value of $int_{-infty}^{infty}arcsinfrac1{cosh x},dx$
$begingroup$
I want to know the value of
$$I=int_{-infty}^{infty}arcsinfrac1{cosh x},dx$$
The Symbolab integral calculator says that the integral diverges, but when one graphs it obvious that it converges. So what is the value?
I was thinking that I might try Feynman integration, but I can't think of the right substitution.
Alert! Alert! I've found an antiderivative!
From the answer provided by @user10354138, we can reach
$$intarcsinfrac1{cosh x}dx=ioperatorname{Li}_2(iphi)-ioperatorname{Li}_2(-iphi)+C$$
Where $$phi=tanbigg(frac12arcsinfrac1{cosh x}bigg)$$
And $$operatorname{Li}_2(z)=sum_{ngeq1}frac{z^n}{n^2}$$
is the Di-logarithm.
integration analysis
$endgroup$
add a comment |
$begingroup$
I want to know the value of
$$I=int_{-infty}^{infty}arcsinfrac1{cosh x},dx$$
The Symbolab integral calculator says that the integral diverges, but when one graphs it obvious that it converges. So what is the value?
I was thinking that I might try Feynman integration, but I can't think of the right substitution.
Alert! Alert! I've found an antiderivative!
From the answer provided by @user10354138, we can reach
$$intarcsinfrac1{cosh x}dx=ioperatorname{Li}_2(iphi)-ioperatorname{Li}_2(-iphi)+C$$
Where $$phi=tanbigg(frac12arcsinfrac1{cosh x}bigg)$$
And $$operatorname{Li}_2(z)=sum_{ngeq1}frac{z^n}{n^2}$$
is the Di-logarithm.
integration analysis
$endgroup$
add a comment |
$begingroup$
I want to know the value of
$$I=int_{-infty}^{infty}arcsinfrac1{cosh x},dx$$
The Symbolab integral calculator says that the integral diverges, but when one graphs it obvious that it converges. So what is the value?
I was thinking that I might try Feynman integration, but I can't think of the right substitution.
Alert! Alert! I've found an antiderivative!
From the answer provided by @user10354138, we can reach
$$intarcsinfrac1{cosh x}dx=ioperatorname{Li}_2(iphi)-ioperatorname{Li}_2(-iphi)+C$$
Where $$phi=tanbigg(frac12arcsinfrac1{cosh x}bigg)$$
And $$operatorname{Li}_2(z)=sum_{ngeq1}frac{z^n}{n^2}$$
is the Di-logarithm.
integration analysis
$endgroup$
I want to know the value of
$$I=int_{-infty}^{infty}arcsinfrac1{cosh x},dx$$
The Symbolab integral calculator says that the integral diverges, but when one graphs it obvious that it converges. So what is the value?
I was thinking that I might try Feynman integration, but I can't think of the right substitution.
Alert! Alert! I've found an antiderivative!
From the answer provided by @user10354138, we can reach
$$intarcsinfrac1{cosh x}dx=ioperatorname{Li}_2(iphi)-ioperatorname{Li}_2(-iphi)+C$$
Where $$phi=tanbigg(frac12arcsinfrac1{cosh x}bigg)$$
And $$operatorname{Li}_2(z)=sum_{ngeq1}frac{z^n}{n^2}$$
is the Di-logarithm.
integration analysis
integration analysis
edited Nov 2 '18 at 2:13
clathratus
asked Oct 31 '18 at 2:55
clathratusclathratus
4,583337
4,583337
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Wolfy says it is 4 times the Catalan's constant.
One (not optimal) way to derive this is
$$defsech{operatorname{sech}}
begin{align*}
int_{-infty}^inftyarcsinsech x,mathrm{d}x&=2int_0^inftyarcsinsech x,mathrm{d}x\
&=2int_0^1frac{arcsin u,mathrm{d}u}{usqrt{1-u^2}}quad(u=sech x)\
&=2int_0^{pi/2}frac{theta,mathrm{d}theta}{sintheta}quad(u=sintheta)\
&=2int_0^1frac{2tan^{-1}t,frac{2,mathrm{d}t}{1+t^2}}{frac{2t}{1+t^2}}quad(t=tantfrac12theta)\
&=4int_0^1frac{tan^{-1}t}{t},mathrm{d}t\
&=4int_0^1sum_{n=0}^inftyfrac{(-1)^n}{2n+1}t^{2n},mathrm{d}t\
&=4sum_{n=0}^inftyfrac{(-1)^n}{(2n+1)^2}=4G\
end{align*}
$$
$endgroup$
$begingroup$
Dude that's dope! Thank you!
$endgroup$
– clathratus
Oct 31 '18 at 3:31
$begingroup$
This substitution simplifies to $t=e^{-x}$.
