Solving $Bigl{begin{smallmatrix}x+frac{3x-y}{x^2+y^2}=3\y-frac{x+3y}{x^2+y^2}=0end{smallmatrix}$ in $mathbb...
$begingroup$
$$begin{cases}
x+dfrac{3x-y}{x^2+y^2}=3 \
y-dfrac{x+3y}{x^2+y^2}=0
end{cases}$$
Solve in the set of real numbers.
The furthest I have got is summing the equations, and I got
$$x^3+(y-3)x^2+(y^2+2)x+y^3-3y^2-4y=0.$$
But I have no idea how to solve this problem. How can I solve it?
algebra-precalculus systems-of-equations
$endgroup$
add a comment |
$begingroup$
$$begin{cases}
x+dfrac{3x-y}{x^2+y^2}=3 \
y-dfrac{x+3y}{x^2+y^2}=0
end{cases}$$
Solve in the set of real numbers.
The furthest I have got is summing the equations, and I got
$$x^3+(y-3)x^2+(y^2+2)x+y^3-3y^2-4y=0.$$
But I have no idea how to solve this problem. How can I solve it?
algebra-precalculus systems-of-equations
$endgroup$
$begingroup$
For reference, the answers will be $(1,-1),(0,0),$ and $(2,1).$
$endgroup$
– Christopher Marley
Dec 22 '18 at 17:54
$begingroup$
Can it be $(0, 0)$? because we will have division by $0$ in the original equations. @ChristopherMarley
$endgroup$
– Pero
Dec 22 '18 at 18:28
add a comment |
$begingroup$
$$begin{cases}
x+dfrac{3x-y}{x^2+y^2}=3 \
y-dfrac{x+3y}{x^2+y^2}=0
end{cases}$$
Solve in the set of real numbers.
The furthest I have got is summing the equations, and I got
$$x^3+(y-3)x^2+(y^2+2)x+y^3-3y^2-4y=0.$$
But I have no idea how to solve this problem. How can I solve it?
algebra-precalculus systems-of-equations
$endgroup$
$$begin{cases}
x+dfrac{3x-y}{x^2+y^2}=3 \
y-dfrac{x+3y}{x^2+y^2}=0
end{cases}$$
Solve in the set of real numbers.
The furthest I have got is summing the equations, and I got
$$x^3+(y-3)x^2+(y^2+2)x+y^3-3y^2-4y=0.$$
But I have no idea how to solve this problem. How can I solve it?
algebra-precalculus systems-of-equations
algebra-precalculus systems-of-equations
edited Dec 23 '18 at 1:30
Saad
19.7k92352
19.7k92352
asked Dec 22 '18 at 17:51
PeroPero
1497
1497
$begingroup$
For reference, the answers will be $(1,-1),(0,0),$ and $(2,1).$
$endgroup$
– Christopher Marley
Dec 22 '18 at 17:54
$begingroup$
Can it be $(0, 0)$? because we will have division by $0$ in the original equations. @ChristopherMarley
$endgroup$
– Pero
Dec 22 '18 at 18:28
add a comment |
$begingroup$
For reference, the answers will be $(1,-1),(0,0),$ and $(2,1).$
$endgroup$
– Christopher Marley
Dec 22 '18 at 17:54
$begingroup$
Can it be $(0, 0)$? because we will have division by $0$ in the original equations. @ChristopherMarley
$endgroup$
– Pero
Dec 22 '18 at 18:28
$begingroup$
For reference, the answers will be $(1,-1),(0,0),$ and $(2,1).$
$endgroup$
– Christopher Marley
Dec 22 '18 at 17:54
$begingroup$
For reference, the answers will be $(1,-1),(0,0),$ and $(2,1).$
$endgroup$
– Christopher Marley
Dec 22 '18 at 17:54
$begingroup$
Can it be $(0, 0)$? because we will have division by $0$ in the original equations. @ChristopherMarley
$endgroup$
– Pero
Dec 22 '18 at 18:28
$begingroup$
Can it be $(0, 0)$? because we will have division by $0$ in the original equations. @ChristopherMarley
$endgroup$
– Pero
Dec 22 '18 at 18:28
add a comment |
6 Answers
6
active
oldest
votes
$begingroup$
Make the substitution $x = rcos(theta)$ and $y = rsin(theta)$ in order to get
begin{cases}
r^{2}cos(theta) + 3cos(theta) - sin(theta) = 3r\
r^{2}sin(theta) - cos(theta) - 3sin(theta) = 0\
end{cases}
From the second equation, it results that $cos(theta) = (r^{2}-3)sin(theta)$. Therefore we get
begin{align*}
(r^{2} + 3)cos(theta) - sin(theta) & = 3r Longleftrightarrow (r^{2}+3)(r^{2}-3)sin(theta) - sin(theta) = 3r Longleftrightarrow\
(r^{4}- 10)sin(theta) & = 3r Longleftrightarrowsin(theta) = frac{3r}{r^{4}-10}
end{align*}
Consequently, we have
begin{align*}
&cos^{2}(theta) + sin^{2}(theta) = 1 Leftrightarrowleft[frac{3r(r^{2}-3)}{r^{4}-10}right]^{2} + left[frac{3r}{r^{4}-10}right]^{2} = 1 Leftrightarrow\\
& 9r^{2}(r^{4}-6r^{2}+9) + 9r^{2} = (r^{4}-10)^{2} Leftrightarrow 9r^{6}-54r^{4} + 90r^{2} = r^{8} - 20r^{4} + 100 Leftrightarrow\\
& r^{8} - 9r^{6} + 34r^{4} - 90r^{2} + 100 = 0 Leftrightarrow (r^{8} - 5r^{6}) - (4r^{6} - 20r^{4}) + (14r^{4} - 70r^{2}) - (20r^{2} - 100) = 0 Leftrightarrow\\
& r^{6}(r^{2}-5) - 4r^{4}(r^{2}-5) + 14r^{2}(r^{2}-5) - 20(r^{2}-5) = (r^{6} - 4r^{4} + 14r^{2} - 20)(r^{2}-5) = 0 Leftrightarrow\\
& [(r^{6} - 2r^{4}) - (2r^{4} - 4r^{2}) + (10r^{2}-20)](r^{2}-5) = 0 Leftrightarrow (r^{4}-2r^{2}+10)(r^{2}-2)(r^{2}-5) = 0 Leftrightarrow\\
& (r^{2} - 2)(r^{2} - 5) = 0 Leftrightarrow rin{sqrt{2},sqrt{5}}quadtext{since}quad rgeq 0
end{align*}
Finally, for each value of $r$ there corresponds a solution. More precisely, the solution set is described by $$S = {(1,-1),(2,1)}$$
$endgroup$
$begingroup$
$r^{8} - 9r^{6} + 34r^{4} - 90r^{2} + 100 = (r^{8} - 5r^{6}) - (4r^{6} - 20r^{4}) + (14r^{4} - 70r^{2}) - (20r^{2} - 100) quad$ Here how did you get the right side from the left side? Is there a general formula for this or a trick to do it?
