Solving $Bigl{begin{smallmatrix}x+frac{3x-y}{x^2+y^2}=3\y-frac{x+3y}{x^2+y^2}=0end{smallmatrix}$ in $mathbb...












1












$begingroup$



$$begin{cases}
x+dfrac{3x-y}{x^2+y^2}=3 \
y-dfrac{x+3y}{x^2+y^2}=0
end{cases}$$

Solve in the set of real numbers.




The furthest I have got is summing the equations, and I got
$$x^3+(y-3)x^2+(y^2+2)x+y^3-3y^2-4y=0.$$
But I have no idea how to solve this problem. How can I solve it?










share|cite|improve this question











$endgroup$












  • $begingroup$
    For reference, the answers will be $(1,-1),(0,0),$ and $(2,1).$
    $endgroup$
    – Christopher Marley
    Dec 22 '18 at 17:54










  • $begingroup$
    Can it be $(0, 0)$? because we will have division by $0$ in the original equations. @ChristopherMarley
    $endgroup$
    – Pero
    Dec 22 '18 at 18:28


















1












$begingroup$



$$begin{cases}
x+dfrac{3x-y}{x^2+y^2}=3 \
y-dfrac{x+3y}{x^2+y^2}=0
end{cases}$$

Solve in the set of real numbers.




The furthest I have got is summing the equations, and I got
$$x^3+(y-3)x^2+(y^2+2)x+y^3-3y^2-4y=0.$$
But I have no idea how to solve this problem. How can I solve it?










share|cite|improve this question











$endgroup$












  • $begingroup$
    For reference, the answers will be $(1,-1),(0,0),$ and $(2,1).$
    $endgroup$
    – Christopher Marley
    Dec 22 '18 at 17:54










  • $begingroup$
    Can it be $(0, 0)$? because we will have division by $0$ in the original equations. @ChristopherMarley
    $endgroup$
    – Pero
    Dec 22 '18 at 18:28
















1












1








1





$begingroup$



$$begin{cases}
x+dfrac{3x-y}{x^2+y^2}=3 \
y-dfrac{x+3y}{x^2+y^2}=0
end{cases}$$

Solve in the set of real numbers.




The furthest I have got is summing the equations, and I got
$$x^3+(y-3)x^2+(y^2+2)x+y^3-3y^2-4y=0.$$
But I have no idea how to solve this problem. How can I solve it?










share|cite|improve this question











$endgroup$





$$begin{cases}
x+dfrac{3x-y}{x^2+y^2}=3 \
y-dfrac{x+3y}{x^2+y^2}=0
end{cases}$$

Solve in the set of real numbers.




The furthest I have got is summing the equations, and I got
$$x^3+(y-3)x^2+(y^2+2)x+y^3-3y^2-4y=0.$$
But I have no idea how to solve this problem. How can I solve it?







algebra-precalculus systems-of-equations






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 23 '18 at 1:30









Saad

19.7k92352




19.7k92352










asked Dec 22 '18 at 17:51









PeroPero

1497




1497












  • $begingroup$
    For reference, the answers will be $(1,-1),(0,0),$ and $(2,1).$
    $endgroup$
    – Christopher Marley
    Dec 22 '18 at 17:54










  • $begingroup$
    Can it be $(0, 0)$? because we will have division by $0$ in the original equations. @ChristopherMarley
    $endgroup$
    – Pero
    Dec 22 '18 at 18:28




















  • $begingroup$
    For reference, the answers will be $(1,-1),(0,0),$ and $(2,1).$
    $endgroup$
    – Christopher Marley
    Dec 22 '18 at 17:54










  • $begingroup$
    Can it be $(0, 0)$? because we will have division by $0$ in the original equations. @ChristopherMarley
    $endgroup$
    – Pero
    Dec 22 '18 at 18:28


















$begingroup$
For reference, the answers will be $(1,-1),(0,0),$ and $(2,1).$
$endgroup$
– Christopher Marley
Dec 22 '18 at 17:54




$begingroup$
For reference, the answers will be $(1,-1),(0,0),$ and $(2,1).$
$endgroup$
– Christopher Marley
Dec 22 '18 at 17:54












$begingroup$
Can it be $(0, 0)$? because we will have division by $0$ in the original equations. @ChristopherMarley
$endgroup$
– Pero
Dec 22 '18 at 18:28






$begingroup$
Can it be $(0, 0)$? because we will have division by $0$ in the original equations. @ChristopherMarley
$endgroup$
– Pero
Dec 22 '18 at 18:28












6 Answers
6






active

oldest

votes


















2












$begingroup$

Make the substitution $x = rcos(theta)$ and $y = rsin(theta)$ in order to get
begin{cases}
r^{2}cos(theta) + 3cos(theta) - sin(theta) = 3r\
r^{2}sin(theta) - cos(theta) - 3sin(theta) = 0\
end{cases}



From the second equation, it results that $cos(theta) = (r^{2}-3)sin(theta)$. Therefore we get
begin{align*}
(r^{2} + 3)cos(theta) - sin(theta) & = 3r Longleftrightarrow (r^{2}+3)(r^{2}-3)sin(theta) - sin(theta) = 3r Longleftrightarrow\
(r^{4}- 10)sin(theta) & = 3r Longleftrightarrowsin(theta) = frac{3r}{r^{4}-10}
end{align*}



Consequently, we have
begin{align*}
&cos^{2}(theta) + sin^{2}(theta) = 1 Leftrightarrowleft[frac{3r(r^{2}-3)}{r^{4}-10}right]^{2} + left[frac{3r}{r^{4}-10}right]^{2} = 1 Leftrightarrow\\
& 9r^{2}(r^{4}-6r^{2}+9) + 9r^{2} = (r^{4}-10)^{2} Leftrightarrow 9r^{6}-54r^{4} + 90r^{2} = r^{8} - 20r^{4} + 100 Leftrightarrow\\
& r^{8} - 9r^{6} + 34r^{4} - 90r^{2} + 100 = 0 Leftrightarrow (r^{8} - 5r^{6}) - (4r^{6} - 20r^{4}) + (14r^{4} - 70r^{2}) - (20r^{2} - 100) = 0 Leftrightarrow\\
& r^{6}(r^{2}-5) - 4r^{4}(r^{2}-5) + 14r^{2}(r^{2}-5) - 20(r^{2}-5) = (r^{6} - 4r^{4} + 14r^{2} - 20)(r^{2}-5) = 0 Leftrightarrow\\
& [(r^{6} - 2r^{4}) - (2r^{4} - 4r^{2}) + (10r^{2}-20)](r^{2}-5) = 0 Leftrightarrow (r^{4}-2r^{2}+10)(r^{2}-2)(r^{2}-5) = 0 Leftrightarrow\\
& (r^{2} - 2)(r^{2} - 5) = 0 Leftrightarrow rin{sqrt{2},sqrt{5}}quadtext{since}quad rgeq 0
end{align*}