$endgroup$
– J.G.
Oct 31 '18 at 8:44
$begingroup$
how do you get from $frac{theta dtheta}{sintheta}$ to $$frac{2arctan(t)frac{2dt}{1+t^2}}{frac{2t}{1+t^2}}$$ With the substitution $t=tanfractheta2$?
$endgroup$
– clathratus
Nov 1 '18 at 23:06
$begingroup$
I keep getting $$frac{theta dtheta}{sintheta}=frac{2arctan t}{tsqrt{t^2+1}}dt$$
$endgroup$
– clathratus
Nov 1 '18 at 23:10
1
$begingroup$
@clathratus This is the universal trigonometric substitution
$endgroup$
– user10354138
Nov 1 '18 at 23:25
|
show 1 more comment
$begingroup$
Alternatively, you can integrate by parts:
begin{align}
int limits_{-infty}^infty arcsin(operatorname{sech}(x)) , mathrm{d} x &= 2 int limits_0^infty arcsin(operatorname{sech}(x)) , mathrm{d} x \
&= 2x arcsin(operatorname{sech}(x)) Bigg rvert_{x=0}^{x=infty} - 2 int limits_0^infty x frac{- sinh(x) operatorname{sech}^2(x)}{sqrt{1-operatorname{sech}^2(x)}} , mathrm{d} x \
&= 2 int limits_0^infty frac{x}{cosh(x)} , mathrm{d} x = 4 sum limits_{n=0}^infty (-1)^n int limits_0^infty x , mathrm{e}^{-(2n+1) x} , mathrm{d} x \
&= 4 Gamma(2) sum limits_{n=0}^infty frac{(-1)^n}{(2n+1)^2} = 4 mathrm{G} , .
end{align}
$endgroup$
$begingroup$
I'm a fan of the alternative approach. Thank you!
$endgroup$
– clathratus
Oct 31 '18 at 14:59
add a comment |
$begingroup$
Yet another alternative approach: once shown that
$$ int_{mathbb{R}}frac{dx}{cosh(x)^{2k+1}} = frac{pi binom{2k}{k}}{4^k}tag{1}$$
and recalled that
$$ arcsin z = sum_{kgeq 0}frac{binom{2k}{k}}{4^k(2k+1)}z^{2k+1} tag{2} $$
we have the following identity:
$$ int_{mathbb{R}}arcsinfrac{1}{cosh x},dx = pisum_{kgeq 0}frac{1}{2k+1}left[frac{1}{4^k}binom{2k}{k}right]^2.tag{3} $$
Now we may invoke a function whose Maclaurin series involves squared central binomial coefficients, namely the complete elliptic integral of the first kind $K(x)$, here denoted according to Mathematica's notation (the argument of $K$ is the elliptic modulus):
$$ sum_{kgeq 0}left[frac{1}{4^k}binom{2k}{k}right]^2 x^{2k}=frac{2}{pi}K(x^2)tag{4} $$
leading to:
$$ int_{mathbb{R}}arcsinfrac{1}{cosh x},dx = 2int_{0}^{1} K(x^2),dx = int_{0}^{1}frac{K(x)}{sqrt{x}},dx.tag{5} $$
At last, we recall that both $K(x)$ and $frac{1}{sqrt{x}}$ have fairly simple Fourier-Legendre series expansions:
$$ K(x)=2sum_{ngeq 0}frac{P_n(2x-1)}{2n+1},qquad frac{1}{sqrt{x}}=2sum_{ngeq 0}(-1)^n P_n(2x-1) $$
and by the orthogonality of shifted Legendre polynomials
$$ int_{mathbb{R}}arcsinfrac{1}{cosh x},dx =int_{0}^{1}frac{K(x)}{sqrt{x}},dx = 4sum_{ngeq 0}frac{(-1)^n}{(2n+1)^2} = 4G.tag{6} $$
$endgroup$
$begingroup$
This is really cool. I'll have to look at this one a little more in order to understand it better... But this is great. Thanks!
$endgroup$
– clathratus
Oct 31 '18 at 18:37
1
$begingroup$
You seem to link any special function with any other special function. The link between elliptic integral and Legendre function is pretty smart. +1
$endgroup$
– Paramanand Singh
Nov 1 '18 at 16:41
$begingroup$
How do we show $$int_{Bbb R}frac{mathrm dx}{cosh(x)^{2k+1}}=frac{pi{2kchoose k}}{4^k}$$ It looks a lot like a Beta integral
$endgroup$
– clathratus
Dec 21 '18 at 0:56
1
$begingroup$
@clathratus: it is, indeed, it is enough to set $frac{1}{cosh(x)}=u$.