$endgroup$
– Pero
Dec 22 '18 at 20:22
$begingroup$
It has been done through inspection. Maybe if you substitute $y = r^{2}$ it could be easier to recognize the grouping factors.
$endgroup$
– APC89
Dec 22 '18 at 20:35
$begingroup$
One more question, why is $r ge 0$?
$endgroup$
– Pero
Dec 22 '18 at 20:53
$begingroup$
Because it measures the distance from the origin.
$endgroup$
– APC89
Dec 22 '18 at 20:54
$begingroup$
So can any number $a$ be written through sine or cosine like: $a=r*sin theta$ where $r ge 0$?
$endgroup$
– Pero
Dec 22 '18 at 20:56
|
show 3 more comments
$begingroup$
Hint: Write your equations in the form $$frac{3x-y}{3-x}=frac{x+3y}{y}$$
$endgroup$
$begingroup$
And then what do I do? I couldn't solve it with this hint.
$endgroup$
– Pero
Dec 22 '18 at 18:32
$begingroup$
Solve this equation for $x$ or $y$
$endgroup$
– Dr. Sonnhard Graubner
Dec 22 '18 at 18:58
$begingroup$
I get $x_{1/2}=frac{3-6ypm sqrt{40y^2+9}}2$. What does this mean, there are infinitely many solutions? or should I replace this in the original equations?
$endgroup$
– Pero
Dec 22 '18 at 19:05
$begingroup$
You can plug this in one of the given equations to compute $$x$$
$endgroup$
– Dr. Sonnhard Graubner
Dec 22 '18 at 19:17
add a comment |
$begingroup$
Note that if $y=0$ then we get $-frac 1x=0$ on second equation, so the system has no solutions.
So we can assume $yneq 0$, set $ x=ty $ and substitute.
We get $begin{cases}t^3y^2+ty^2+3t-1=3t^2y+3y \t^2y^2+y^2-t-3=0end{cases}$
And this allow us to isolate $y^2=dfrac{t+3}{t^2+1}$
Substituting in first equation rewritten $ty^2(t^2+1)+3t-1=3y(t^2+1)$
gives $t(t+3)+3t-1=3y(t^2+1)iff 3y=dfrac{t^2+6t-1}{t^2+1}$
Now be identifying $9y^2$ we get $(t^2+6t-1)^2=9(t+3)(t^2+1)$
We can remark $t=-1$ is a root $6^2=9(2)(2)$ else just graph it, and notice $-1$ and $2$ seems to be roots (so try to factor these terms).
Indeed the factorization is $$(t+1)(t-2)(t^2+4t+13)=0$$
Reporting in initial equations gives us the solutions:
$t=2$ and $x=2y$ leads to $begin{cases}2y+frac 1y=3\y=frac 1yend{cases}iff begin{cases}x=2\y=1end{cases}$
$t=-1$ and $x=-y$ leads to $begin{cases}-y-frac 2y=3\y=frac 1yend{cases}iff begin{cases}x=1\y=-1end{cases}$
$endgroup$
add a comment |
$begingroup$
If $x+3y=0$ so from the second equation we obtain $y=0$, which gives $x=0$, which is impossible.
Thus, $x+3yneq0$ and since $$frac{(x^2+y^2)y}{x+3y}=1,$$ from the first equation we obtain:
$$x+frac{3x-y}{x^2+y^2}cdotfrac{(x^2+y^2)y}{x+3y}=3sqrt{frac{(x^2+y^2)y}{x+3y}}$$ or
$$x^2+6xy-y^2=3sqrt{y(x^2+y^2)(x+3y)}$$ or with $x^2+6xy-y^2geq0$
$$(x^2+6xy-y^2)^2=9y(x^2+y^2)(x+3y)$$ or
$$(x+y)(x-2y)(x^2+4xy+9y^2)=0,$$ which gives $y=-x$ or $x=2y$.
Can you end it now?
$endgroup$
add a comment |
$begingroup$
Sketch of a solution rewriting the given system in terms of linear algebra:
- Set $boxed{a = binom{x}{y}}$. Then the given system looks as follows:
$$begin{cases}
x+dfrac{3x-y}{x^2+y^2}=3 \
y-dfrac{x+3y}{x^2+y^2}=0
end{cases} Longleftrightarrow boxed{a +frac{1}{||a||^2}begin{pmatrix}3 & -1 \ -1 & -3 end{pmatrix}a = binom{3}{0}}$$
- Set $boxed{t = frac{1}{ ||a||^2}}$ and $boxed{A = begin{pmatrix}3 & -1 \ -1 & -3 end{pmatrix}} Rightarrow (I + tA)a = binom{3}{0} Rightarrow boxed{a = (I + tA)^{-1}binom{3}{0}}$.
