$f(a)=f(b)=f_{+}'(a)=f_{-}'(b)=0$ and $|f''(x)|le M$. Show that $|f(x)|le frac{M(b-a)^2}{16}$.
$begingroup$
Let $f:left[a, bright]tomathbb{R}$ be twice differentiable.
Suppose $f(a)=f(b)=f_{+}'(a)=f_{-}'(b)=0$ and $|f''(x)|le M$.
Show that $|f(x)|le frac{M(b-a)^2}{16}$.
My try:
From taylor expansion we have
$f(x)=frac{f''(xi _1)}{2}(x-a)^2$ and $f(x)=frac{f''(xi _2)}{2}(x-b)^2$.
Then $|f(x)|lefrac{M}{2}(x-a)^2$ and $|f(x)|lefrac{M}{2}(x-b)^2$
So $|f(x)|lemin{(frac{M}{2}(x-a)^2,frac{M}{2}(x-b)^2)}lefrac{M}{8}(b-a)^2$
But this conclusion is weaker than the aim.
And I thought through using
$$f(c)=frac{f''(xi )}{2}(c-a)(c-b)$$
I can say$$|f(x)|lefrac{M}{8}(b-a)^2$$
which only uses the condition that $f(a)=f(b)=0$ and is still weaker.
Any hints? Thank you in advance!
real-analysis
$endgroup$
add a comment |
$begingroup$
Let $f:left[a, bright]tomathbb{R}$ be twice differentiable.
Suppose $f(a)=f(b)=f_{+}'(a)=f_{-}'(b)=0$ and $|f''(x)|le M$.
Show that $|f(x)|le frac{M(b-a)^2}{16}$.
My try:
From taylor expansion we have
$f(x)=frac{f''(xi _1)}{2}(x-a)^2$ and $f(x)=frac{f''(xi _2)}{2}(x-b)^2$.
Then $|f(x)|lefrac{M}{2}(x-a)^2$ and $|f(x)|lefrac{M}{2}(x-b)^2$
So $|f(x)|lemin{(frac{M}{2}(x-a)^2,frac{M}{2}(x-b)^2)}lefrac{M}{8}(b-a)^2$
But this conclusion is weaker than the aim.
And I thought through using
$$f(c)=frac{f''(xi )}{2}(c-a)(c-b)$$
I can say$$|f(x)|lefrac{M}{8}(b-a)^2$$
which only uses the condition that $f(a)=f(b)=0$ and is still weaker.
Any hints? Thank you in advance!
real-analysis
$endgroup$
add a comment |
$begingroup$
Let $f:left[a, bright]tomathbb{R}$ be twice differentiable.
Suppose $f(a)=f(b)=f_{+}'(a)=f_{-}'(b)=0$ and $|f''(x)|le M$.
Show that $|f(x)|le frac{M(b-a)^2}{16}$.
My try:
From taylor expansion we have
$f(x)=frac{f''(xi _1)}{2}(x-a)^2$ and $f(x)=frac{f''(xi _2)}{2}(x-b)^2$.
Then $|f(x)|lefrac{M}{2}(x-a)^2$ and $|f(x)|lefrac{M}{2}(x-b)^2$
So $|f(x)|lemin{(frac{M}{2}(x-a)^2,frac{M}{2}(x-b)^2)}lefrac{M}{8}(b-a)^2$
But this conclusion is weaker than the aim.
And I thought through using
$$f(c)=frac{f''(xi )}{2}(c-a)(c-b)$$
I can say$$|f(x)|lefrac{M}{8}(b-a)^2$$
which only uses the condition that $f(a)=f(b)=0$ and is still weaker.
Any hints? Thank you in advance!
real-analysis
$endgroup$
Let $f:left[a, bright]tomathbb{R}$ be twice differentiable.
Suppose $f(a)=f(b)=f_{+}'(a)=f_{-}'(b)=0$ and $|f''(x)|le M$.
Show that $|f(x)|le frac{M(b-a)^2}{16}$.
My try:
From taylor expansion we have
$f(x)=frac{f''(xi _1)}{2}(x-a)^2$ and $f(x)=frac{f''(xi _2)}{2}(x-b)^2$.
Then $|f(x)|lefrac{M}{2}(x-a)^2$ and $|f(x)|lefrac{M}{2}(x-b)^2$
So $|f(x)|lemin{(frac{M}{2}(x-a)^2,frac{M}{2}(x-b)^2)}lefrac{M}{8}(b-a)^2$
But this conclusion is weaker than the aim.
And I thought through using
$$f(c)=frac{f''(xi )}{2}(c-a)(c-b)$$
I can say$$|f(x)|lefrac{M}{8}(b-a)^2$$
which only uses the condition that $f(a)=f(b)=0$ and is still weaker.