$endgroup$
– Jack D'Aurizio
Dec 21 '18 at 10:48
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2978611%2fvalue-of-int-infty-infty-arcsin-frac1-cosh-x-dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Wolfy says it is 4 times the Catalan's constant.
One (not optimal) way to derive this is
$$defsech{operatorname{sech}}
begin{align*}
int_{-infty}^inftyarcsinsech x,mathrm{d}x&=2int_0^inftyarcsinsech x,mathrm{d}x\
&=2int_0^1frac{arcsin u,mathrm{d}u}{usqrt{1-u^2}}quad(u=sech x)\
&=2int_0^{pi/2}frac{theta,mathrm{d}theta}{sintheta}quad(u=sintheta)\
&=2int_0^1frac{2tan^{-1}t,frac{2,mathrm{d}t}{1+t^2}}{frac{2t}{1+t^2}}quad(t=tantfrac12theta)\
&=4int_0^1frac{tan^{-1}t}{t},mathrm{d}t\
&=4int_0^1sum_{n=0}^inftyfrac{(-1)^n}{2n+1}t^{2n},mathrm{d}t\
&=4sum_{n=0}^inftyfrac{(-1)^n}{(2n+1)^2}=4G\
end{align*}
$$
$endgroup$
$begingroup$
Dude that's dope! Thank you!
$endgroup$
– clathratus
Oct 31 '18 at 3:31
$begingroup$
This substitution simplifies to $t=e^{-x}$.
$endgroup$
– J.G.
Oct 31 '18 at 8:44
$begingroup$
how do you get from $frac{theta dtheta}{sintheta}$ to $$frac{2arctan(t)frac{2dt}{1+t^2}}{frac{2t}{1+t^2}}$$ With the substitution $t=tanfractheta2$?
$endgroup$
– clathratus
Nov 1 '18 at 23:06
$begingroup$
I keep getting $$frac{theta dtheta}{sintheta}=frac{2arctan t}{tsqrt{t^2+1}}dt$$
$endgroup$
– clathratus
Nov 1 '18 at 23:10
1
$begingroup$
@clathratus This is the universal trigonometric substitution
$endgroup$
– user10354138
Nov 1 '18 at 23:25
|
show 1 more comment
$begingroup$
Wolfy says it is 4 times the Catalan's constant.
One (not optimal) way to derive this is
$$defsech{operatorname{sech}}
begin{align*}
int_{-infty}^inftyarcsinsech x,mathrm{d}x&=2int_0^inftyarcsinsech x,mathrm{d}x\
&=2int_0^1frac{arcsin u,mathrm{d}u}{usqrt{1-u^2}}quad(u=sech x)\
&=2int_0^{pi/2}frac{theta,mathrm{d}theta}{sintheta}quad(u=sintheta)\
&=2int_0^1frac{2tan^{-1}t,frac{2,mathrm{d}t}{1+t^2}}{frac{2t}{1+t^2}}quad(t=tantfrac12theta)\
&=4int_0^1frac{tan^{-1}t}{t},mathrm{d}t\
&=4int_0^1sum_{n=0}^inftyfrac{(-1)^n}{2n+1}t^{2n},mathrm{d}t\
&=4sum_{n=0}^inftyfrac{(-1)^n}{(2n+1)^2}=4G\
end{align*}
$$
$endgroup$
$begingroup$
Dude that's dope! Thank you!
$endgroup$
– clathratus
Oct 31 '18 at 3:31
$begingroup$
This substitution simplifies to $t=e^{-x}$.
$endgroup$
– J.G.
Oct 31 '18 at 8:44
$begingroup$
how do you get from $frac{theta dtheta}{sintheta}$ to $$frac{2arctan(t)frac{2dt}{1+t^2}}{frac{2t}{1+t^2}}$$ With the substitution $t=tanfractheta2$?
$endgroup$
– clathratus
Nov 1 '18 at 23:06
$begingroup$
I keep getting $$frac{theta dtheta}{sintheta}=frac{2arctan t}{tsqrt{t^2+1}}dt$$
$endgroup$
– clathratus
Nov 1 '18 at 23:10
1
$begingroup$
@clathratus This is the universal trigonometric substitution
$endgroup$
– user10354138
Nov 1 '18 at 23:25
|
show 1 more comment
$begingroup$
Wolfy says it is 4 times the Catalan's constant.