- So, calculate $a$ by inverting $(I + tA)$:
$$boxed{a =} (I + tA)^{-1}binom{3}{0} = begin{pmatrix}1+3t & -t \ -t & 1-3t end{pmatrix}^{-1}binom{3}{0} = ldots = boxed{frac{3}{1-10t^2}binom{1-3t}{t} }$$
- Find $t >0 $ such that $t = frac{1}{ ||a||^2} Rightarrow boxed{t= frac{1}{5}, frac{1}{2}}$
- Plug these values into $a = frac{3}{1-10t^2}binom{1-3t}{t}$:
$$Rightarrow begin{cases} t= frac{1}{2} Rightarrow boxed{a= binom{1}{-1}} \ t= frac{1}{5} Rightarrow boxed{a= binom{2}{1}} end{cases}$$
$endgroup$
add a comment |
$begingroup$
$$displaystyle x+frac{3x-y}{x^2+y^2}=3cdots (1)$$
$$displaystyle y-frac{x+3y}{x^2+y^2}=0cdotscdots(2)times i $$
Now adding these two equations
and substituting $z=x+iy$ and $bar{z}=x-iy$
and $$|z|^2=x^2+y^2$$
So we have $$z+frac{3-i}{z}=3Rightarrow z^2-3z+(3-i)=0$$
On solving that equation we have
$$z=2+i;;,1-i$$
So we get $$(x,y)=(2,1);;,(1,-1)$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3049686%2fsolving-bigl-beginsmallmatrixx-frac3x-yx2y2-3-y-fracx3yx2y%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
6 Answers
6
active
oldest
votes
6 Answers
6
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Make the substitution $x = rcos(theta)$ and $y = rsin(theta)$ in order to get
begin{cases}
r^{2}cos(theta) + 3cos(theta) - sin(theta) = 3r\
r^{2}sin(theta) - cos(theta) - 3sin(theta) = 0\
end{cases}
From the second equation, it results that $cos(theta) = (r^{2}-3)sin(theta)$. Therefore we get
begin{align*}
(r^{2} + 3)cos(theta) - sin(theta) & = 3r Longleftrightarrow (r^{2}+3)(r^{2}-3)sin(theta) - sin(theta) = 3r Longleftrightarrow\
(r^{4}- 10)sin(theta) & = 3r Longleftrightarrowsin(theta) = frac{3r}{r^{4}-10}
end{align*}
Consequently, we have
begin{align*}
&cos^{2}(theta) + sin^{2}(theta) = 1 Leftrightarrowleft[frac{3r(r^{2}-3)}{r^{4}-10}right]^{2} + left[frac{3r}{r^{4}-10}right]^{2} = 1 Leftrightarrow\\
& 9r^{2}(r^{4}-6r^{2}+9) + 9r^{2} = (r^{4}-10)^{2} Leftrightarrow 9r^{6}-54r^{4} + 90r^{2} = r^{8} - 20r^{4} + 100 Leftrightarrow\\
& r^{8} - 9r^{6} + 34r^{4} - 90r^{2} + 100 = 0 Leftrightarrow (r^{8} - 5r^{6}) - (4r^{6} - 20r^{4}) + (14r^{4} - 70r^{2}) - (20r^{2} - 100) = 0 Leftrightarrow\\
& r^{6}(r^{2}-5) - 4r^{4}(r^{2}-5) + 14r^{2}(r^{2}-5) - 20(r^{2}-5) = (r^{6} - 4r^{4} + 14r^{2} - 20)(r^{2}-5) = 0 Leftrightarrow\\
& [(r^{6} - 2r^{4}) - (2r^{4} - 4r^{2}) + (10r^{2}-20)](r^{2}-5) = 0 Leftrightarrow (r^{4}-2r^{2}+10)(r^{2}-2)(r^{2}-5) = 0 Leftrightarrow\\
& (r^{2} - 2)(r^{2} - 5) = 0 Leftrightarrow rin{sqrt{2},sqrt{5}}quadtext{since}quad rgeq 0
end{align*}
Finally, for each value of $r$ there corresponds a solution. More precisely, the solution set is described by $$S = {(1,-1),(2,1)}$$
$endgroup$
$begingroup$
$r^{8} - 9r^{6} + 34r^{4} - 90r^{2} + 100 = (r^{8} - 5r^{6}) - (4r^{6} - 20r^{4}) + (14r^{4} - 70r^{2}) - (20r^{2} - 100) quad$ Here how did you get the right side from the left side? Is there a general formula for this or a trick to do it?
$endgroup$
– Pero
Dec 22 '18 at 20:22
$begingroup$
It has been done through inspection. Maybe if you substitute $y = r^{2}$ it could be easier to recognize the grouping factors.
$endgroup$
– APC89
Dec 22 '18 at 20:35
$begingroup$
One more question, why is $r ge 0$?
$endgroup$
– Pero
Dec 22 '18 at 20:53
$begingroup$
Because it measures the distance from the origin.
$endgroup$
– APC89
Dec 22 '18 at 20:54
$begingroup$
So can any number $a$ be written through sine or cosine like: $a=r*sin theta$ where $r ge 0$?
$endgroup$
– Pero
Dec 22 '18 at 20:56
|
show 3 more comments
$begingroup$
Make the substitution $x = rcos(theta)$ and $y = rsin(theta)$ in order to get
begin{cases}
r^{2}cos(theta) + 3cos(theta) - sin(theta) = 3r\
r^{2}sin(theta) - cos(theta) - 3sin(theta) = 0\
end{cases}
From the second equation, it results that $cos(theta) = (r^{2}-3)sin(theta)$. Therefore we get
begin{align*}
(r^{2} + 3)cos(theta) - sin(theta) & = 3r Longleftrightarrow (r^{2}+3)(r^{2}-3)sin(theta) - sin(theta) = 3r Longleftrightarrow\
(r^{4}- 10)sin(theta) & = 3r Longleftrightarrowsin(theta) = frac{3r}{r^{4}-10}
end{align*}
Consequently, we have
begin{align*}
&cos^{2}(theta) + sin^{2}(theta) = 1 Leftrightarrowleft[frac{3r(r^{2}-3)}{r^{4}-10}right]^{2} + left[frac{3r}{r^{4}-10}right]^{2} = 1 Leftrightarrow\\
& 9r^{2}(r^{4}-6r^{2}+9) + 9r^{2} = (r^{4}-10)^{2} Leftrightarrow 9r^{6}-54r^{4} + 90r^{2} = r^{8} - 20r^{4} + 100 Leftrightarrow\\
& r^{8} - 9r^{6} + 34r^{4} - 90r^{2} + 100 = 0 Leftrightarrow (r^{8} - 5r^{6}) - (4r^{6} - 20r^{4}) + (14r^{4} - 70r^{2}) - (20r^{2} - 100) = 0 Leftrightarrow\\
& r^{6}(r^{2}-5) - 4r^{4}(r^{2}-5) + 14r^{2}(r^{2}-5) - 20(r^{2}-5) = (r^{6} - 4r^{4} + 14r^{2} - 20)(r^{2}-5) = 0 Leftrightarrow\\
& [(r^{6} - 2r^{4}) - (2r^{4} - 4r^{2}) + (10r^{2}-20)](r^{2}-5) = 0 Leftrightarrow (r^{4}-2r^{2}+10)(r^{2}-2)(r^{2}-5) = 0 Leftrightarrow\\
& (r^{2} - 2)(r^{2} - 5) = 0 Leftrightarrow rin{sqrt{2},sqrt{5}}quadtext{since}quad rgeq 0
end{align*}
Finally, for each value of $r$ there corresponds a solution. More precisely, the solution set is described by $$S = {(1,-1),(2,1)}$$
$endgroup$
$begingroup$
$r^{8} - 9r^{6} + 34r^{4} - 90r^{2} + 100 = (r^{8} - 5r^{6}) - (4r^{6} - 20r^{4}) + (14r^{4} - 70r^{2}) - (20r^{2} - 100) quad$ Here how did you get the right side from the left side? Is there a general formula for this or a trick to do it?
$endgroup$
– Pero
Dec 22 '18 at 20:22
$begingroup$
It has been done through inspection. Maybe if you substitute $y = r^{2}$ it could be easier to recognize the grouping factors.
$endgroup$
– APC89
Dec 22 '18 at 20:35
$begingroup$
One more question, why is $r ge 0$?