Finally, for each value of $r$ there corresponds a solution. More precisely, the solution set is described by $$S = {(1,-1),(2,1)}$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    $r^{8} - 9r^{6} + 34r^{4} - 90r^{2} + 100 = (r^{8} - 5r^{6}) - (4r^{6} - 20r^{4}) + (14r^{4} - 70r^{2}) - (20r^{2} - 100) quad$ Here how did you get the right side from the left side? Is there a general formula for this or a trick to do it?
    $endgroup$
    – Pero
    Dec 22 '18 at 20:22










  • $begingroup$
    It has been done through inspection. Maybe if you substitute $y = r^{2}$ it could be easier to recognize the grouping factors.
    $endgroup$
    – APC89
    Dec 22 '18 at 20:35












  • $begingroup$
    One more question, why is $r ge 0$?
    $endgroup$
    – Pero
    Dec 22 '18 at 20:53










  • $begingroup$
    Because it measures the distance from the origin.
    $endgroup$
    – APC89
    Dec 22 '18 at 20:54










  • $begingroup$
    So can any number $a$ be written through sine or cosine like: $a=r*sin theta$ where $r ge 0$?
    $endgroup$
    – Pero
    Dec 22 '18 at 20:56



















1












$begingroup$

Hint: Write your equations in the form $$frac{3x-y}{3-x}=frac{x+3y}{y}$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    And then what do I do? I couldn't solve it with this hint.
    $endgroup$
    – Pero
    Dec 22 '18 at 18:32










  • $begingroup$
    Solve this equation for $x$ or $y$
    $endgroup$
    – Dr. Sonnhard Graubner
    Dec 22 '18 at 18:58










  • $begingroup$
    I get $x_{1/2}=frac{3-6ypm sqrt{40y^2+9}}2$. What does this mean, there are infinitely many solutions? or should I replace this in the original equations?
    $endgroup$
    – Pero
    Dec 22 '18 at 19:05










  • $begingroup$
    You can plug this in one of the given equations to compute $$x$$
    $endgroup$
    – Dr. Sonnhard Graubner
    Dec 22 '18 at 19:17



















0












$begingroup$

Note that if $y=0$ then we get $-frac 1x=0$ on second equation, so the system has no solutions.



So we can assume $yneq 0$, set $ x=ty $ and substitute.



We get $begin{cases}t^3y^2+ty^2+3t-1=3t^2y+3y \t^2y^2+y^2-t-3=0end{cases}$



And this allow us to isolate $y^2=dfrac{t+3}{t^2+1}$



Substituting in first equation rewritten $ty^2(t^2+1)+3t-1=3y(t^2+1)$



gives $t(t+3)+3t-1=3y(t^2+1)iff 3y=dfrac{t^2+6t-1}{t^2+1}$



Now be identifying $9y^2$ we get $(t^2+6t-1)^2=9(t+3)(t^2+1)$



We can remark $t=-1$ is a root $6^2=9(2)(2)$ else just graph it, and notice $-1$ and $2$ seems to be roots (so try to factor these terms).



Indeed the factorization is $$(t+1)(t-2)(t^2+4t+13)=0$$



Reporting in initial equations gives us the solutions:




  • $t=2$ and $x=2y$ leads to $begin{cases}2y+frac 1y=3\y=frac 1yend{cases}iff begin{cases}x=2\y=1end{cases}$


  • $t=-1$ and $x=-y$ leads to $begin{cases}-y-frac 2y=3\y=frac 1yend{cases}iff begin{cases}x=1\y=-1end{cases}$







share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    If $x+3y=0$ so from the second equation we obtain $y=0$, which gives $x=0$, which is impossible.



    Thus, $x+3yneq0$ and since $$frac{(x^2+y^2)y}{x+3y}=1,$$ from the first equation we obtain:
    $$x+frac{3x-y}{x^2+y^2}cdotfrac{(x^2+y^2)y}{x+3y}=3sqrt{frac{(x^2+y^2)y}{x+3y}}$$ or
    $$x^2+6xy-y^2=3sqrt{y(x^2+y^2)(x+3y)}$$ or with $x^2+6xy-y^2geq0$
    $$(x^2+6xy-y^2)^2=9y(x^2+y^2)(x+3y)$$ or
    $$(x+y)(x-2y)(x^2+4xy+9y^2)=0,$$ which gives $y=-x$ or $x=2y$.



    Can you end it now?






    share|cite|improve this answer









    $endgroup$





















      0












      $begingroup$

      Sketch of a solution rewriting the given system in terms of linear algebra:




      • Set $boxed{a = binom{x}{y}}$. Then the given system looks as follows:
        $$begin{cases}
        x+dfrac{3x-y}{x^2+y^2}=3 \
        y-dfrac{x+3y}{x^2+y^2}=0
        end{cases} Longleftrightarrow boxed{a +frac{1}{||a||^2}begin{pmatrix}3 & -1 \ -1 & -3 end{pmatrix}a = binom{3}{0}}$$


      • Set $boxed{t = frac{1}{ ||a||^2}}$ and $boxed{A = begin{pmatrix}3 & -1 \ -1 & -3 end{pmatrix}} Rightarrow (I + tA)a = binom{3}{0} Rightarrow boxed{a = (I + tA)^{-1}binom{3}{0}}$.

      • So, calculate $a$ by inverting $(I + tA)$:
        $$boxed{a =} (I + tA)^{-1}binom{3}{0} = begin{pmatrix}1+3t & -t \ -t & 1-3t end{pmatrix}^{-1}binom{3}{0} = ldots = boxed{frac{3}{1-10t^2}binom{1-3t}{t} }$$

      • Find $t >0 $ such that $t = frac{1}{ ||a||^2} Rightarrow boxed{t= frac{1}{5}, frac{1}{2}}$

      • Plug these values into $a = frac{3}{1-10t^2}binom{1-3t}{t}$:
        $$Rightarrow begin{cases} t= frac{1}{2} Rightarrow boxed{a= binom{1}{-1}} \ t= frac{1}{5} Rightarrow boxed{a= binom{2}{1}} end{cases}$$






      share|cite|improve this answer









      $endgroup$





















        0












        $begingroup$

        $$displaystyle x+frac{3x-y}{x^2+y^2}=3cdots (1)$$



        $$displaystyle y-frac{x+3y}{x^2+y^2}=0cdotscdots(2)times i $$



        Now adding these two equations



        and substituting $z=x+iy$ and $bar{z}=x-iy$



        and $$|z|^2=x^2+y^2$$



        So we have $$z+frac{3-i}{z}=3Rightarrow z^2-3z+(3-i)=0$$



        On solving that equation we have



        $$z=2+i;;,1-i$$



        So we get $$(x,y)=(2,1);;,(1,-1)$$






        share|cite|improve this answer









        $endgroup$













          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3049686%2fsolving-bigl-beginsmallmatrixx-frac3x-yx2y2-3-y-fracx3yx2y%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          6 Answers
          6






          active

          oldest

          votes








          6 Answers
          6






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2












          $begingroup$

          Make the substitution $x = rcos(theta)$ and $y = rsin(theta)$ in order to get
          begin{cases}
          r^{2}cos(theta) + 3cos(theta) - sin(theta) = 3r\
          r^{2}sin(theta) - cos(theta) - 3sin(theta) = 0\
          end{cases}