One (not optimal) way to derive this is
$$defsech{operatorname{sech}}
begin{align*}
int_{-infty}^inftyarcsinsech x,mathrm{d}x&=2int_0^inftyarcsinsech x,mathrm{d}x\
&=2int_0^1frac{arcsin u,mathrm{d}u}{usqrt{1-u^2}}quad(u=sech x)\
&=2int_0^{pi/2}frac{theta,mathrm{d}theta}{sintheta}quad(u=sintheta)\
&=2int_0^1frac{2tan^{-1}t,frac{2,mathrm{d}t}{1+t^2}}{frac{2t}{1+t^2}}quad(t=tantfrac12theta)\
&=4int_0^1frac{tan^{-1}t}{t},mathrm{d}t\
&=4int_0^1sum_{n=0}^inftyfrac{(-1)^n}{2n+1}t^{2n},mathrm{d}t\
&=4sum_{n=0}^inftyfrac{(-1)^n}{(2n+1)^2}=4G\
end{align*}
$$
$endgroup$
Wolfy says it is 4 times the Catalan's constant.
One (not optimal) way to derive this is
$$defsech{operatorname{sech}}
begin{align*}
int_{-infty}^inftyarcsinsech x,mathrm{d}x&=2int_0^inftyarcsinsech x,mathrm{d}x\
&=2int_0^1frac{arcsin u,mathrm{d}u}{usqrt{1-u^2}}quad(u=sech x)\
&=2int_0^{pi/2}frac{theta,mathrm{d}theta}{sintheta}quad(u=sintheta)\
&=2int_0^1frac{2tan^{-1}t,frac{2,mathrm{d}t}{1+t^2}}{frac{2t}{1+t^2}}quad(t=tantfrac12theta)\
&=4int_0^1frac{tan^{-1}t}{t},mathrm{d}t\
&=4int_0^1sum_{n=0}^inftyfrac{(-1)^n}{2n+1}t^{2n},mathrm{d}t\
&=4sum_{n=0}^inftyfrac{(-1)^n}{(2n+1)^2}=4G\
end{align*}
$$
edited Oct 31 '18 at 8:34
J.G.
27.3k22843
27.3k22843
answered Oct 31 '18 at 3:22
user10354138user10354138
7,4322925
7,4322925
$begingroup$
Dude that's dope! Thank you!
$endgroup$
– clathratus
Oct 31 '18 at 3:31
$begingroup$
This substitution simplifies to $t=e^{-x}$.
$endgroup$
– J.G.
Oct 31 '18 at 8:44
$begingroup$
how do you get from $frac{theta dtheta}{sintheta}$ to $$frac{2arctan(t)frac{2dt}{1+t^2}}{frac{2t}{1+t^2}}$$ With the substitution $t=tanfractheta2$?
$endgroup$
– clathratus
Nov 1 '18 at 23:06
$begingroup$
I keep getting $$frac{theta dtheta}{sintheta}=frac{2arctan t}{tsqrt{t^2+1}}dt$$
$endgroup$
– clathratus
Nov 1 '18 at 23:10
1
$begingroup$
@clathratus This is the universal trigonometric substitution
$endgroup$
– user10354138
Nov 1 '18 at 23:25
|
show 1 more comment
$begingroup$
Dude that's dope! Thank you!
$endgroup$
– clathratus
Oct 31 '18 at 3:31
$begingroup$
This substitution simplifies to $t=e^{-x}$.
$endgroup$
– J.G.
Oct 31 '18 at 8:44
$begingroup$
how do you get from $frac{theta dtheta}{sintheta}$ to $$frac{2arctan(t)frac{2dt}{1+t^2}}{frac{2t}{1+t^2}}$$ With the substitution $t=tanfractheta2$?
$endgroup$
– clathratus
Nov 1 '18 at 23:06
$begingroup$
I keep getting $$frac{theta dtheta}{sintheta}=frac{2arctan t}{tsqrt{t^2+1}}dt$$
$endgroup$
– clathratus
Nov 1 '18 at 23:10
1
$begingroup$
@clathratus This is the universal trigonometric substitution
$endgroup$
– user10354138
Nov 1 '18 at 23:25
$begingroup$
Dude that's dope! Thank you!
$endgroup$
– clathratus
Oct 31 '18 at 3:31
$begingroup$
Dude that's dope! Thank you!
$endgroup$
– clathratus
Oct 31 '18 at 3:31
$begingroup$
This substitution simplifies to $t=e^{-x}$.
$endgroup$
– J.G.
Oct 31 '18 at 8:44
$begingroup$
This substitution simplifies to $t=e^{-x}$.
$endgroup$
– J.G.
Oct 31 '18 at 8:44
$begingroup$
how do you get from $frac{theta dtheta}{sintheta}$ to $$frac{2arctan(t)frac{2dt}{1+t^2}}{frac{2t}{1+t^2}}$$ With the substitution $t=tanfractheta2$?
$endgroup$
– clathratus
Nov 1 '18 at 23:06
$begingroup$
how do you get from $frac{theta dtheta}{sintheta}$ to $$frac{2arctan(t)frac{2dt}{1+t^2}}{frac{2t}{1+t^2}}$$ With the substitution $t=tanfractheta2$?