$endgroup$
– Pero
Dec 22 '18 at 20:53
$begingroup$
Because it measures the distance from the origin.
$endgroup$
– APC89
Dec 22 '18 at 20:54
$begingroup$
So can any number $a$ be written through sine or cosine like: $a=r*sin theta$ where $r ge 0$?
$endgroup$
– Pero
Dec 22 '18 at 20:56
|
show 3 more comments
$begingroup$
Make the substitution $x = rcos(theta)$ and $y = rsin(theta)$ in order to get
begin{cases}
r^{2}cos(theta) + 3cos(theta) - sin(theta) = 3r\
r^{2}sin(theta) - cos(theta) - 3sin(theta) = 0\
end{cases}
From the second equation, it results that $cos(theta) = (r^{2}-3)sin(theta)$. Therefore we get
begin{align*}
(r^{2} + 3)cos(theta) - sin(theta) & = 3r Longleftrightarrow (r^{2}+3)(r^{2}-3)sin(theta) - sin(theta) = 3r Longleftrightarrow\
(r^{4}- 10)sin(theta) & = 3r Longleftrightarrowsin(theta) = frac{3r}{r^{4}-10}
end{align*}
Consequently, we have
begin{align*}
&cos^{2}(theta) + sin^{2}(theta) = 1 Leftrightarrowleft[frac{3r(r^{2}-3)}{r^{4}-10}right]^{2} + left[frac{3r}{r^{4}-10}right]^{2} = 1 Leftrightarrow\\
& 9r^{2}(r^{4}-6r^{2}+9) + 9r^{2} = (r^{4}-10)^{2} Leftrightarrow 9r^{6}-54r^{4} + 90r^{2} = r^{8} - 20r^{4} + 100 Leftrightarrow\\
& r^{8} - 9r^{6} + 34r^{4} - 90r^{2} + 100 = 0 Leftrightarrow (r^{8} - 5r^{6}) - (4r^{6} - 20r^{4}) + (14r^{4} - 70r^{2}) - (20r^{2} - 100) = 0 Leftrightarrow\\
& r^{6}(r^{2}-5) - 4r^{4}(r^{2}-5) + 14r^{2}(r^{2}-5) - 20(r^{2}-5) = (r^{6} - 4r^{4} + 14r^{2} - 20)(r^{2}-5) = 0 Leftrightarrow\\
& [(r^{6} - 2r^{4}) - (2r^{4} - 4r^{2}) + (10r^{2}-20)](r^{2}-5) = 0 Leftrightarrow (r^{4}-2r^{2}+10)(r^{2}-2)(r^{2}-5) = 0 Leftrightarrow\\
& (r^{2} - 2)(r^{2} - 5) = 0 Leftrightarrow rin{sqrt{2},sqrt{5}}quadtext{since}quad rgeq 0
end{align*}
Finally, for each value of $r$ there corresponds a solution. More precisely, the solution set is described by $$S = {(1,-1),(2,1)}$$
$endgroup$
Make the substitution $x = rcos(theta)$ and $y = rsin(theta)$ in order to get
begin{cases}
r^{2}cos(theta) + 3cos(theta) - sin(theta) = 3r\
r^{2}sin(theta) - cos(theta) - 3sin(theta) = 0\
end{cases}
From the second equation, it results that $cos(theta) = (r^{2}-3)sin(theta)$. Therefore we get
begin{align*}
(r^{2} + 3)cos(theta) - sin(theta) & = 3r Longleftrightarrow (r^{2}+3)(r^{2}-3)sin(theta) - sin(theta) = 3r Longleftrightarrow\
(r^{4}- 10)sin(theta) & = 3r Longleftrightarrowsin(theta) = frac{3r}{r^{4}-10}
end{align*}
Consequently, we have
begin{align*}
&cos^{2}(theta) + sin^{2}(theta) = 1 Leftrightarrowleft[frac{3r(r^{2}-3)}{r^{4}-10}right]^{2} + left[frac{3r}{r^{4}-10}right]^{2} = 1 Leftrightarrow\\
& 9r^{2}(r^{4}-6r^{2}+9) + 9r^{2} = (r^{4}-10)^{2} Leftrightarrow 9r^{6}-54r^{4} + 90r^{2} = r^{8} - 20r^{4} + 100 Leftrightarrow\\
& r^{8} - 9r^{6} + 34r^{4} - 90r^{2} + 100 = 0 Leftrightarrow (r^{8} - 5r^{6}) - (4r^{6} - 20r^{4}) + (14r^{4} - 70r^{2}) - (20r^{2} - 100) = 0 Leftrightarrow\\
& r^{6}(r^{2}-5) - 4r^{4}(r^{2}-5) + 14r^{2}(r^{2}-5) - 20(r^{2}-5) = (r^{6} - 4r^{4} + 14r^{2} - 20)(r^{2}-5) = 0 Leftrightarrow\\
& [(r^{6} - 2r^{4}) - (2r^{4} - 4r^{2}) + (10r^{2}-20)](r^{2}-5) = 0 Leftrightarrow (r^{4}-2r^{2}+10)(r^{2}-2)(r^{2}-5) = 0 Leftrightarrow\\
& (r^{2} - 2)(r^{2} - 5) = 0 Leftrightarrow rin{sqrt{2},sqrt{5}}quadtext{since}quad rgeq 0
end{align*}
Finally, for each value of $r$ there corresponds a solution. More precisely, the solution set is described by $$S = {(1,-1),(2,1)}$$
answered Dec 22 '18 at 19:28
APC89APC89
2,443420
2,443420
$begingroup$
$r^{8} - 9r^{6} + 34r^{4} - 90r^{2} + 100 = (r^{8} - 5r^{6}) - (4r^{6} - 20r^{4}) + (14r^{4} - 70r^{2}) - (20r^{2} - 100) quad$ Here how did you get the right side from the left side? Is there a general formula for this or a trick to do it?
$endgroup$
– Pero
Dec 22 '18 at 20:22
$begingroup$
It has been done through inspection. Maybe if you substitute $y = r^{2}$ it could be easier to recognize the grouping factors.
$endgroup$
– APC89
Dec 22 '18 at 20:35
$begingroup$
One more question, why is $r ge 0$?
$endgroup$
– Pero
Dec 22 '18 at 20:53
$begingroup$
Because it measures the distance from the origin.
$endgroup$
– APC89
Dec 22 '18 at 20:54
$begingroup$
So can any number $a$ be written through sine or cosine like: $a=r*sin theta$ where $r ge 0$?
$endgroup$
– Pero
Dec 22 '18 at 20:56
|
show 3 more comments
$begingroup$
$r^{8} - 9r^{6} + 34r^{4} - 90r^{2} + 100 = (r^{8} - 5r^{6}) - (4r^{6} - 20r^{4}) + (14r^{4} - 70r^{2}) - (20r^{2} - 100) quad$ Here how did you get the right side from the left side? Is there a general formula for this or a trick to do it?