Any hints? Thank you in advance!
real-analysis
real-analysis
edited Dec 23 '18 at 3:58
Zero
asked Dec 23 '18 at 3:20
ZeroZero
34810
34810
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Let $c in [a, b]$ be a point where $|f(x)|$ attains its maximum value on the interval. If $c=a$ or $c=b$ then $f$ is identically zero and we are done. Now assume $a < c < b$, then $f'(c) = 0$. We have to show that $|f(c)| le frac{M(b-a)^2}{16}$.
Case 1: If $a < c le frac{a+b}2$ then we can proceed as follows:
$f_{+}'(a) = f'(c) =0$ and $|f''(x)|le M$ implies
$$
|f'(x)| le M min(x-a, c-x ) quad text{for } a < x < c
$$
and therefore, using $f(a) = 0$,
$$
|f(c)| le int_a^c |f'(x)| , dt le M int_a^c min(x-a, c-x ) , dt \
= M left( int_a^{(a+c)/2} (x-a), dt + int_{(a+c)/2}^c (c-x) , dt right) \
= M frac{(c-a)^2}8 le M frac{(b-a)^2}{16} , .
$$
Case 2: If $frac{a+b}2 le c < b$ then we can estimate
$$
|f(c)| le int_c^b |f'(x)| , dt
$$
in the same way.
$endgroup$
add a comment |
$begingroup$
I thought the method I mentioned can be modified.
Let $f(x_0)=displaystylemax_{[a,b]} f$, we aim to prove $f(x_0)lefrac{M}{16}(b-a)^2$.
Proof: According to the definition, we have $f'(x_0)=0$.
Without losing generality, we assume that $x_0in[a,frac{a+b}{2}]$
Because $|f'(x)|le M$, we have
$$f(x)le frac{1}{2}M(x-a)^2$$
In addition,
$$f(x)ge f(x_0)-frac{1}{2}M(x-x_0)^2$$
which leads to $$f(x_0)lefrac{M}{16}(b-a)^2$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050034%2ffa-fb-f-a-f-b-0-and-fx-le-m-show-that-fx-le-fra%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $c in [a, b]$ be a point where $|f(x)|$ attains its maximum value on the interval. If $c=a$ or $c=b$ then $f$ is identically zero and we are done. Now assume $a < c < b$, then $f'(c) = 0$. We have to show that $|f(c)| le frac{M(b-a)^2}{16}$.
Case 1: If $a < c le frac{a+b}2$ then we can proceed as follows:
$f_{+}'(a) = f'(c) =0$ and $|f''(x)|le M$ implies
$$
|f'(x)| le M min(x-a, c-x ) quad text{for } a < x < c
$$
and therefore, using $f(a) = 0$,
$$
|f(c)| le int_a^c |f'(x)| , dt le M int_a^c min(x-a, c-x ) , dt \
= M left( int_a^{(a+c)/2} (x-a), dt + int_{(a+c)/2}^c (c-x) , dt right) \
= M frac{(c-a)^2}8 le M frac{(b-a)^2}{16} , .
$$
Case 2: If $frac{a+b}2 le c < b$ then we can estimate
$$
|f(c)| le int_c^b |f'(x)| , dt
$$
in the same way.
$endgroup$
add a comment |
$begingroup$
Let $c in [a, b]$ be a point where $|f(x)|$ attains its maximum value on the interval. If $c=a$ or $c=b$ then $f$ is identically zero and we are done. Now assume $a < c < b$, then $f'(c) = 0$. We have to show that $|f(c)| le frac{M(b-a)^2}{16}$.
Case 1: If $a < c le frac{a+b}2$ then we can proceed as follows:
$f_{+}'(a) = f'(c) =0$ and $|f''(x)|le M$ implies
$$
|f'(x)| le M min(x-a, c-x ) quad text{for } a < x < c
$$
and therefore, using $f(a) = 0$,
$$
|f(c)| le int_a^c |f'(x)| , dt le M int_a^c min(x-a, c-x ) , dt \
= M left( int_a^{(a+c)/2} (x-a), dt + int_{(a+c)/2}^c (c-x) , dt right) \
= M frac{(c-a)^2}8 le M frac{(b-a)^2}{16} , .
$$
Case 2: If $frac{a+b}2 le c < b$ then we can estimate
$$
|f(c)| le int_c^b |f'(x)| , dt
$$
in the same way.
$endgroup$
add a comment |
$begingroup$
Let $c in [a, b]$ be a point where $|f(x)|$ attains its maximum value on the interval. If $c=a$ or $c=b$ then $f$ is identically zero and we are done. Now assume $a < c < b$, then $f'(c) = 0$. We have to show that $|f(c)| le frac{M(b-a)^2}{16}$.