$endgroup$
– clathratus
Nov 1 '18 at 23:06
$begingroup$
I keep getting $$frac{theta dtheta}{sintheta}=frac{2arctan t}{tsqrt{t^2+1}}dt$$
$endgroup$
– clathratus
Nov 1 '18 at 23:10
$begingroup$
I keep getting $$frac{theta dtheta}{sintheta}=frac{2arctan t}{tsqrt{t^2+1}}dt$$
$endgroup$
– clathratus
Nov 1 '18 at 23:10
1
1
$begingroup$
@clathratus This is the universal trigonometric substitution
$endgroup$
– user10354138
Nov 1 '18 at 23:25
$begingroup$
@clathratus This is the universal trigonometric substitution
$endgroup$
– user10354138
Nov 1 '18 at 23:25
|
show 1 more comment
$begingroup$
Alternatively, you can integrate by parts:
begin{align}
int limits_{-infty}^infty arcsin(operatorname{sech}(x)) , mathrm{d} x &= 2 int limits_0^infty arcsin(operatorname{sech}(x)) , mathrm{d} x \
&= 2x arcsin(operatorname{sech}(x)) Bigg rvert_{x=0}^{x=infty} - 2 int limits_0^infty x frac{- sinh(x) operatorname{sech}^2(x)}{sqrt{1-operatorname{sech}^2(x)}} , mathrm{d} x \
&= 2 int limits_0^infty frac{x}{cosh(x)} , mathrm{d} x = 4 sum limits_{n=0}^infty (-1)^n int limits_0^infty x , mathrm{e}^{-(2n+1) x} , mathrm{d} x \
&= 4 Gamma(2) sum limits_{n=0}^infty frac{(-1)^n}{(2n+1)^2} = 4 mathrm{G} , .
end{align}
$endgroup$
$begingroup$
I'm a fan of the alternative approach. Thank you!
$endgroup$
– clathratus
Oct 31 '18 at 14:59
add a comment |
$begingroup$
Alternatively, you can integrate by parts:
begin{align}
int limits_{-infty}^infty arcsin(operatorname{sech}(x)) , mathrm{d} x &= 2 int limits_0^infty arcsin(operatorname{sech}(x)) , mathrm{d} x \
&= 2x arcsin(operatorname{sech}(x)) Bigg rvert_{x=0}^{x=infty} - 2 int limits_0^infty x frac{- sinh(x) operatorname{sech}^2(x)}{sqrt{1-operatorname{sech}^2(x)}} , mathrm{d} x \
&= 2 int limits_0^infty frac{x}{cosh(x)} , mathrm{d} x = 4 sum limits_{n=0}^infty (-1)^n int limits_0^infty x , mathrm{e}^{-(2n+1) x} , mathrm{d} x \
&= 4 Gamma(2) sum limits_{n=0}^infty frac{(-1)^n}{(2n+1)^2} = 4 mathrm{G} , .
end{align}
$endgroup$
$begingroup$
I'm a fan of the alternative approach. Thank you!
$endgroup$
– clathratus
Oct 31 '18 at 14:59
add a comment |
$begingroup$
Alternatively, you can integrate by parts:
begin{align}
int limits_{-infty}^infty arcsin(operatorname{sech}(x)) , mathrm{d} x &= 2 int limits_0^infty arcsin(operatorname{sech}(x)) , mathrm{d} x \
&= 2x arcsin(operatorname{sech}(x)) Bigg rvert_{x=0}^{x=infty} - 2 int limits_0^infty x frac{- sinh(x) operatorname{sech}^2(x)}{sqrt{1-operatorname{sech}^2(x)}} , mathrm{d} x \
&= 2 int limits_0^infty frac{x}{cosh(x)} , mathrm{d} x = 4 sum limits_{n=0}^infty (-1)^n int limits_0^infty x , mathrm{e}^{-(2n+1) x} , mathrm{d} x \
&= 4 Gamma(2) sum limits_{n=0}^infty frac{(-1)^n}{(2n+1)^2} = 4 mathrm{G} , .
end{align}
$endgroup$
Alternatively, you can integrate by parts:
begin{align}
int limits_{-infty}^infty arcsin(operatorname{sech}(x)) , mathrm{d} x &= 2 int limits_0^infty arcsin(operatorname{sech}(x)) , mathrm{d} x \
&= 2x arcsin(operatorname{sech}(x)) Bigg rvert_{x=0}^{x=infty} - 2 int limits_0^infty x frac{- sinh(x) operatorname{sech}^2(x)}{sqrt{1-operatorname{sech}^2(x)}} , mathrm{d} x \
&= 2 int limits_0^infty frac{x}{cosh(x)} , mathrm{d} x = 4 sum limits_{n=0}^infty (-1)^n int limits_0^infty x , mathrm{e}^{-(2n+1) x} , mathrm{d} x \
&= 4 Gamma(2) sum limits_{n=0}^infty frac{(-1)^n}{(2n+1)^2} = 4 mathrm{G} , .
end{align}
answered Oct 31 '18 at 8:26
ComplexYetTrivialComplexYetTrivial
4,6032631
4,6032631
$begingroup$
I'm a fan of the alternative approach. Thank you!