          From the second equation, it results that $cos(theta) = (r^{2}-3)sin(theta)$. Therefore we get
          begin{align*}
          (r^{2} + 3)cos(theta) - sin(theta) & = 3r Longleftrightarrow (r^{2}+3)(r^{2}-3)sin(theta) - sin(theta) = 3r Longleftrightarrow\
          (r^{4}- 10)sin(theta) & = 3r Longleftrightarrowsin(theta) = frac{3r}{r^{4}-10}
          end{align*}



          Consequently, we have
          begin{align*}
          &cos^{2}(theta) + sin^{2}(theta) = 1 Leftrightarrowleft[frac{3r(r^{2}-3)}{r^{4}-10}right]^{2} + left[frac{3r}{r^{4}-10}right]^{2} = 1 Leftrightarrow\\
          & 9r^{2}(r^{4}-6r^{2}+9) + 9r^{2} = (r^{4}-10)^{2} Leftrightarrow 9r^{6}-54r^{4} + 90r^{2} = r^{8} - 20r^{4} + 100 Leftrightarrow\\
          & r^{8} - 9r^{6} + 34r^{4} - 90r^{2} + 100 = 0 Leftrightarrow (r^{8} - 5r^{6}) - (4r^{6} - 20r^{4}) + (14r^{4} - 70r^{2}) - (20r^{2} - 100) = 0 Leftrightarrow\\
          & r^{6}(r^{2}-5) - 4r^{4}(r^{2}-5) + 14r^{2}(r^{2}-5) - 20(r^{2}-5) = (r^{6} - 4r^{4} + 14r^{2} - 20)(r^{2}-5) = 0 Leftrightarrow\\
          & [(r^{6} - 2r^{4}) - (2r^{4} - 4r^{2}) + (10r^{2}-20)](r^{2}-5) = 0 Leftrightarrow (r^{4}-2r^{2}+10)(r^{2}-2)(r^{2}-5) = 0 Leftrightarrow\\
          & (r^{2} - 2)(r^{2} - 5) = 0 Leftrightarrow rin{sqrt{2},sqrt{5}}quadtext{since}quad rgeq 0
          end{align*}



          Finally, for each value of $r$ there corresponds a solution. More precisely, the solution set is described by $$S = {(1,-1),(2,1)}$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            $r^{8} - 9r^{6} + 34r^{4} - 90r^{2} + 100 = (r^{8} - 5r^{6}) - (4r^{6} - 20r^{4}) + (14r^{4} - 70r^{2}) - (20r^{2} - 100) quad$ Here how did you get the right side from the left side? Is there a general formula for this or a trick to do it?
            $endgroup$
            – Pero
            Dec 22 '18 at 20:22










          • $begingroup$
            It has been done through inspection. Maybe if you substitute $y = r^{2}$ it could be easier to recognize the grouping factors.
            $endgroup$
            – APC89
            Dec 22 '18 at 20:35












          • $begingroup$
            One more question, why is $r ge 0$?
            $endgroup$
            – Pero
            Dec 22 '18 at 20:53










          • $begingroup$
            Because it measures the distance from the origin.
            $endgroup$
            – APC89
            Dec 22 '18 at 20:54










          • $begingroup$
            So can any number $a$ be written through sine or cosine like: $a=r*sin theta$ where $r ge 0$?
            $endgroup$
            – Pero
            Dec 22 '18 at 20:56
















          2












          $begingroup$

          Make the substitution $x = rcos(theta)$ and $y = rsin(theta)$ in order to get
          begin{cases}
          r^{2}cos(theta) + 3cos(theta) - sin(theta) = 3r\
          r^{2}sin(theta) - cos(theta) - 3sin(theta) = 0\
          end{cases}



          From the second equation, it results that $cos(theta) = (r^{2}-3)sin(theta)$. Therefore we get
          begin{align*}
          (r^{2} + 3)cos(theta) - sin(theta) & = 3r Longleftrightarrow (r^{2}+3)(r^{2}-3)sin(theta) - sin(theta) = 3r Longleftrightarrow\
          (r^{4}- 10)sin(theta) & = 3r Longleftrightarrowsin(theta) = frac{3r}{r^{4}-10}
          end{align*}



          Consequently, we have
          begin{align*}
          &cos^{2}(theta) + sin^{2}(theta) = 1 Leftrightarrowleft[frac{3r(r^{2}-3)}{r^{4}-10}right]^{2} + left[frac{3r}{r^{4}-10}right]^{2} = 1 Leftrightarrow\\
          & 9r^{2}(r^{4}-6r^{2}+9) + 9r^{2} = (r^{4}-10)^{2} Leftrightarrow 9r^{6}-54r^{4} + 90r^{2} = r^{8} - 20r^{4} + 100 Leftrightarrow\\
          & r^{8} - 9r^{6} + 34r^{4} - 90r^{2} + 100 = 0 Leftrightarrow (r^{8} - 5r^{6}) - (4r^{6} - 20r^{4}) + (14r^{4} - 70r^{2}) - (20r^{2} - 100) = 0 Leftrightarrow\\
          & r^{6}(r^{2}-5) - 4r^{4}(r^{2}-5) + 14r^{2}(r^{2}-5) - 20(r^{2}-5) = (r^{6} - 4r^{4} + 14r^{2} - 20)(r^{2}-5) = 0 Leftrightarrow\\
          & [(r^{6} - 2r^{4}) - (2r^{4} - 4r^{2}) + (10r^{2}-20)](r^{2}-5) = 0 Leftrightarrow (r^{4}-2r^{2}+10)(r^{2}-2)(r^{2}-5) = 0 Leftrightarrow\\
          & (r^{2} - 2)(r^{2} - 5) = 0 Leftrightarrow rin{sqrt{2},sqrt{5}}quadtext{since}quad rgeq 0
          end{align*}



          Finally, for each value of $r$ there corresponds a solution. More precisely, the solution set is described by $$S = {(1,-1),(2,1)}$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            $r^{8} - 9r^{6} + 34r^{4} - 90r^{2} + 100 = (r^{8} - 5r^{6}) - (4r^{6} - 20r^{4}) + (14r^{4} - 70r^{2}) - (20r^{2} - 100) quad$ Here how did you get the right side from the left side? Is there a general formula for this or a trick to do it?
            $endgroup$
            – Pero
            Dec 22 '18 at 20:22










          • $begingroup$
            It has been done through inspection. Maybe if you substitute $y = r^{2}$ it could be easier to recognize the grouping factors.
            $endgroup$
            – APC89
            Dec 22 '18 at 20:35












          • $begingroup$
            One more question, why is $r ge 0$?
            $endgroup$
            – Pero
            Dec 22 '18 at 20:53










          • $begingroup$
            Because it measures the distance from the origin.
            $endgroup$
            – APC89
            Dec 22 '18 at 20:54










          • $begingroup$
            So can any number $a$ be written through sine or cosine like: $a=r*sin theta$ where $r ge 0$?
            $endgroup$
            – Pero
            Dec 22 '18 at 20:56














          2












          2








          2





          $begingroup$

          Make the substitution $x = rcos(theta)$ and $y = rsin(theta)$ in order to get
          begin{cases}
          r^{2}cos(theta) + 3cos(theta) - sin(theta) = 3r\
          r^{2}sin(theta) - cos(theta) - 3sin(theta) = 0\
          end{cases}



          From the second equation, it results that $cos(theta) = (r^{2}-3)sin(theta)$. Therefore we get
          begin{align*}
          (r^{2} + 3)cos(theta) - sin(theta) & = 3r Longleftrightarrow (r^{2}+3)(r^{2}-3)sin(theta) - sin(theta) = 3r Longleftrightarrow\
          (r^{4}- 10)sin(theta) & = 3r Longleftrightarrowsin(theta) = frac{3r}{r^{4}-10}
          end{align*}



          Consequently, we have
          begin{align*}
          &cos^{2}(theta) + sin^{2}(theta) = 1 Leftrightarrowleft[frac{3r(r^{2}-3)}{r^{4}-10}right]^{2} + left[frac{3r}{r^{4}-10}right]^{2} = 1 Leftrightarrow\\
          & 9r^{2}(r^{4}-6r^{2}+9) + 9r^{2} = (r^{4}-10)^{2} Leftrightarrow 9r^{6}-54r^{4} + 90r^{2} = r^{8} - 20r^{4} + 100 Leftrightarrow\\
          & r^{8} - 9r^{6} + 34r^{4} - 90r^{2} + 100 = 0 Leftrightarrow (r^{8} - 5r^{6}) - (4r^{6} - 20r^{4}) + (14r^{4} - 70r^{2}) - (20r^{2} - 100) = 0 Leftrightarrow\\
          & r^{6}(r^{2}-5) - 4r^{4}(r^{2}-5) + 14r^{2}(r^{2}-5) - 20(r^{2}-5) = (r^{6} - 4r^{4} + 14r^{2} - 20)(r^{2}-5) = 0 Leftrightarrow\\
          & [(r^{6} - 2r^{4}) - (2r^{4} - 4r^{2}) + (10r^{2}-20)](r^{2}-5) = 0 Leftrightarrow (r^{4}-2r^{2}+10)(r^{2}-2)(r^{2}-5) = 0 Leftrightarrow\\
          & (r^{2} - 2)(r^{2} - 5) = 0 Leftrightarrow rin{sqrt{2},sqrt{5}}quadtext{since}quad rgeq 0
          end{align*}



          Finally, for each value of $r$ there corresponds a solution. More precisely, the solution set is described by $$S = {(1,-1),(2,1)}$$






          share|cite|improve this answer









          $endgroup$



          Make the substitution $x = rcos(theta)$ and $y = rsin(theta)$ in order to get
          begin{cases}
          r^{2}cos(theta) + 3cos(theta) - sin(theta) = 3r\
          r^{2}sin(theta) - cos(theta) - 3sin(theta) = 0\
          end{cases}



          From the second equation, it results that $cos(theta) = (r^{2}-3)sin(theta)$. Therefore we get
          begin{align*}
          (r^{2} + 3)cos(theta) - sin(theta) & = 3r Longleftrightarrow (r^{2}+3)(r^{2}-3)sin(theta) - sin(theta) = 3r Longleftrightarrow\
          (r^{4}- 10)sin(theta) & = 3r Longleftrightarrowsin(theta) = frac{3r}{r^{4}-10}
          end{align*}



          Consequently, we have
          begin{align*}
          &cos^{2}(theta) + sin^{2}(theta) = 1 Leftrightarrowleft[frac{3r(r^{2}-3)}{r^{4}-10}right]^{2} + left[frac{3r}{r^{4}-10}right]^{2} = 1 Leftrightarrow\\
          & 9r^{2}(r^{4}-6r^{2}+9) + 9r^{2} = (r^{4}-10)^{2} Leftrightarrow 9r^{6}-54r^{4} + 90r^{2} = r^{8} - 20r^{4} + 100 Leftrightarrow\\
          & r^{8} - 9r^{6} + 34r^{4} - 90r^{2} + 100 = 0 Leftrightarrow (r^{8} - 5r^{6}) - (4r^{6} - 20r^{4}) + (14r^{4} - 70r^{2}) - (20r^{2} - 100) = 0 Leftrightarrow\\
          & r^{6}(r^{2}-5) - 4r^{4}(r^{2}-5) + 14r^{2}(r^{2}-5) - 20(r^{2}-5) = (r^{6} - 4r^{4} + 14r^{2} - 20)(r^{2}-5) = 0 Leftrightarrow\\
          & [(r^{6} - 2r^{4}) - (2r^{4} - 4r^{2}) + (10r^{2}-20)](r^{2}-5) = 0 Leftrightarrow (r^{4}-2r^{2}+10)(r^{2}-2)(r^{2}-5) = 0 Leftrightarrow\\
          & (r^{2} - 2)(r^{2} - 5) = 0 Leftrightarrow rin{sqrt{2},sqrt{5}}quadtext{since}quad rgeq 0
          end{align*}



          Finally, for each value of $r$ there corresponds a solution. More precisely, the solution set is described by $$S = {(1,-1),(2,1)}$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 22 '18 at 19:28









          APC89APC89

          2,443420




          2,443420












          • $begingroup$
            $r^{8} - 9r^{6} + 34r^{4} - 90r^{2} + 100 = (r^{8} - 5r^{6}) - (4r^{6} - 20r^{4}) + (14r^{4} - 70r^{2}) - (20r^{2} - 100) quad$ Here how did you get the right side from the left side? Is there a general formula for this or a trick to do it?
            $endgroup$
            – Pero
            Dec 22 '18 at 20:22










          • $begingroup$
            It has been done through inspection. Maybe if you substitute $y = r^{2}$ it could be easier to recognize the grouping factors.
            $endgroup$
            – APC89
            Dec 22 '18 at 20:35












          • $begingroup$
            One more question, why is $r ge 0$?
            $endgroup$
            – Pero
            Dec 22 '18 at 20:53










          • $begingroup$
            Because it measures the distance from the origin.
            $endgroup$
            – APC89
            Dec 22 '18 at 20:54










          • $begingroup$
            So can any number $a$ be written through sine or cosine like: $a=r*sin theta$ where $r ge 0$?
            $endgroup$
            – Pero
            Dec 22 '18 at 20:56


















          • $begingroup$
            $r^{8} - 9r^{6} + 34r^{4} - 90r^{2} + 100 = (r^{8} - 5r^{6}) - (4r^{6} - 20r^{4}) + (14r^{4} - 70r^{2}) - (20r^{2} - 100) quad$ Here how did you get the right side from the left side? Is there a general formula for this or a trick to do it?
            $endgroup$
            – Pero
            Dec 22 '18 at 20:22










          • $begingroup$
            It has been done through inspection. Maybe if you substitute $y = r^{2}$ it could be easier to recognize the grouping factors.
            $endgroup$
            – APC89
            Dec 22 '18 at 20:35












          • $begingroup$
            One more question, why is $r ge 0$?
            $endgroup$
            – Pero
            Dec 22 '18 at 20:53










          • $begingroup$
            Because it measures the distance from the origin.
            $endgroup$
            – APC89
            Dec 22 '18 at 20:54










          • $begingroup$
            So can any number $a$ be written through sine or cosine like: $a=r*sin theta$ where $r ge 0$?
            $endgroup$
            – Pero
            Dec 22 '18 at 20:56
















          $begingroup$
          $r^{8} - 9r^{6} + 34r^{4} - 90r^{2} + 100 = (r^{8} - 5r^{6}) - (4r^{6} - 20r^{4}) + (14r^{4} - 70r^{2}) - (20r^{2} - 100) quad$ Here how did you get the right side from the left side? Is there a general formula for this or a trick to do it?
          $endgroup$
          – Pero
          Dec 22 '18 at 20:22




          $begingroup$
          $r^{8} - 9r^{6} + 34r^{4} - 90r^{2} + 100 = (r^{8} - 5r^{6}) - (4r^{6} - 20r^{4}) + (14r^{4} - 70r^{2}) - (20r^{2} - 100) quad$ Here how did you get the right side from the left side? Is there a general formula for this or a trick to do it?
          $endgroup$
          – Pero
          Dec 22 '18 at 20:22












          $begingroup$
          It has been done through inspection. Maybe if you substitute $y = r^{2}$ it could be easier to recognize the grouping factors.
          $endgroup$
          – APC89
          Dec 22 '18 at 20:35






          $begingroup$
          It has been done through inspection. Maybe if you substitute $y = r^{2}$ it could be easier to recognize the grouping factors.
          $endgroup$
          – APC89
          Dec 22 '18 at 20:35














          $begingroup$
          One more question, why is $r ge 0$?
          $endgroup$
          – Pero
          Dec 22 '18 at 20:53




          $begingroup$
          One more question, why is $r ge 0$?
          $endgroup$
          – Pero
          Dec 22 '18 at 20:53












          $begingroup$
          Because it measures the distance from the origin.
          $endgroup$
          – APC89
          Dec 22 '18 at 20:54




          $begingroup$
          Because it measures the distance from the origin.
          $endgroup$
          – APC89
          Dec 22 '18 at 20:54












          $begingroup$
          So can any number $a$ be written through sine or cosine like: $a=r*sin theta$ where $r ge 0$?
          $endgroup$
          – Pero
          Dec 22 '18 at 20:56




          $begingroup$
          So can any number $a$ be written through sine or cosine like: $a=r*sin theta$ where $r ge 0$?
          $endgroup$
          – Pero
          Dec 22 '18 at 20:56











          1












          $begingroup$

          Hint: Write your equations in the form $$frac{3x-y}{3-x}=frac{x+3y}{y}$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            And then what do I do? I couldn't solve it with this hint.
            $endgroup$
            – Pero
            Dec 22 '18 at 18:32










          • $begingroup$
            Solve this equation for $x$ or $y$
            $endgroup$
            – Dr. Sonnhard Graubner
            Dec 22 '18 at 18:58










          • $begingroup$
            I get $x_{1/2}=frac{3-6ypm sqrt{40y^2+9}}2$. What does this mean, there are infinitely many solutions? or should I replace this in the original equations?
            $endgroup$
            – Pero
            Dec 22 '18 at 19:05










          • $begingroup$
            You can plug this in one of the given equations to compute $$x$$
            $endgroup$
            – Dr. Sonnhard Graubner
            Dec 22 '18 at 19:17
















          1












          $begingroup$

          Hint: Write your equations in the form $$frac{3x-y}{3-x}=frac{x+3y}{y}$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            And then what do I do? I couldn't solve it with this hint.
            $endgroup$
            – Pero
            Dec 22 '18 at 18:32










          • $begingroup$
            Solve this equation for $x$ or $y$
            $endgroup$
            – Dr. Sonnhard Graubner
            Dec 22 '18 at 18:58










          • $begingroup$
            I get $x_{1/2}=frac{3-6ypm sqrt{40y^2+9}}2$. What does this mean, there are infinitely many solutions? or should I replace this in the original equations?
            $endgroup$
            – Pero
            Dec 22 '18 at 19:05










          • $begingroup$
            You can plug this in one of the given equations to compute $$x$$
            $endgroup$
            – Dr. Sonnhard Graubner
            Dec 22 '18 at 19:17














          1












          1








          1





          $begingroup$

          Hint: Write your equations in the form $$frac{3x-y}{3-x}=frac{x+3y}{y}$$






          share|cite|improve this answer









          $endgroup$



          Hint: Write your equations in the form $$frac{3x-y}{3-x}=frac{x+3y}{y}$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 22 '18 at 17:57









          Dr. Sonnhard GraubnerDr. Sonnhard Graubner

          75.8k42866




          75.8k42866












          • $begingroup$
            And then what do I do? I couldn't solve it with this hint.
            $endgroup$
            – Pero
            Dec 22 '18 at 18:32










          • $begingroup$
            Solve this equation for $x$ or $y$
            $endgroup$
            – Dr. Sonnhard Graubner
            Dec 22 '18 at 18:58










          • $begingroup$
            I get $x_{1/2}=frac{3-6ypm sqrt{40y^2+9}}2$. What does this mean, there are infinitely many solutions? or should I replace this in the original equations?
            $endgroup$
            – Pero
            Dec 22 '18 at 19:05










          • $begingroup$
            You can plug this in one of the given equations to compute $$x$$
            $endgroup$
            – Dr. Sonnhard Graubner
            Dec 22 '18 at 19:17


















          • $begingroup$
            And then what do I do? I couldn't solve it with this hint.
            $endgroup$
            – Pero
            Dec 22 '18 at 18:32










          • $begingroup$
            Solve this equation for $x$ or $y$
            $endgroup$
            – Dr. Sonnhard Graubner
            Dec 22 '18 at 18:58










          • $begingroup$
            I get $x_{1/2}=frac{3-6ypm sqrt{40y^2+9}}2$. What does this mean, there are infinitely many solutions? or should I replace this in the original equations?
            $endgroup$
            – Pero
            Dec 22 '18 at 19:05










          • $begingroup$
            You can plug this in one of the given equations to compute $$x$$
            $endgroup$
            – Dr. Sonnhard Graubner
            Dec 22 '18 at 19:17
















          $begingroup$
          And then what do I do? I couldn't solve it with this hint.
          $endgroup$
          – Pero
          Dec 22 '18 at 18:32




          $begingroup$
          And then what do I do? I couldn't solve it with this hint.
          $endgroup$
          – Pero
          Dec 22 '18 at 18:32












          $begingroup$
          Solve this equation for $x$ or $y$
          $endgroup$
          – Dr. Sonnhard Graubner
          Dec 22 '18 at 18:58




          $begingroup$
          Solve this equation for $x$ or $y$
          $endgroup$
          – Dr. Sonnhard Graubner
          Dec 22 '18 at 18:58












          $begingroup$
          I get $x_{1/2}=frac{3-6ypm sqrt{40y^2+9}}2$. What does this mean, there are infinitely many solutions? or should I replace this in the original equations?
          $endgroup$
          – Pero
          Dec 22 '18 at 19:05




          $begingroup$
          I get $x_{1/2}=frac{3-6ypm sqrt{40y^2+9}}2$. What does this mean, there are infinitely many solutions? or should I replace this in the original equations?
          $endgroup$
          – Pero
          Dec 22 '18 at 19:05












          $begingroup$
          You can plug this in one of the given equations to compute $$x$$
          $endgroup$
          – Dr. Sonnhard Graubner
          Dec 22 '18 at 19:17




          $begingroup$
          You can plug this in one of the given equations to compute $$x$$
          $endgroup$
          – Dr. Sonnhard Graubner
          Dec 22 '18 at 19:17











          0












          $begingroup$

          Note that if $y=0$ then we get $-frac 1x=0$ on second equation, so the system has no solutions.



          So we can assume $yneq 0$, set $ x=ty $ and substitute.



          We get $begin{cases}t^3y^2+ty^2+3t-1=3t^2y+3y \t^2y^2+y^2-t-3=0end{cases}$



          And this allow us to isolate $y^2=dfrac{t+3}{t^2+1}$



          Substituting in first equation rewritten $ty^2(t^2+1)+3t-1=3y(t^2+1)$



          gives $t(t+3)+3t-1=3y(t^2+1)iff 3y=dfrac{t^2+6t-1}{t^2+1}$



          Now be identifying $9y^2$ we get $(t^2+6t-1)^2=9(t+3)(t^2+1)$



          We can remark $t=-1$ is a root $6^2=9(2)(2)$ else just graph it, and notice $-1$ and $2$ seems to be roots (so try to factor these terms).



          Indeed the factorization is $$(t+1)(t-2)(t^2+4t+13)=0$$



          Reporting in initial equations gives us the solutions:




          • $t=2$ and $x=2y$ leads to $begin{cases}2y+frac 1y=3\y=frac 1yend{cases}iff begin{cases}x=2\y=1end{cases}$


          • $t=-1$ and $x=-y$ leads to $begin{cases}-y-frac 2y=3\y=frac 1yend{cases}iff begin{cases}x=1\y=-1end{cases}$







          share|cite|improve this answer









          $endgroup$


















            0












            $begingroup$

            Note that if $y=0$ then we get $-frac 1x=0$ on second equation, so the system has no solutions.



            So we can assume $yneq 0$, set $ x=ty $ and substitute.



            We get $begin{cases}t^3y^2+ty^2+3t-1=3t^2y+3y \t^2y^2+y^2-t-3=0end{cases}$



            And this allow us to isolate $y^2=dfrac{t+3}{t^2+1}$



            Substituting in first equation rewritten $ty^2(t^2+1)+3t-1=3y(t^2+1)$



            gives $t(t+3)+3t-1=3y(t^2+1)iff 3y=dfrac{t^2+6t-1}{t^2+1}$



            Now be identifying $9y^2$ we get $(t^2+6t-1)^2=9(t+3)(t^2+1)$



            We can remark $t=-1$ is a root $6^2=9(2)(2)$ else just graph it, and notice $-1$ and $2$ seems to be roots (so try to factor these terms).



            Indeed the factorization is $$(t+1)(t-2)(t^2+4t+13)=0$$



            Reporting in initial equations gives us the solutions:




            • $t=2$ and $x=2y$ leads to $begin{cases}2y+frac 1y=3\y=frac 1yend{cases}iff begin{cases}x=2\y=1end{cases}$


            • $t=-1$ and $x=-y$ leads to $begin{cases}-y-frac 2y=3\y=frac 1yend{cases}iff begin{cases}x=1\y=-1end{cases}$







            share|cite|improve this answer









            $endgroup$
















              0












              0








              0





              $begingroup$

              Note that if $y=0$ then we get $-frac 1x=0$ on second equation, so the system has no solutions.



              So we can assume $yneq 0$, set $ x=ty $ and substitute.



              We get $begin{cases}t^3y^2+ty^2+3t-1=3t^2y+3y \t^2y^2+y^2-t-3=0end{cases}$



              And this allow us to isolate $y^2=dfrac{t+3}{t^2+1}$



              Substituting in first equation rewritten $ty^2(t^2+1)+3t-1=3y(t^2+1)$



              gives $t(t+3)+3t-1=3y(t^2+1)iff 3y=dfrac{t^2+6t-1}{t^2+1}$



              Now be identifying $9y^2$ we get $(t^2+6t-1)^2=9(t+3)(t^2+1)$



              We can remark $t=-1$ is a root $6^2=9(2)(2)$ else just graph it, and notice $-1$ and $2$ seems to be roots (so try to factor these terms).



              Indeed the factorization is $$(t+1)(t-2)(t^2+4t+13)=0$$



              Reporting in initial equations gives us the solutions:




              • $t=2$ and $x=2y$ leads to $begin{cases}2y+frac 1y=3\y=frac 1yend{cases}iff begin{cases}x=2\y=1end{cases}$


              • $t=-1$ and $x=-y$ leads to $begin{cases}-y-frac 2y=3\y=frac 1yend{cases}iff begin{cases}x=1\y=-1end{cases}$







              share|cite|improve this answer









              $endgroup$



              Note that if $y=0$ then we get $-frac 1x=0$ on second equation, so the system has no solutions.



              So we can assume $yneq 0$, set $ x=ty $ and substitute.



              We get $begin{cases}t^3y^2+ty^2+3t-1=3t^2y+3y \t^2y^2+y^2-t-3=0end{cases}$



              And this allow us to isolate $y^2=dfrac{t+3}{t^2+1}$



              Substituting in first equation rewritten $ty^2(t^2+1)+3t-1=3y(t^2+1)$



              gives $t(t+3)+3t-1=3y(t^2+1)iff 3y=dfrac{t^2+6t-1}{t^2+1}$



              Now be identifying $9y^2$ we get $(t^2+6t-1)^2=9(t+3)(t^2+1)$



              We can remark $t=-1$ is a root $6^2=9(2)(2)$ else just graph it, and notice $-1$ and $2$ seems to be roots (so try to factor these terms).



              Indeed the factorization is $$(t+1)(t-2)(t^2+4t+13)=0$$



              Reporting in initial equations gives us the solutions:




              • $t=2$ and $x=2y$ leads to $begin{cases}2y+frac 1y=3\y=frac 1yend{cases}iff begin{cases}x=2\y=1end{cases}$


              • $t=-1$ and $x=-y$ leads to $begin{cases}-y-frac 2y=3\y=frac 1yend{cases}iff begin{cases}x=1\y=-1end{cases}$








              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered Dec 22 '18 at 22:12









              zwimzwim

              12.3k831




              12.3k831























                  0












                  $begingroup$

                  If $x+3y=0$ so from the second equation we obtain $y=0$, which gives $x=0$, which is impossible.



                  Thus, $x+3yneq0$ and since $$frac{(x^2+y^2)y}{x+3y}=1,$$ from the first equation we obtain:
                  $$x+frac{3x-y}{x^2+y^2}cdotfrac{(x^2+y^2)y}{x+3y}=3sqrt{frac{(x^2+y^2)y}{x+3y}}$$ or
                  $$x^2+6xy-y^2=3sqrt{y(x^2+y^2)(x+3y)}$$ or with $x^2+6xy-y^2geq0$
                  $$(x^2+6xy-y^2)^2=9y(x^2+y^2)(x+3y)$$ or
                  $$(x+y)(x-2y)(x^2+4xy+9y^2)=0,$$ which gives $y=-x$ or $x=2y$.