Case 1: If $a < c le frac{a+b}2$ then we can proceed as follows:
$f_{+}'(a) = f'(c) =0$ and $|f''(x)|le M$ implies
$$
|f'(x)| le M min(x-a, c-x ) quad text{for } a < x < c
$$
and therefore, using $f(a) = 0$,
$$
|f(c)| le int_a^c |f'(x)| , dt le M int_a^c min(x-a, c-x ) , dt \
= M left( int_a^{(a+c)/2} (x-a), dt + int_{(a+c)/2}^c (c-x) , dt right) \
= M frac{(c-a)^2}8 le M frac{(b-a)^2}{16} , .
$$
Case 2: If $frac{a+b}2 le c < b$ then we can estimate
$$
|f(c)| le int_c^b |f'(x)| , dt
$$
in the same way.
$endgroup$
Let $c in [a, b]$ be a point where $|f(x)|$ attains its maximum value on the interval. If $c=a$ or $c=b$ then $f$ is identically zero and we are done. Now assume $a < c < b$, then $f'(c) = 0$. We have to show that $|f(c)| le frac{M(b-a)^2}{16}$.
Case 1: If $a < c le frac{a+b}2$ then we can proceed as follows:
$f_{+}'(a) = f'(c) =0$ and $|f''(x)|le M$ implies
$$
|f'(x)| le M min(x-a, c-x ) quad text{for } a < x < c
$$
and therefore, using $f(a) = 0$,
$$
|f(c)| le int_a^c |f'(x)| , dt le M int_a^c min(x-a, c-x ) , dt \
= M left( int_a^{(a+c)/2} (x-a), dt + int_{(a+c)/2}^c (c-x) , dt right) \
= M frac{(c-a)^2}8 le M frac{(b-a)^2}{16} , .
$$
Case 2: If $frac{a+b}2 le c < b$ then we can estimate
$$
|f(c)| le int_c^b |f'(x)| , dt
$$
in the same way.
edited Dec 23 '18 at 6:46
answered Dec 23 '18 at 6:35
Martin RMartin R
29k33458
29k33458
add a comment |
add a comment |
$begingroup$
I thought the method I mentioned can be modified.
Let $f(x_0)=displaystylemax_{[a,b]} f$, we aim to prove $f(x_0)lefrac{M}{16}(b-a)^2$.
Proof: According to the definition, we have $f'(x_0)=0$.
Without losing generality, we assume that $x_0in[a,frac{a+b}{2}]$
Because $|f'(x)|le M$, we have
$$f(x)le frac{1}{2}M(x-a)^2$$
In addition,
$$f(x)ge f(x_0)-frac{1}{2}M(x-x_0)^2$$
which leads to $$f(x_0)lefrac{M}{16}(b-a)^2$$
$endgroup$
add a comment |
$begingroup$
I thought the method I mentioned can be modified.
Let $f(x_0)=displaystylemax_{[a,b]} f$, we aim to prove $f(x_0)lefrac{M}{16}(b-a)^2$.
Proof: According to the definition, we have $f'(x_0)=0$.
Without losing generality, we assume that $x_0in[a,frac{a+b}{2}]$
Because $|f'(x)|le M$, we have
$$f(x)le frac{1}{2}M(x-a)^2$$
In addition,
$$f(x)ge f(x_0)-frac{1}{2}M(x-x_0)^2$$
which leads to $$f(x_0)lefrac{M}{16}(b-a)^2$$
$endgroup$
add a comment |
$begingroup$
I thought the method I mentioned can be modified.
Let $f(x_0)=displaystylemax_{[a,b]} f$, we aim to prove $f(x_0)lefrac{M}{16}(b-a)^2$.
Proof: According to the definition, we have $f'(x_0)=0$.
Without losing generality, we assume that $x_0in[a,frac{a+b}{2}]$
Because $|f'(x)|le M$, we have
$$f(x)le frac{1}{2}M(x-a)^2$$
In addition,
$$f(x)ge f(x_0)-frac{1}{2}M(x-x_0)^2$$
which leads to $$f(x_0)lefrac{M}{16}(b-a)^2$$
$endgroup$
I thought the method I mentioned can be modified.
Let $f(x_0)=displaystylemax_{[a,b]} f$, we aim to prove $f(x_0)lefrac{M}{16}(b-a)^2$.
Proof: According to the definition, we have $f'(x_0)=0$.
Without losing generality, we assume that $x_0in[a,frac{a+b}{2}]$
Because $|f'(x)|le M$, we have
$$f(x)le frac{1}{2}M(x-a)^2$$
In addition,
$$f(x)ge f(x_0)-frac{1}{2}M(x-x_0)^2$$
which leads to $$f(x_0)lefrac{M}{16}(b-a)^2$$
edited Dec 23 '18 at 14:51
answered Dec 23 '18 at 6:36
ZeroZero
34810
34810
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050034%2ffa-fb-f-a-f-b-0-and-fx-le-m-show-that-fx-le-fra%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown