can proceed as follows:



              $f_{+}'(a) = f'(c) =0$ and $|f''(x)|le M$ implies
              $$
              |f'(x)| le M min(x-a, c-x ) quad text{for } a < x < c
              $$

              and therefore, using $f(a) = 0$,
              $$
              |f(c)| le int_a^c |f'(x)| , dt le M int_a^c min(x-a, c-x ) , dt \
              = M left( int_a^{(a+c)/2} (x-a), dt + int_{(a+c)/2}^c (c-x) , dt right) \
              = M frac{(c-a)^2}8 le M frac{(b-a)^2}{16} , .
              $$



              Case 2: If $frac{a+b}2 le c < b$ then we can estimate
              $$
              |f(c)| le int_c^b |f'(x)| , dt
              $$

              in the same way.






              share|cite|improve this answer











              $endgroup$


















                4












                $begingroup$

                Let $c in [a, b]$ be a point where $|f(x)|$ attains its maximum value on the interval. If $c=a$ or $c=b$ then $f$ is identically zero and we are done. Now assume $a < c < b$, then $f'(c) = 0$. We have to show that $|f(c)| le frac{M(b-a)^2}{16}$.



                Case 1: If $a < c le frac{a+b}2$ then we can proceed as follows:



                $f_{+}'(a) = f'(c) =0$ and $|f''(x)|le M$ implies
                $$
                |f'(x)| le M min(x-a, c-x ) quad text{for } a < x < c
                $$

                and therefore, using $f(a) = 0$,
                $$
                |f(c)| le int_a^c |f'(x)| , dt le M int_a^c min(x-a, c-x ) , dt \
                = M left( int_a^{(a+c)/2} (x-a), dt + int_{(a+c)/2}^c (c-x) , dt right) \
                = M frac{(c-a)^2}8 le M frac{(b-a)^2}{16} , .
                $$



                Case 2: If $frac{a+b}2 le c < b$ then we can estimate
                $$
                |f(c)| le int_c^b |f'(x)| , dt
                $$

                in the same way.






                share|cite|improve this answer











                $endgroup$
















                  4












                  4








                  4





                  $begingroup$

                  Let $c in [a, b]$ be a point where $|f(x)|$ attains its maximum value on the interval. If $c=a$ or $c=b$ then $f$ is identically zero and we are done. Now assume $a < c < b$, then $f'(c) = 0$. We have to show that $|f(c)| le frac{M(b-a)^2}{16}$.



                  Case 1: If $a < c le frac{a+b}2$ then we can proceed as follows:



                  $f_{+}'(a) = f'(c) =0$ and $|f''(x)|le M$ implies
                  $$
                  |f'(x)| le M min(x-a, c-x ) quad text{for } a < x < c
                  $$

                  and therefore, using $f(a) = 0$,
                  $$
                  |f(c)| le int_a^c |f'(x)| , dt le M int_a^c min(x-a, c-x ) , dt \
                  = M left( int_a^{(a+c)/2} (x-a), dt + int_{(a+c)/2}^c (c-x) , dt right) \
                  = M frac{(c-a)^2}8 le M frac{(b-a)^2}{16} , .
                  $$



                  Case 2: If $frac{a+b}2 le c < b$ then we can estimate
                  $$
                  |f(c)| le int_c^b |f'(x)| , dt
                  $$

                  in the same way.






                  share|cite|improve this answer











                  $endgroup$



                  Let $c in [a, b]$ be a point where $|f(x)|$ attains its maximum value on the interval. If $c=a$ or $c=b$ then $f$ is identically zero and we are done. Now assume $a < c < b$, then $f'(c) = 0$. We have to show that $|f(c)| le frac{M(b-a)^2}{16}$.



                  Case 1: If $a < c le frac{a+b}2$ then we can proceed as follows:



                  $f_{+}'(a) = f'(c) =0$ and $|f''(x)|le M$ implies
                  $$
                  |f'(x)| le M min(x-a, c-x ) quad text{for } a < x < c
                  $$

                  and therefore, using $f(a) = 0$,
                  $$
                  |f(c)| le int_a^c |f'(x)| , dt le M int_a^c min(x-a, c-x ) , dt \
                  = M left( int_a^{(a+c)/2} (x-a), dt + int_{(a+c)/2}^c (c-x) , dt right) \
                  = M frac{(c-a)^2}8 le M frac{(b-a)^2}{16} , .
                  $$



                  Case 2: If $frac{a+b}2 le c < b$ then we can estimate
                  $$
                  |f(c)| le int_c^b |f'(x)| , dt
                  $$

                  in the same way.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Dec 23 '18 at 6:46

























                  answered Dec 23 '18 at 6:35









                  Martin RMartin R

                  29k33458




                  29k33458























                      0












                      $begingroup$

                      I thought the method I mentioned can be modified.



                      Let $f(x_0)=displaystylemax_{[a,b]} f$, we aim to prove $f(x_0)lefrac{M}{16}(b-a)^2$.



                      Proof: According to the definition, we have $f'(x_0)=0$.



                      Without losing generality, we assume that $x_0in[a,frac{a+b}{2}]$



                      Because $|f'(x)|le M$, we have
                      $$f(x)le frac{1}{2}M(x-a)^2$$
                      In addition,
                      $$f(x)ge f(x_0)-frac{1}{2}M(x-x_0)^2$$
                      which leads to $$f(x_0)lefrac{M}{16}(b-a)^2$$






                      share|cite|improve this answer











                      $endgroup$


















                        0












                        $begingroup$

                        I thought the method I mentioned can be modified.



                        Let $f(x_0)=displaystylemax_{[a,b]} f$, we aim to prove $f(x_0)lefrac{M}{16}(b-a)^2$.



                        Proof: According to the definition, we have $f'(x_0)=0$.



                        Without losing generality, we assume that $x_0in[a,frac{a+b}{2}]$



                        Because $|f'(x)|le M$, we have
                        $$f(x)le frac{1}{2}M(x-a)^2$$
                        In addition,
                        $$f(x)ge f(x_0)-frac{1}{2}M(x-x_0)^2$$
                        which leads to $$f(x_0)lefrac{M}{16}(b-a)^2$$






                        share|cite|improve this answer











                        $endgroup$
















                          0












                          0








                          0





                          $begingroup$

                          I thought the method I mentioned can be modified.



                          Let $f(x_0)=displaystylemax_{[a,b]} f$, we aim to prove $f(x_0)lefrac{M}{16}(b-a)^2$.



                          Proof: According to the definition, we have $f'(x_0)=0$.



                          Without losing generality, we assume that $x_0in[a,frac{a+b}{2}]$



                          Because $|f'(x)|le M$, we have
                          $$f(x)le frac{1}{2}M(x-a)^2$$
                          In addition,
                          $$f(x)ge f(x_0)-frac{1}{2}M(x-x_0)^2$$
                          which leads to $$f(x_0)lefrac{M}{16}(b-a)^2$$






                          share|cite|improve this answer











                          $endgroup$



                          I thought the method I mentioned can be modified.



                          Let $f(x_0)=displaystylemax_{[a,b]} f$, we aim to prove $f(x_0)lefrac{M}{16}(b-a)^2$.



                          Proof: According to the definition, we have $f'(x_0)=0$.



                          Without losing generality, we assume that $x_0in[a,frac{a+b}{2}]$



                          Because $|f'(x)|le M$, we have
                          $$f(x)le frac{1}{2}M(x-a)^2$$
                          In addition,
                          $$f(x)ge f(x_0)-frac{1}{2}M(x-x_0)^2$$
                          which leads to $$f(x_0)lefrac{M}{16}(b-a)^2$$







                          share|cite|improve this answer














                          share|cite|improve this answer



                          share|cite|improve this answer








                          edited Dec 23 '18 at 14:51

























                          answered Dec 23 '18 at 6:36









                          ZeroZero

                          34810




                          34810






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050034%2ffa-fb-f-a-f-b-0-and-fx-le-m-show-that-fx-le-fra%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Ellipse (mathématiques)

                              Quarter-circle Tiles

                              Mont Emei