                  Can you end it now?






                  share|cite|improve this answer









                  $endgroup$


















                    0












                    $begingroup$

                    If $x+3y=0$ so from the second equation we obtain $y=0$, which gives $x=0$, which is impossible.



                    Thus, $x+3yneq0$ and since $$frac{(x^2+y^2)y}{x+3y}=1,$$ from the first equation we obtain:
                    $$x+frac{3x-y}{x^2+y^2}cdotfrac{(x^2+y^2)y}{x+3y}=3sqrt{frac{(x^2+y^2)y}{x+3y}}$$ or
                    $$x^2+6xy-y^2=3sqrt{y(x^2+y^2)(x+3y)}$$ or with $x^2+6xy-y^2geq0$
                    $$(x^2+6xy-y^2)^2=9y(x^2+y^2)(x+3y)$$ or
                    $$(x+y)(x-2y)(x^2+4xy+9y^2)=0,$$ which gives $y=-x$ or $x=2y$.



                    Can you end it now?






                    share|cite|improve this answer









                    $endgroup$
















                      0












                      0








                      0





                      $begingroup$

                      If $x+3y=0$ so from the second equation we obtain $y=0$, which gives $x=0$, which is impossible.



                      Thus, $x+3yneq0$ and since $$frac{(x^2+y^2)y}{x+3y}=1,$$ from the first equation we obtain:
                      $$x+frac{3x-y}{x^2+y^2}cdotfrac{(x^2+y^2)y}{x+3y}=3sqrt{frac{(x^2+y^2)y}{x+3y}}$$ or
                      $$x^2+6xy-y^2=3sqrt{y(x^2+y^2)(x+3y)}$$ or with $x^2+6xy-y^2geq0$
                      $$(x^2+6xy-y^2)^2=9y(x^2+y^2)(x+3y)$$ or
                      $$(x+y)(x-2y)(x^2+4xy+9y^2)=0,$$ which gives $y=-x$ or $x=2y$.



                      Can you end it now?






                      share|cite|improve this answer









                      $endgroup$



                      If $x+3y=0$ so from the second equation we obtain $y=0$, which gives $x=0$, which is impossible.



                      Thus, $x+3yneq0$ and since $$frac{(x^2+y^2)y}{x+3y}=1,$$ from the first equation we obtain:
                      $$x+frac{3x-y}{x^2+y^2}cdotfrac{(x^2+y^2)y}{x+3y}=3sqrt{frac{(x^2+y^2)y}{x+3y}}$$ or
                      $$x^2+6xy-y^2=3sqrt{y(x^2+y^2)(x+3y)}$$ or with $x^2+6xy-y^2geq0$
                      $$(x^2+6xy-y^2)^2=9y(x^2+y^2)(x+3y)$$ or
                      $$(x+y)(x-2y)(x^2+4xy+9y^2)=0,$$ which gives $y=-x$ or $x=2y$.



                      Can you end it now?







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered Dec 22 '18 at 22:29









                      Michael RozenbergMichael Rozenberg

                      104k1891197




                      104k1891197























                          0












                          $begingroup$

                          Sketch of a solution rewriting the given system in terms of linear algebra:




                          • Set $boxed{a = binom{x}{y}}$. Then the given system looks as follows:
                            $$begin{cases}
                            x+dfrac{3x-y}{x^2+y^2}=3 \
                            y-dfrac{x+3y}{x^2+y^2}=0
                            end{cases} Longleftrightarrow boxed{a +frac{1}{||a||^2}begin{pmatrix}3 & -1 \ -1 & -3 end{pmatrix}a = binom{3}{0}}$$


                          • Set $boxed{t = frac{1}{ ||a||^2}}$ and $boxed{A = begin{pmatrix}3 & -1 \ -1 & -3 end{pmatrix}} Rightarrow (I + tA)a = binom{3}{0} Rightarrow boxed{a = (I + tA)^{-1}binom{3}{0}}$.

                          • So, calculate $a$ by inverting $(I + tA)$:
                            $$boxed{a =} (I + tA)^{-1}binom{3}{0} = begin{pmatrix}1+3t & -t \ -t & 1-3t end{pmatrix}^{-1}binom{3}{0} = ldots = boxed{frac{3}{1-10t^2}binom{1-3t}{t} }$$

                          • Find $t >0 $ such that $t = frac{1}{ ||a||^2} Rightarrow boxed{t= frac{1}{5}, frac{1}{2}}$

                          • Plug these values into $a = frac{3}{1-10t^2}binom{1-3t}{t}$:
                            $$Rightarrow begin{cases} t= frac{1}{2} Rightarrow boxed{a= binom{1}{-1}} \ t= frac{1}{5} Rightarrow boxed{a= binom{2}{1}} end{cases}$$






                          share|cite|improve this answer









                          $endgroup$


















                            0












                            $begingroup$

                            Sketch of a solution rewriting the given system in terms of linear algebra:




                            • Set $boxed{a = binom{x}{y}}$. Then the given system looks as follows:
                              $$begin{cases}
                              x+dfrac{3x-y}{x^2+y^2}=3 \
                              y-dfrac{x+3y}{x^2+y^2}=0
                              end{cases} Longleftrightarrow boxed{a +frac{1}{||a||^2}begin{pmatrix}3 & -1 \ -1 & -3 end{pmatrix}a = binom{3}{0}}$$


                            • Set $boxed{t = frac{1}{ ||a||^2}}$ and $boxed{A = begin{pmatrix}3 & -1 \ -1 & -3 end{pmatrix}} Rightarrow (I + tA)a = binom{3}{0} Rightarrow boxed{a = (I + tA)^{-1}binom{3}{0}}$.

                            • So, calculate $a$ by inverting $(I + tA)$:
                              $$boxed{a =} (I + tA)^{-1}binom{3}{0} = begin{pmatrix}1+3t & -t \ -t & 1-3t end{pmatrix}^{-1}binom{3}{0} = ldots = boxed{frac{3}{1-10t^2}binom{1-3t}{t} }$$

                            • Find $t >0 $ such that $t = frac{1}{ ||a||^2} Rightarrow boxed{t= frac{1}{5}, frac{1}{2}}$

                            • Plug these values into $a = frac{3}{1-10t^2}binom{1-3t}{t}$:
                              $$Rightarrow begin{cases} t= frac{1}{2} Rightarrow boxed{a= binom{1}{-1}} \ t= frac{1}{5} Rightarrow boxed{a= binom{2}{1}} end{cases}$$






                            share|cite|improve this answer









                            $endgroup$
















                              0












                              0








                              0





                              $begingroup$

                              Sketch of a solution rewriting the given system in terms of linear algebra:




                              • Set $boxed{a = binom{x}{y}}$. Then the given system looks as follows:
                                $$begin{cases}
                                x+dfrac{3x-y}{x^2+y^2}=3 \
                                y-dfrac{x+3y}{x^2+y^2}=0
                                end{cases} Longleftrightarrow boxed{a +frac{1}{||a||^2}begin{pmatrix}3 & -1 \ -1 & -3 end{pmatrix}a = binom{3}{0}}$$


                              • Set $boxed{t = frac{1}{ ||a||^2}}$ and $boxed{A = begin{pmatrix}3 & -1 \ -1 & -3 end{pmatrix}} Rightarrow (I + tA)a = binom{3}{0} Rightarrow boxed{a = (I + tA)^{-1}binom{3}{0}}$.