$endgroup$
– clathratus
Oct 31 '18 at 14:59
add a comment |
$begingroup$
I'm a fan of the alternative approach. Thank you!
$endgroup$
– clathratus
Oct 31 '18 at 14:59
$begingroup$
I'm a fan of the alternative approach. Thank you!
$endgroup$
– clathratus
Oct 31 '18 at 14:59
$begingroup$
I'm a fan of the alternative approach. Thank you!
$endgroup$
– clathratus
Oct 31 '18 at 14:59
add a comment |
$begingroup$
Yet another alternative approach: once shown that
$$ int_{mathbb{R}}frac{dx}{cosh(x)^{2k+1}} = frac{pi binom{2k}{k}}{4^k}tag{1}$$
and recalled that
$$ arcsin z = sum_{kgeq 0}frac{binom{2k}{k}}{4^k(2k+1)}z^{2k+1} tag{2} $$
we have the following identity:
$$ int_{mathbb{R}}arcsinfrac{1}{cosh x},dx = pisum_{kgeq 0}frac{1}{2k+1}left[frac{1}{4^k}binom{2k}{k}right]^2.tag{3} $$
Now we may invoke a function whose Maclaurin series involves squared central binomial coefficients, namely the complete elliptic integral of the first kind $K(x)$, here denoted according to Mathematica's notation (the argument of $K$ is the elliptic modulus):
$$ sum_{kgeq 0}left[frac{1}{4^k}binom{2k}{k}right]^2 x^{2k}=frac{2}{pi}K(x^2)tag{4} $$
leading to:
$$ int_{mathbb{R}}arcsinfrac{1}{cosh x},dx = 2int_{0}^{1} K(x^2),dx = int_{0}^{1}frac{K(x)}{sqrt{x}},dx.tag{5} $$
At last, we recall that both $K(x)$ and $frac{1}{sqrt{x}}$ have fairly simple Fourier-Legendre series expansions:
$$ K(x)=2sum_{ngeq 0}frac{P_n(2x-1)}{2n+1},qquad frac{1}{sqrt{x}}=2sum_{ngeq 0}(-1)^n P_n(2x-1) $$
and by the orthogonality of shifted Legendre polynomials
$$ int_{mathbb{R}}arcsinfrac{1}{cosh x},dx =int_{0}^{1}frac{K(x)}{sqrt{x}},dx = 4sum_{ngeq 0}frac{(-1)^n}{(2n+1)^2} = 4G.tag{6} $$
$endgroup$
$begingroup$
This is really cool. I'll have to look at this one a little more in order to understand it better... But this is great. Thanks!
$endgroup$
– clathratus
Oct 31 '18 at 18:37
1
$begingroup$
You seem to link any special function with any other special function. The link between elliptic integral and Legendre function is pretty smart. +1
$endgroup$
– Paramanand Singh
Nov 1 '18 at 16:41
$begingroup$
How do we show $$int_{Bbb R}frac{mathrm dx}{cosh(x)^{2k+1}}=frac{pi{2kchoose k}}{4^k}$$ It looks a lot like a Beta integral
$endgroup$
– clathratus
Dec 21 '18 at 0:56
1
$begingroup$
@clathratus: it is, indeed, it is enough to set $frac{1}{cosh(x)}=u$.
$endgroup$
– Jack D'Aurizio
Dec 21 '18 at 10:48
add a comment |
$begingroup$
Yet another alternative approach: once shown that
$$ int_{mathbb{R}}frac{dx}{cosh(x)^{2k+1}} = frac{pi binom{2k}{k}}{4^k}tag{1}$$
and recalled that
$$ arcsin z = sum_{kgeq 0}frac{binom{2k}{k}}{4^k(2k+1)}z^{2k+1} tag{2} $$
we have the following identity:
$$ int_{mathbb{R}}arcsinfrac{1}{cosh x},dx = pisum_{kgeq 0}frac{1}{2k+1}left[frac{1}{4^k}binom{2k}{k}right]^2.tag{3} $$
Now we may invoke a function whose Maclaurin series involves squared central binomial coefficients, namely the complete elliptic integral of the first kind $K(x)$, here denoted according to Mathematica's notation (the argument of $K$ is the elliptic modulus):
$$ sum_{kgeq 0}left[frac{1}{4^k}binom{2k}{k}right]^2 x^{2k}=frac{2}{pi}K(x^2)tag{4} $$
leading to:
$$ int_{mathbb{R}}arcsinfrac{1}{cosh x},dx = 2int_{0}^{1} K(x^2),dx = int_{0}^{1}frac{K(x)}{sqrt{x}},dx.tag{5} $$
At last, we recall that both $K(x)$ and $frac{1}{sqrt{x}}$ have fairly simple Fourier-Legendre series expansions:
$$ K(x)=2sum_{ngeq 0}frac{P_n(2x-1)}{2n+1},qquad frac{1}{sqrt{x}}=2sum_{ngeq 0}(-1)^n P_n(2x-1) $$
and by the orthogonality of shifted Legendre polynomials
$$ int_{mathbb{R}}arcsinfrac{1}{cosh x},dx =int_{0}^{1}frac{K(x)}{sqrt{x}},dx = 4sum_{ngeq 0}frac{(-1)^n}{(2n+1)^2} = 4G.tag{6} $$
$endgroup$
$begingroup$
This is really cool. I'll have to look at this one a little more in order to understand it better... But this is great. Thanks!