$endgroup$
– Pero
Dec 22 '18 at 20:22
$begingroup$
It has been done through inspection. Maybe if you substitute $y = r^{2}$ it could be easier to recognize the grouping factors.
$endgroup$
– APC89
Dec 22 '18 at 20:35
$begingroup$
One more question, why is $r ge 0$?
$endgroup$
– Pero
Dec 22 '18 at 20:53
$begingroup$
Because it measures the distance from the origin.
$endgroup$
– APC89
Dec 22 '18 at 20:54
$begingroup$
So can any number $a$ be written through sine or cosine like: $a=r*sin theta$ where $r ge 0$?
$endgroup$
– Pero
Dec 22 '18 at 20:56
$begingroup$
$r^{8} - 9r^{6} + 34r^{4} - 90r^{2} + 100 = (r^{8} - 5r^{6}) - (4r^{6} - 20r^{4}) + (14r^{4} - 70r^{2}) - (20r^{2} - 100) quad$ Here how did you get the right side from the left side? Is there a general formula for this or a trick to do it?
$endgroup$
– Pero
Dec 22 '18 at 20:22
$begingroup$
$r^{8} - 9r^{6} + 34r^{4} - 90r^{2} + 100 = (r^{8} - 5r^{6}) - (4r^{6} - 20r^{4}) + (14r^{4} - 70r^{2}) - (20r^{2} - 100) quad$ Here how did you get the right side from the left side? Is there a general formula for this or a trick to do it?
$endgroup$
– Pero
Dec 22 '18 at 20:22
$begingroup$
It has been done through inspection. Maybe if you substitute $y = r^{2}$ it could be easier to recognize the grouping factors.
$endgroup$
– APC89
Dec 22 '18 at 20:35
$begingroup$
It has been done through inspection. Maybe if you substitute $y = r^{2}$ it could be easier to recognize the grouping factors.
$endgroup$
– APC89
Dec 22 '18 at 20:35
$begingroup$
One more question, why is $r ge 0$?
$endgroup$
– Pero
Dec 22 '18 at 20:53
$begingroup$
One more question, why is $r ge 0$?
$endgroup$
– Pero
Dec 22 '18 at 20:53
$begingroup$
Because it measures the distance from the origin.
$endgroup$
– APC89
Dec 22 '18 at 20:54
$begingroup$
Because it measures the distance from the origin.
$endgroup$
– APC89
Dec 22 '18 at 20:54
$begingroup$
So can any number $a$ be written through sine or cosine like: $a=r*sin theta$ where $r ge 0$?
$endgroup$
– Pero
Dec 22 '18 at 20:56
$begingroup$
So can any number $a$ be written through sine or cosine like: $a=r*sin theta$ where $r ge 0$?
$endgroup$
– Pero
Dec 22 '18 at 20:56
|
show 3 more comments
$begingroup$
Hint: Write your equations in the form $$frac{3x-y}{3-x}=frac{x+3y}{y}$$
$endgroup$
$begingroup$
And then what do I do? I couldn't solve it with this hint.
$endgroup$
– Pero
Dec 22 '18 at 18:32
$begingroup$
Solve this equation for $x$ or $y$
$endgroup$
– Dr. Sonnhard Graubner
Dec 22 '18 at 18:58
$begingroup$
I get $x_{1/2}=frac{3-6ypm sqrt{40y^2+9}}2$. What does this mean, there are infinitely many solutions? or should I replace this in the original equations?
$endgroup$
– Pero
Dec 22 '18 at 19:05
$begingroup$
You can plug this in one of the given equations to compute $$x$$
$endgroup$
– Dr. Sonnhard Graubner
Dec 22 '18 at 19:17
add a comment |
$begingroup$
Hint: Write your equations in the form $$frac{3x-y}{3-x}=frac{x+3y}{y}$$
$endgroup$
$begingroup$
And then what do I do? I couldn't solve it with this hint.
$endgroup$
– Pero
Dec 22 '18 at 18:32
$begingroup$
Solve this equation for $x$ or $y$
$endgroup$
– Dr. Sonnhard Graubner
Dec 22 '18 at 18:58
$begingroup$
I get $x_{1/2}=frac{3-6ypm sqrt{40y^2+9}}2$. What does this mean, there are infinitely many solutions? or should I replace this in the original equations?
$endgroup$
– Pero
Dec 22 '18 at 19:05
$begingroup$
You can plug this in one of the given equations to compute $$x$$
$endgroup$
– Dr. Sonnhard Graubner
Dec 22 '18 at 19:17
add a comment |
$begingroup$
Hint: Write your equations in the form $$frac{3x-y}{3-x}=frac{x+3y}{y}$$
$endgroup$
Hint: Write your equations in the form $$frac{3x-y}{3-x}=frac{x+3y}{y}$$
answered Dec 22 '18 at 17:57
Dr. Sonnhard GraubnerDr. Sonnhard Graubner
75.8k42866
75.8k42866
$begingroup$
And then what do I do? I couldn't solve it with this hint.
$endgroup$
– Pero
Dec 22 '18 at 18:32
$begingroup$
Solve this equation for $x$ or $y$
$endgroup$
– Dr. Sonnhard Graubner
Dec 22 '18 at 18:58
$begingroup$
I get $x_{1/2}=frac{3-6ypm sqrt{40y^2+9}}2$. What does this mean, there are infinitely many solutions? or should I replace this in the original equations?
$endgroup$
– Pero
Dec 22 '18 at 19:05
$begingroup$
You can plug this in one of the given equations to compute $$x$$
$endgroup$
– Dr. Sonnhard Graubner
Dec 22 '18 at 19:17
add a comment |
$begingroup$
And then what do I do? I couldn't solve it with this hint.
$endgroup$
– Pero
Dec 22 '18 at 18:32
$begingroup$
Solve this equation for $x$ or $y$
$endgroup$
– Dr. Sonnhard Graubner
Dec 22 '18 at 18:58
$begingroup$
I get $x_{1/2}=frac{3-6ypm sqrt{40y^2+9}}2$. What does this mean, there are infinitely many solutions? or should I replace this in the original equations?
$endgroup$
– Pero
Dec 22 '18 at 19:05
$begingroup$
You can plug this in one of the given equations to compute $$x$$
$endgroup$
– Dr. Sonnhard Graubner
Dec 22 '18 at 19:17
$begingroup$
And then what do I do? I couldn't solve it with this hint.
$endgroup$
– Pero
Dec 22 '18 at 18:32
$begingroup$
And then what do I do? I couldn't solve it with this hint.