                              • So, calculate $a$ by inverting $(I + tA)$:
                                $$boxed{a =} (I + tA)^{-1}binom{3}{0} = begin{pmatrix}1+3t & -t \ -t & 1-3t end{pmatrix}^{-1}binom{3}{0} = ldots = boxed{frac{3}{1-10t^2}binom{1-3t}{t} }$$

                              • Find $t >0 $ such that $t = frac{1}{ ||a||^2} Rightarrow boxed{t= frac{1}{5}, frac{1}{2}}$

                              • Plug these values into $a = frac{3}{1-10t^2}binom{1-3t}{t}$:
                                $$Rightarrow begin{cases} t= frac{1}{2} Rightarrow boxed{a= binom{1}{-1}} \ t= frac{1}{5} Rightarrow boxed{a= binom{2}{1}} end{cases}$$






                              share|cite|improve this answer









                              $endgroup$



                              Sketch of a solution rewriting the given system in terms of linear algebra:




                              • Set $boxed{a = binom{x}{y}}$. Then the given system looks as follows:
                                $$begin{cases}
                                x+dfrac{3x-y}{x^2+y^2}=3 \
                                y-dfrac{x+3y}{x^2+y^2}=0
                                end{cases} Longleftrightarrow boxed{a +frac{1}{||a||^2}begin{pmatrix}3 & -1 \ -1 & -3 end{pmatrix}a = binom{3}{0}}$$


                              • Set $boxed{t = frac{1}{ ||a||^2}}$ and $boxed{A = begin{pmatrix}3 & -1 \ -1 & -3 end{pmatrix}} Rightarrow (I + tA)a = binom{3}{0} Rightarrow boxed{a = (I + tA)^{-1}binom{3}{0}}$.

                              • So, calculate $a$ by inverting $(I + tA)$:
                                $$boxed{a =} (I + tA)^{-1}binom{3}{0} = begin{pmatrix}1+3t & -t \ -t & 1-3t end{pmatrix}^{-1}binom{3}{0} = ldots = boxed{frac{3}{1-10t^2}binom{1-3t}{t} }$$

                              • Find $t >0 $ such that $t = frac{1}{ ||a||^2} Rightarrow boxed{t= frac{1}{5}, frac{1}{2}}$

                              • Plug these values into $a = frac{3}{1-10t^2}binom{1-3t}{t}$:
                                $$Rightarrow begin{cases} t= frac{1}{2} Rightarrow boxed{a= binom{1}{-1}} \ t= frac{1}{5} Rightarrow boxed{a= binom{2}{1}} end{cases}$$







                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered Dec 23 '18 at 6:05









                              trancelocationtrancelocation

                              11.9k1825




                              11.9k1825























                                  0












                                  $begingroup$

                                  $$displaystyle x+frac{3x-y}{x^2+y^2}=3cdots (1)$$



                                  $$displaystyle y-frac{x+3y}{x^2+y^2}=0cdotscdots(2)times i $$



                                  Now adding these two equations



                                  and substituting $z=x+iy$ and $bar{z}=x-iy$



                                  and $$|z|^2=x^2+y^2$$



                                  So we have $$z+frac{3-i}{z}=3Rightarrow z^2-3z+(3-i)=0$$



                                  On solving that equation we have



                                  $$z=2+i;;,1-i$$



                                  So we get $$(x,y)=(2,1);;,(1,-1)$$






                                  share|cite|improve this answer









                                  $endgroup$


















                                    0












                                    $begingroup$

                                    $$displaystyle x+frac{3x-y}{x^2+y^2}=3cdots (1)$$



                                    $$displaystyle y-frac{x+3y}{x^2+y^2}=0cdotscdots(2)times i $$



                                    Now adding these two equations



                                    and substituting $z=x+iy$ and $bar{z}=x-iy$



                                    and $$|z|^2=x^2+y^2$$



                                    So we have $$z+frac{3-i}{z}=3Rightarrow z^2-3z+(3-i)=0$$



                                    On solving that equation we have



                                    $$z=2+i;;,1-i$$



                                    So we get $$(x,y)=(2,1);;,(1,-1)$$






                                    share|cite|improve this answer









                                    $endgroup$
















                                      0












                                      0








                                      0





                                      $begingroup$

                                      $$displaystyle x+frac{3x-y}{x^2+y^2}=3cdots (1)$$



                                      $$displaystyle y-frac{x+3y}{x^2+y^2}=0cdotscdots(2)times i $$



                                      Now adding these two equations



                                      and substituting $z=x+iy$ and $bar{z}=x-iy$



                                      and $$|z|^2=x^2+y^2$$



                                      So we have $$z+frac{3-i}{z}=3Rightarrow z^2-3z+(3-i)=0$$



                                      On solving that equation we have



                                      $$z=2+i;;,1-i$$



                                      So we get $$(x,y)=(2,1);;,(1,-1)$$






                                      share|cite|improve this answer









                                      $endgroup$



                                      $$displaystyle x+frac{3x-y}{x^2+y^2}=3cdots (1)$$



                                      $$displaystyle y-frac{x+3y}{x^2+y^2}=0cdotscdots(2)times i $$



                                      Now adding these two equations



                                      and substituting $z=x+iy$ and $bar{z}=x-iy$



                                      and $$|z|^2=x^2+y^2$$



                                      So we have $$z+frac{3-i}{z}=3Rightarrow z^2-3z+(3-i)=0$$



                                      On solving that equation we have



                                      $$z=2+i;;,1-i$$



                                      So we get $$(x,y)=(2,1);;,(1,-1)$$







                                      share|cite|improve this answer












                                      share|cite|improve this answer



                                      share|cite|improve this answer










                                      answered Dec 25 '18 at 11:58









                                      DXTDXT

                                      5,6962630




                                      5,6962630






























                                          draft saved

                                          draft discarded




















































                                          Thanks for contributing an answer to Mathematics Stack Exchange!


                                          • Please be sure to answer the question. Provide details and share your research!

                                          But avoid



                                          • Asking for help, clarification, or responding to other answers.

                                          • Making statements based on opinion; back them up with references or personal experience.


                                          Use MathJax to format equations. MathJax reference.


                                          To learn more, see our tips on writing great answers.




                                          draft saved


                                          draft discarded














                                          StackExchange.ready(
                                          function () {
                                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3049686%2fsolving-bigl-beginsmallmatrixx-frac3x-yx2y2-3-y-fracx3yx2y%23new-answer', 'question_page');
                                          }
                                          );

                                          Post as a guest















                                          Required, but never shown





















































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown

































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown







                                          Popular posts from this blog

                                          Ellipse (mathématiques)

                                          Quarter-circle Tiles

                                          Mont Emei