$endgroup$
– clathratus
Oct 31 '18 at 18:37
1
$begingroup$
You seem to link any special function with any other special function. The link between elliptic integral and Legendre function is pretty smart. +1
$endgroup$
– Paramanand Singh
Nov 1 '18 at 16:41
$begingroup$
How do we show $$int_{Bbb R}frac{mathrm dx}{cosh(x)^{2k+1}}=frac{pi{2kchoose k}}{4^k}$$ It looks a lot like a Beta integral
$endgroup$
– clathratus
Dec 21 '18 at 0:56
1
$begingroup$
@clathratus: it is, indeed, it is enough to set $frac{1}{cosh(x)}=u$.
$endgroup$
– Jack D'Aurizio
Dec 21 '18 at 10:48
add a comment |
$begingroup$
Yet another alternative approach: once shown that
$$ int_{mathbb{R}}frac{dx}{cosh(x)^{2k+1}} = frac{pi binom{2k}{k}}{4^k}tag{1}$$
and recalled that
$$ arcsin z = sum_{kgeq 0}frac{binom{2k}{k}}{4^k(2k+1)}z^{2k+1} tag{2} $$
we have the following identity:
$$ int_{mathbb{R}}arcsinfrac{1}{cosh x},dx = pisum_{kgeq 0}frac{1}{2k+1}left[frac{1}{4^k}binom{2k}{k}right]^2.tag{3} $$
Now we may invoke a function whose Maclaurin series involves squared central binomial coefficients, namely the complete elliptic integral of the first kind $K(x)$, here denoted according to Mathematica's notation (the argument of $K$ is the elliptic modulus):
$$ sum_{kgeq 0}left[frac{1}{4^k}binom{2k}{k}right]^2 x^{2k}=frac{2}{pi}K(x^2)tag{4} $$
leading to:
$$ int_{mathbb{R}}arcsinfrac{1}{cosh x},dx = 2int_{0}^{1} K(x^2),dx = int_{0}^{1}frac{K(x)}{sqrt{x}},dx.tag{5} $$
At last, we recall that both $K(x)$ and $frac{1}{sqrt{x}}$ have fairly simple Fourier-Legendre series expansions:
$$ K(x)=2sum_{ngeq 0}frac{P_n(2x-1)}{2n+1},qquad frac{1}{sqrt{x}}=2sum_{ngeq 0}(-1)^n P_n(2x-1) $$
and by the orthogonality of shifted Legendre polynomials
$$ int_{mathbb{R}}arcsinfrac{1}{cosh x},dx =int_{0}^{1}frac{K(x)}{sqrt{x}},dx = 4sum_{ngeq 0}frac{(-1)^n}{(2n+1)^2} = 4G.tag{6} $$
$endgroup$
Yet another alternative approach: once shown that
$$ int_{mathbb{R}}frac{dx}{cosh(x)^{2k+1}} = frac{pi binom{2k}{k}}{4^k}tag{1}$$
and recalled that
$$ arcsin z = sum_{kgeq 0}frac{binom{2k}{k}}{4^k(2k+1)}z^{2k+1} tag{2} $$
we have the following identity:
$$ int_{mathbb{R}}arcsinfrac{1}{cosh x},dx = pisum_{kgeq 0}frac{1}{2k+1}left[frac{1}{4^k}binom{2k}{k}right]^2.tag{3} $$
Now we may invoke a function whose Maclaurin series involves squared central binomial coefficients, namely the complete elliptic integral of the first kind $K(x)$, here denoted according to Mathematica's notation (the argument of $K$ is the elliptic modulus):
$$ sum_{kgeq 0}left[frac{1}{4^k}binom{2k}{k}right]^2 x^{2k}=frac{2}{pi}K(x^2)tag{4} $$
leading to:
$$ int_{mathbb{R}}arcsinfrac{1}{cosh x},dx = 2int_{0}^{1} K(x^2),dx = int_{0}^{1}frac{K(x)}{sqrt{x}},dx.tag{5} $$
At last, we recall that both $K(x)$ and $frac{1}{sqrt{x}}$ have fairly simple Fourier-Legendre series expansions:
$$ K(x)=2sum_{ngeq 0}frac{P_n(2x-1)}{2n+1},qquad frac{1}{sqrt{x}}=2sum_{ngeq 0}(-1)^n P_n(2x-1) $$
and by the orthogonality of shifted Legendre polynomials
$$ int_{mathbb{R}}arcsinfrac{1}{cosh x},dx =int_{0}^{1}frac{K(x)}{sqrt{x}},dx = 4sum_{ngeq 0}frac{(-1)^n}{(2n+1)^2} = 4G.tag{6} $$
edited Dec 22 '18 at 22:10
clathratus
4,583337
4,583337
answered Oct 31 '18 at 17:07
Jack D'AurizioJack D'Aurizio
290k33282662
290k33282662
$begingroup$
This is really cool. I'll have to look at this one a little more in order to understand it better... But this is great. Thanks!