$endgroup$
– Pero
Dec 22 '18 at 18:32
$begingroup$
Solve this equation for $x$ or $y$
$endgroup$
– Dr. Sonnhard Graubner
Dec 22 '18 at 18:58
$begingroup$
Solve this equation for $x$ or $y$
$endgroup$
– Dr. Sonnhard Graubner
Dec 22 '18 at 18:58
$begingroup$
I get $x_{1/2}=frac{3-6ypm sqrt{40y^2+9}}2$. What does this mean, there are infinitely many solutions? or should I replace this in the original equations?
$endgroup$
– Pero
Dec 22 '18 at 19:05
$begingroup$
I get $x_{1/2}=frac{3-6ypm sqrt{40y^2+9}}2$. What does this mean, there are infinitely many solutions? or should I replace this in the original equations?
$endgroup$
– Pero
Dec 22 '18 at 19:05
$begingroup$
You can plug this in one of the given equations to compute $$x$$
$endgroup$
– Dr. Sonnhard Graubner
Dec 22 '18 at 19:17
$begingroup$
You can plug this in one of the given equations to compute $$x$$
$endgroup$
– Dr. Sonnhard Graubner
Dec 22 '18 at 19:17
add a comment |
$begingroup$
Note that if $y=0$ then we get $-frac 1x=0$ on second equation, so the system has no solutions.
So we can assume $yneq 0$, set $ x=ty $ and substitute.
We get $begin{cases}t^3y^2+ty^2+3t-1=3t^2y+3y \t^2y^2+y^2-t-3=0end{cases}$
And this allow us to isolate $y^2=dfrac{t+3}{t^2+1}$
Substituting in first equation rewritten $ty^2(t^2+1)+3t-1=3y(t^2+1)$
gives $t(t+3)+3t-1=3y(t^2+1)iff 3y=dfrac{t^2+6t-1}{t^2+1}$
Now be identifying $9y^2$ we get $(t^2+6t-1)^2=9(t+3)(t^2+1)$
We can remark $t=-1$ is a root $6^2=9(2)(2)$ else just graph it, and notice $-1$ and $2$ seems to be roots (so try to factor these terms).
Indeed the factorization is $$(t+1)(t-2)(t^2+4t+13)=0$$
Reporting in initial equations gives us the solutions:
$t=2$ and $x=2y$ leads to $begin{cases}2y+frac 1y=3\y=frac 1yend{cases}iff begin{cases}x=2\y=1end{cases}$
$t=-1$ and $x=-y$ leads to $begin{cases}-y-frac 2y=3\y=frac 1yend{cases}iff begin{cases}x=1\y=-1end{cases}$
$endgroup$
add a comment |
$begingroup$
Note that if $y=0$ then we get $-frac 1x=0$ on second equation, so the system has no solutions.
So we can assume $yneq 0$, set $ x=ty $ and substitute.
We get $begin{cases}t^3y^2+ty^2+3t-1=3t^2y+3y \t^2y^2+y^2-t-3=0end{cases}$
And this allow us to isolate $y^2=dfrac{t+3}{t^2+1}$
Substituting in first equation rewritten $ty^2(t^2+1)+3t-1=3y(t^2+1)$
gives $t(t+3)+3t-1=3y(t^2+1)iff 3y=dfrac{t^2+6t-1}{t^2+1}$
Now be identifying $9y^2$ we get $(t^2+6t-1)^2=9(t+3)(t^2+1)$
We can remark $t=-1$ is a root $6^2=9(2)(2)$ else just graph it, and notice $-1$ and $2$ seems to be roots (so try to factor these terms).
Indeed the factorization is $$(t+1)(t-2)(t^2+4t+13)=0$$
Reporting in initial equations gives us the solutions:
$t=2$ and $x=2y$ leads to $begin{cases}2y+frac 1y=3\y=frac 1yend{cases}iff begin{cases}x=2\y=1end{cases}$
$t=-1$ and $x=-y$ leads to $begin{cases}-y-frac 2y=3\y=frac 1yend{cases}iff begin{cases}x=1\y=-1end{cases}$
$endgroup$
add a comment |
$begingroup$
Note that if $y=0$ then we get $-frac 1x=0$ on second equation, so the system has no solutions.
So we can assume $yneq 0$, set $ x=ty $ and substitute.
We get $begin{cases}t^3y^2+ty^2+3t-1=3t^2y+3y \t^2y^2+y^2-t-3=0end{cases}$
And this allow us to isolate $y^2=dfrac{t+3}{t^2+1}$
Substituting in first equation rewritten $ty^2(t^2+1)+3t-1=3y(t^2+1)$
gives $t(t+3)+3t-1=3y(t^2+1)iff 3y=dfrac{t^2+6t-1}{t^2+1}$
Now be identifying $9y^2$ we get $(t^2+6t-1)^2=9(t+3)(t^2+1)$
We can remark $t=-1$ is a root $6^2=9(2)(2)$ else just graph it, and notice $-1$ and $2$ seems to be roots (so try to factor these terms).
Indeed the factorization is $$(t+1)(t-2)(t^2+4t+13)=0$$
Reporting in initial equations gives us the solutions:
$t=2$ and $x=2y$ leads to $begin{cases}2y+frac 1y=3\y=frac 1yend{cases}iff begin{cases}x=2\y=1end{cases}$
$t=-1$ and $x=-y$ leads to $begin{cases}-y-frac 2y=3\y=frac 1yend{cases}iff begin{cases}x=1\y=-1end{cases}$
$endgroup$
Note that if $y=0$ then we get $-frac 1x=0$ on second equation, so the system has no solutions.
So we can assume $yneq 0$, set $ x=ty $ and substitute.
We get $begin{cases}t^3y^2+ty^2+3t-1=3t^2y+3y \t^2y^2+y^2-t-3=0end{cases}$
And this allow us to isolate $y^2=dfrac{t+3}{t^2+1}$
Substituting in first equation rewritten $ty^2(t^2+1)+3t-1=3y(t^2+1)$
gives $t(t+3)+3t-1=3y(t^2+1)iff 3y=dfrac{t^2+6t-1}{t^2+1}$
Now be identifying $9y^2$ we get $(t^2+6t-1)^2=9(t+3)(t^2+1)$
We can remark $t=-1$ is a root $6^2=9(2)(2)$ else just graph it, and notice $-1$ and $2$ seems to be roots (so try to factor these terms).
Indeed the factorization is $$(t+1)(t-2)(t^2+4t+13)=0$$
Reporting in initial equations gives us the solutions:
$t=2$ and $x=2y$ leads to $begin{cases}2y+frac 1y=3\y=frac 1yend{cases}iff begin{cases}x=2\y=1end{cases}$
$t=-1$ and $x=-y$ leads to $begin{cases}-y-frac 2y=3\y=frac 1yend{cases}iff begin{cases}x=1\y=-1end{cases}$
answered Dec 22 '18 at 22:12
zwimzwim
12.3k831
12.3k831
add a comment |
add a comment |
$begingroup$
If $x+3y=0$ so from the second equation we obtain $y=0$, which gives $x=0$, which is impossible.
Thus, $x+3yneq0$ and since $$frac{(x^2+y^2)y}{x+3y}=1,$$ from the first equation we obtain:
$$x+frac{3x-y}{x^2+y^2}cdotfrac{(x^2+y^2)y}{x+3y}=3sqrt{frac{(x^2+y^2)y}{x+3y}}$$ or
$$x^2+6xy-y^2=3sqrt{y(x^2+y^2)(x+3y)}$$ or with $x^2+6xy-y^2geq0$
$$(x^2+6xy-y^2)^2=9y(x^2+y^2)(x+3y)$$ or
$$(x+y)(x-2y)(x^2+4xy+9y^2)=0,$$ which gives $y=-x$ or $x=2y$.
Can you end it now?
$endgroup$
add a comment |
$begingroup$
If $x+3y=0$ so from the second equation we obtain $y=0$, which gives $x=0$, which is impossible.
Thus, $x+3yneq0$ and since $$frac{(x^2+y^2)y}{x+3y}=1,$$ from the first equation we obtain:
$$x+frac{3x-y}{x^2+y^2}cdotfrac{(x^2+y^2)y}{x+3y}=3sqrt{frac{(x^2+y^2)y}{x+3y}}$$ or
$$x^2+6xy-y^2=3sqrt{y(x^2+y^2)(x+3y)}$$ or with $x^2+6xy-y^2geq0$
$$(x^2+6xy-y^2)^2=9y(x^2+y^2)(x+3y)$$ or
$$(x+y)(x-2y)(x^2+4xy+9y^2)=0,$$ which gives $y=-x$ or $x=2y$.
Can you end it now?
$endgroup$
add a comment |
$begingroup$
If $x+3y=0$ so from the second equation we obtain $y=0$, which gives $x=0$, which is impossible.
Thus, $x+3yneq0$ and since $$frac{(x^2+y^2)y}{x+3y}=1,$$ from the first equation we obtain:
$$x+frac{3x-y}{x^2+y^2}cdotfrac{(x^2+y^2)y}{x+3y}=3sqrt{frac{(x^2+y^2)y}{x+3y}}$$ or
$$x^2+6xy-y^2=3sqrt{y(x^2+y^2)(x+3y)}$$ or with $x^2+6xy-y^2geq0$
$$(x^2+6xy-y^2)^2=9y(x^2+y^2)(x+3y)$$ or
$$(x+y)(x-2y)(x^2+4xy+9y^2)=0,$$ which gives $y=-x$ or $x=2y$.
Can you end it now?
$endgroup$
If $x+3y=0$ so from the second equation we obtain $y=0$, which gives $x=0$, which is impossible.
Thus, $x+3yneq0$ and since $$frac{(x^2+y^2)y}{x+3y}=1,$$ from the first equation we obtain:
$$x+frac{3x-y}{x^2+y^2}cdotfrac{(x^2+y^2)y}{x+3y}=3sqrt{frac{(x^2+y^2)y}{x+3y}}$$ or
$$x^2+6xy-y^2=3sqrt{y(x^2+y^2)(x+3y)}$$ or with $x^2+6xy-y^2geq0$
$$(x^2+6xy-y^2)^2=9y(x^2+y^2)(x+3y)$$ or
$$(x+y)(x-2y)(x^2+4xy+9y^2)=0,$$ which gives $y=-x$ or $x=2y$.
Can you end it now?
answered Dec 22 '18 at 22:29
Michael RozenbergMichael Rozenberg
104k1891197
104k1891197
add a comment |
add a comment |
$begingroup$
Sketch of a solution rewriting the given system in terms of linear algebra:
- Set $boxed{a = binom{x}{y}}$. Then the given system looks as follows:
$$begin{cases}
x+dfrac{3x-y}{x^2+y^2}=3 \
y-dfrac{x+3y}{x^2+y^2}=0
end{cases} Longleftrightarrow boxed{a +frac{1}{||a||^2}begin{pmatrix}3 & -1 \ -1 & -3 end{pmatrix}a = binom{3}{0}}$$
- Set $boxed{t = frac{1}{ ||a||^2}}$ and $boxed{A = begin{pmatrix}3 & -1 \ -1 & -3 end{pmatrix}} Rightarrow (I + tA)a = binom{3}{0} Rightarrow boxed{a = (I + tA)^{-1}binom{3}{0}}$.
- So, calculate $a$ by inverting $(I + tA)$:
$$boxed{a =} (I + tA)^{-1}binom{3}{0} = begin{pmatrix}1+3t & -t \ -t & 1-3t end{pmatrix}^{-1}binom{3}{0} = ldots = boxed{frac{3}{1-10t^2}binom{1-3t}{t} }$$
- Find $t >0 $ such that $t = frac{1}{ ||a||^2} Rightarrow boxed{t= frac{1}{5}, frac{1}{2}}$
- Plug these values into $a = frac{3}{1-10t^2}binom{1-3t}{t}$:
$$Rightarrow begin{cases} t= frac{1}{2} Rightarrow boxed{a= binom{1}{-1}} \ t= frac{1}{5} Rightarrow boxed{a= binom{2}{1}} end{cases}$$
$endgroup$
add a comment |
$begingroup$
Sketch of a solution rewriting the given system in terms of linear algebra:
- Set $boxed{a = binom{x}{y}}$. Then the given system looks as follows:
$$begin{cases}
x+dfrac{3x-y}{x^2+y^2}=3 \
y-dfrac{x+3y}{x^2+y^2}=0
end{cases} Longleftrightarrow boxed{a +frac{1}{||a||^2}begin{pmatrix}3 & -1 \ -1 & -3 end{pmatrix}a = binom{3}{0}}$$
- Set $boxed{t = frac{1}{ ||a||^2}}$ and $boxed{A = begin{pmatrix}3 & -1 \ -1 & -3 end{pmatrix}} Rightarrow (I + tA)a = binom{3}{0} Rightarrow boxed{a = (I + tA)^{-1}binom{3}{0}}$.
- So, calculate $a$ by inverting $(I + tA)$:
$$boxed{a =} (I + tA)^{-1}binom{3}{0} = begin{pmatrix}1+3t & -t \ -t & 1-3t end{pmatrix}^{-1}binom{3}{0} = ldots = boxed{frac{3}{1-10t^2}binom{1-3t}{t} }$$
- Find $t >0 $ such that $t = frac{1}{ ||a||^2} Rightarrow boxed{t= frac{1}{5}, frac{1}{2}}$
- Plug these values into $a = frac{3}{1-10t^2}binom{1-3t}{t}$:
$$Rightarrow begin{cases} t= frac{1}{2} Rightarrow boxed{a= binom{1}{-1}} \ t= frac{1}{5} Rightarrow boxed{a= binom{2}{1}} end{cases}$$
$endgroup$
add a comment |
$begingroup$
Sketch of a solution rewriting the given system in terms of linear algebra:
- Set $boxed{a = binom{x}{y}}$. Then the given system looks as follows:
$$begin{cases}
x+dfrac{3x-y}{x^2+y^2}=3 \
y-dfrac{x+3y}{x^2+y^2}=0
end{cases} Longleftrightarrow boxed{a +frac{1}{||a||^2}begin{pmatrix}3 & -1 \ -1 & -3 end{pmatrix}a = binom{3}{0}}$$
- Set $boxed{t = frac{1}{ ||a||^2}}$ and $boxed{A = begin{pmatrix}3 & -1 \ -1 & -3 end{pmatrix}} Rightarrow (I + tA)a = binom{3}{0} Rightarrow boxed{a = (I + tA)^{-1}binom{3}{0}}$.
- So, calculate $a$ by inverting $(I + tA)$:
$$boxed{a =} (I + tA)^{-1}binom{3}{0} = begin{pmatrix}1+3t & -t \ -t & 1-3t end{pmatrix}^{-1}binom{3}{0} = ldots = boxed{frac{3}{1-10t^2}binom{1-3t}{t} }$$
- Find $t >0 $ such that $t = frac{1}{ ||a||^2} Rightarrow boxed{t= frac{1}{5}, frac{1}{2}}$
- Plug these values into $a = frac{3}{1-10t^2}binom{1-3t}{t}$:
$$Rightarrow begin{cases} t= frac{1}{2} Rightarrow boxed{a= binom{1}{-1}} \ t= frac{1}{5} Rightarrow boxed{a= binom{2}{1}} end{cases}$$
$endgroup$
Sketch of a solution rewriting the given system in terms of linear algebra:
- Set $boxed{a = binom{x}{y}}$. Then the given system looks as follows:
$$begin{cases}
x+dfrac{3x-y}{x^2+y^2}=3 \
y-dfrac{x+3y}{x^2+y^2}=0
end{cases} Longleftrightarrow boxed{a +frac{1}{||a||^2}begin{pmatrix}3 & -1 \ -1 & -3 end{pmatrix}a = binom{3}{0}}$$
- Set $boxed{t = frac{1}{ ||a||^2}}$ and $boxed{A = begin{pmatrix}3 & -1 \ -1 & -3 end{pmatrix}} Rightarrow (I + tA)a = binom{3}{0} Rightarrow boxed{a = (I + tA)^{-1}binom{3}{0}}$.
- So, calculate $a$ by inverting $(I + tA)$:
$$boxed{a =} (I + tA)^{-1}binom{3}{0} = begin{pmatrix}1+3t & -t \ -t & 1-3t end{pmatrix}^{-1}binom{3}{0} = ldots = boxed{frac{3}{1-10t^2}binom{1-3t}{t} }$$
- Find $t >0 $ such that $t = frac{1}{ ||a||^2} Rightarrow boxed{t= frac{1}{5}, frac{1}{2}}$
- Plug these values into $a = frac{3}{1-10t^2}binom{1-3t}{t}$:
$$Rightarrow begin{cases} t= frac{1}{2} Rightarrow boxed{a= binom{1}{-1}} \ t= frac{1}{5} Rightarrow boxed{a= binom{2}{1}} end{cases}$$
answered Dec 23 '18 at 6:05
trancelocationtrancelocation
11.9k1825
11.9k1825
add a comment |
add a comment |
$begingroup$
$$displaystyle x+frac{3x-y}{x^2+y^2}=3cdots (1)$$
$$displaystyle y-frac{x+3y}{x^2+y^2}=0cdotscdots(2)times i $$
Now adding these two equations
and substituting $z=x+iy$ and $bar{z}=x-iy$
and $$|z|^2=x^2+y^2$$
So we have $$z+frac{3-i}{z}=3Rightarrow z^2-3z+(3-i)=0$$
On solving that equation we have
$$z=2+i;;,1-i$$
So we get $$(x,y)=(2,1);;,(1,-1)$$
$endgroup$
add a comment |
$begingroup$
$$displaystyle x+frac{3x-y}{x^2+y^2}=3cdots (1)$$
$$displaystyle y-frac{x+3y}{x^2+y^2}=0cdotscdots(2)times i $$
Now adding these two equations
and substituting $z=x+iy$ and $bar{z}=x-iy$
and $$|z|^2=x^2+y^2$$
So we have $$z+frac{3-i}{z}=3Rightarrow z^2-3z+(3-i)=0$$
On solving that equation we have
$$z=2+i;;,1-i$$
So we get $$(x,y)=(2,1);;,(1,-1)$$
$endgroup$
add a comment |
$begingroup$
$$displaystyle x+frac{3x-y}{x^2+y^2}=3cdots (1)$$
$$displaystyle y-frac{x+3y}{x^2+y^2}=0cdotscdots(2)times i $$
Now adding these two equations
and substituting $z=x+iy$ and $bar{z}=x-iy$
and $$|z|^2=x^2+y^2$$
So we have $$z+frac{3-i}{z}=3Rightarrow z^2-3z+(3-i)=0$$
On solving that equation we have
$$z=2+i;;,1-i$$
So we get $$(x,y)=(2,1);;,(1,-1)$$
$endgroup$
$$displaystyle x+frac{3x-y}{x^2+y^2}=3cdots (1)$$
$$displaystyle y-frac{x+3y}{x^2+y^2}=0cdotscdots(2)times i $$
Now adding these two equations
and substituting $z=x+iy$ and $bar{z}=x-iy$
and $$|z|^2=x^2+y^2$$
So we have $$z+frac{3-i}{z}=3Rightarrow z^2-3z+(3-i)=0$$
On solving that equation we have
$$z=2+i;;,1-i$$
So we get $$(x,y)=(2,1);;,(1,-1)$$
answered Dec 25 '18 at 11:58
DXTDXT
5,6962630
5,6962630
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3049686%2fsolving-bigl-beginsmallmatrixx-frac3x-yx2y2-3-y-fracx3yx2y%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
For reference, the answers will be $(1,-1),(0,0),$ and $(2,1).$
$endgroup$
– Christopher Marley
Dec 22 '18 at 17:54
$begingroup$
Can it be $(0, 0)$? because we will have division by $0$ in the original equations. @ChristopherMarley
$endgroup$
– Pero
Dec 22 '18 at 18:28