$endgroup$
– clathratus
Oct 31 '18 at 18:37
1
$begingroup$
You seem to link any special function with any other special function. The link between elliptic integral and Legendre function is pretty smart. +1
$endgroup$
– Paramanand Singh
Nov 1 '18 at 16:41
$begingroup$
How do we show $$int_{Bbb R}frac{mathrm dx}{cosh(x)^{2k+1}}=frac{pi{2kchoose k}}{4^k}$$ It looks a lot like a Beta integral
$endgroup$
– clathratus
Dec 21 '18 at 0:56
1
$begingroup$
@clathratus: it is, indeed, it is enough to set $frac{1}{cosh(x)}=u$.
$endgroup$
– Jack D'Aurizio
Dec 21 '18 at 10:48
add a comment |
$begingroup$
This is really cool. I'll have to look at this one a little more in order to understand it better... But this is great. Thanks!
$endgroup$
– clathratus
Oct 31 '18 at 18:37
1
$begingroup$
You seem to link any special function with any other special function. The link between elliptic integral and Legendre function is pretty smart. +1
$endgroup$
– Paramanand Singh
Nov 1 '18 at 16:41
$begingroup$
How do we show $$int_{Bbb R}frac{mathrm dx}{cosh(x)^{2k+1}}=frac{pi{2kchoose k}}{4^k}$$ It looks a lot like a Beta integral
$endgroup$
– clathratus
Dec 21 '18 at 0:56
1
$begingroup$
@clathratus: it is, indeed, it is enough to set $frac{1}{cosh(x)}=u$.
$endgroup$
– Jack D'Aurizio
Dec 21 '18 at 10:48
$begingroup$
This is really cool. I'll have to look at this one a little more in order to understand it better... But this is great. Thanks!
$endgroup$
– clathratus
Oct 31 '18 at 18:37
$begingroup$
This is really cool. I'll have to look at this one a little more in order to understand it better... But this is great. Thanks!
$endgroup$
– clathratus
Oct 31 '18 at 18:37
1
1
$begingroup$
You seem to link any special function with any other special function. The link between elliptic integral and Legendre function is pretty smart. +1
$endgroup$
– Paramanand Singh
Nov 1 '18 at 16:41
$begingroup$
You seem to link any special function with any other special function. The link between elliptic integral and Legendre function is pretty smart. +1
$endgroup$
– Paramanand Singh
Nov 1 '18 at 16:41
$begingroup$
How do we show $$int_{Bbb R}frac{mathrm dx}{cosh(x)^{2k+1}}=frac{pi{2kchoose k}}{4^k}$$ It looks a lot like a Beta integral
$endgroup$
– clathratus
Dec 21 '18 at 0:56
$begingroup$
How do we show $$int_{Bbb R}frac{mathrm dx}{cosh(x)^{2k+1}}=frac{pi{2kchoose k}}{4^k}$$ It looks a lot like a Beta integral
$endgroup$
– clathratus
Dec 21 '18 at 0:56
1
1
$begingroup$
@clathratus: it is, indeed, it is enough to set $frac{1}{cosh(x)}=u$.
$endgroup$
– Jack D'Aurizio
Dec 21 '18 at 10:48
$begingroup$
@clathratus: it is, indeed, it is enough to set $frac{1}{cosh(x)}=u$.
$endgroup$
– Jack D'Aurizio
Dec 21 '18 at 10:48
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2978611%2fvalue-of-int-infty-infty-arcsin-frac1-cosh-x-dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown