value of $int_{-infty}^{infty}arcsinfrac1{cosh x},dx$












4












$begingroup$


I want to know the value of
$$I=int_{-infty}^{infty}arcsinfrac1{cosh x},dx$$
The Symbolab integral calculator says that the integral diverges, but when one graphs it obvious that it converges. So what is the value?



I was thinking that I might try Feynman integration, but I can't think of the right substitution.



Alert! Alert! I've found an antiderivative!



From the answer provided by @user10354138, we can reach
$$intarcsinfrac1{cosh x}dx=ioperatorname{Li}_2(iphi)-ioperatorname{Li}_2(-iphi)+C$$
Where $$phi=tanbigg(frac12arcsinfrac1{cosh x}bigg)$$
And $$operatorname{Li}_2(z)=sum_{ngeq1}frac{z^n}{n^2}$$
is the Di-logarithm.










share|cite|improve this question











$endgroup$

















    4












    $begingroup$


    I want to know the value of
    $$I=int_{-infty}^{infty}arcsinfrac1{cosh x},dx$$
    The Symbolab integral calculator says that the integral diverges, but when one graphs it obvious that it converges. So what is the value?



    I was thinking that I might try Feynman integration, but I can't think of the right substitution.



    Alert! Alert! I've found an antiderivative!



    From the answer provided by @user10354138, we can reach
    $$intarcsinfrac1{cosh x}dx=ioperatorname{Li}_2(iphi)-ioperatorname{Li}_2(-iphi)+C$$
    Where $$phi=tanbigg(frac12arcsinfrac1{cosh x}bigg)$$
    And $$operatorname{Li}_2(z)=sum_{ngeq1}frac{z^n}{n^2}$$
    is the Di-logarithm.










    share|cite|improve this question











    $endgroup$















      4












      4








      4


      1



      $begingroup$


      I want to know the value of
      $$I=int_{-infty}^{infty}arcsinfrac1{cosh x},dx$$
      The Symbolab integral calculator says that the integral diverges, but when one graphs it obvious that it converges. So what is the value?



      I was thinking that I might try Feynman integration, but I can't think of the right substitution.



      Alert! Alert! I've found an antiderivative!



      From the answer provided by @user10354138, we can reach
      $$intarcsinfrac1{cosh x}dx=ioperatorname{Li}_2(iphi)-ioperatorname{Li}_2(-iphi)+C$$
      Where $$phi=tanbigg(frac12arcsinfrac1{cosh x}bigg)$$
      And $$operatorname{Li}_2(z)=sum_{ngeq1}frac{z^n}{n^2}$$
      is the Di-logarithm.










      share|cite|improve this question











      $endgroup$




      I want to know the value of
      $$I=int_{-infty}^{infty}arcsinfrac1{cosh x},dx$$
      The Symbolab integral calculator says that the integral diverges, but when one graphs it obvious that it converges. So what is the value?



      I was thinking that I might try Feynman integration, but I can't think of the right substitution.



      Alert! Alert! I've found an antiderivative!



      From the answer provided by @user10354138, we can reach
      $$intarcsinfrac1{cosh x}dx=ioperatorname{Li}_2(iphi)-ioperatorname{Li}_2(-iphi)+C$$
      Where $$phi=tanbigg(frac12arcsinfrac1{cosh x}bigg)$$
      And $$operatorname{Li}_2(z)=sum_{ngeq1}frac{z^n}{n^2}$$
      is the Di-logarithm.







      integration analysis






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 2 '18 at 2:13







      clathratus

















      asked Oct 31 '18 at 2:55









      clathratusclathratus

      4,583337




      4,583337






















          3 Answers
          3






          active

          oldest

          votes


















          11












          $begingroup$

          Wolfy says it is 4 times the Catalan's constant.



          One (not optimal) way to derive this is
          $$defsech{operatorname{sech}}
          begin{align*}
          int_{-infty}^inftyarcsinsech x,mathrm{d}x&=2int_0^inftyarcsinsech x,mathrm{d}x\
          &=2int_0^1frac{arcsin u,mathrm{d}u}{usqrt{1-u^2}}quad(u=sech x)\
          &=2int_0^{pi/2}frac{theta,mathrm{d}theta}{sintheta}quad(u=sintheta)\
          &=2int_0^1frac{2tan^{-1}t,frac{2,mathrm{d}t}{1+t^2}}{frac{2t}{1+t^2}}quad(t=tantfrac12theta)\
          &=4int_0^1frac{tan^{-1}t}{t},mathrm{d}t\
          &=4int_0^1sum_{n=0}^inftyfrac{(-1)^n}{2n+1}t^{2n},mathrm{d}t\
          &=4sum_{n=0}^inftyfrac{(-1)^n}{(2n+1)^2}=4G\
          end{align*}
          $$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Dude that's dope! Thank you!
            $endgroup$
            – clathratus
            Oct 31 '18 at 3:31










          • $begingroup$
            This substitution simplifies to $t=e^{-x}$.
            $endgroup$
            – J.G.
            Oct 31 '18 at 8:44










          • $begingroup$
            how do you get from $frac{theta dtheta}{sintheta}$ to $$frac{2arctan(t)frac{2dt}{1+t^2}}{frac{2t}{1+t^2}}$$ With the substitution $t=tanfractheta2$?
            $endgroup$
            – clathratus
            Nov 1 '18 at 23:06












          • $begingroup$
            I keep getting $$frac{theta dtheta}{sintheta}=frac{2arctan t}{tsqrt{t^2+1}}dt$$
            $endgroup$
            – clathratus
            Nov 1 '18 at 23:10






          • 1




            $begingroup$
            @clathratus This is the universal trigonometric substitution
            $endgroup$
            – user10354138
            Nov 1 '18 at 23:25



















          6












          $begingroup$

          Alternatively, you can integrate by parts:
          begin{align}
          int limits_{-infty}^infty arcsin(operatorname{sech}(x)) , mathrm{d} x &= 2 int limits_0^infty arcsin(operatorname{sech}(x)) , mathrm{d} x \
          &= 2x arcsin(operatorname{sech}(x)) Bigg rvert_{x=0}^{x=infty} - 2 int limits_0^infty x frac{- sinh(x) operatorname{sech}^2(x)}{sqrt{1-operatorname{sech}^2(x)}} , mathrm{d} x \
          &= 2 int limits_0^infty frac{x}{cosh(x)} , mathrm{d} x = 4 sum limits_{n=0}^infty (-1)^n int limits_0^infty x , mathrm{e}^{-(2n+1) x} , mathrm{d} x \
          &= 4 Gamma(2) sum limits_{n=0}^infty frac{(-1)^n}{(2n+1)^2} = 4 mathrm{G} , .
          end{align}






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            I'm a fan of the alternative approach. Thank you!
            $endgroup$
            – clathratus
            Oct 31 '18 at 14:59



















          6












          $begingroup$

          Yet another alternative approach: once shown that
          $$ int_{mathbb{R}}frac{dx}{cosh(x)^{2k+1}} = frac{pi binom{2k}{k}}{4^k}tag{1}$$
          and recalled that
          $$ arcsin z = sum_{kgeq 0}frac{binom{2k}{k}}{4^k(2k+1)}z^{2k+1} tag{2} $$
          we have the following identity:
          $$ int_{mathbb{R}}arcsinfrac{1}{cosh x},dx = pisum_{kgeq 0}frac{1}{2k+1}left[frac{1}{4^k}binom{2k}{k}right]^2.tag{3} $$
          Now we may invoke a function whose Maclaurin series involves squared central binomial coefficients, namely the complete elliptic integral of the first kind $K(x)$, here denoted according to Mathematica's notation (the argument of $K$ is the elliptic modulus):
          $$ sum_{kgeq 0}left[frac{1}{4^k}binom{2k}{k}right]^2 x^{2k}=frac{2}{pi}K(x^2)tag{4} $$
          leading to:
          $$ int_{mathbb{R}}arcsinfrac{1}{cosh x},dx = 2int_{0}^{1} K(x^2),dx = int_{0}^{1}frac{K(x)}{sqrt{x}},dx.tag{5} $$
          At last, we recall that both $K(x)$ and $frac{1}{sqrt{x}}$ have fairly simple Fourier-Legendre series expansions:
          $$ K(x)=2sum_{ngeq 0}frac{P_n(2x-1)}{2n+1},qquad frac{1}{sqrt{x}}=2sum_{ngeq 0}(-1)^n P_n(2x-1) $$
          and by the orthogonality of shifted Legendre polynomials




          $$ int_{mathbb{R}}arcsinfrac{1}{cosh x},dx =int_{0}^{1}frac{K(x)}{sqrt{x}},dx = 4sum_{ngeq 0}frac{(-1)^n}{(2n+1)^2} = 4G.tag{6} $$







          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            This is really cool. I'll have to look at this one a little more in order to understand it better... But this is great. Thanks!
            $endgroup$
            – clathratus
            Oct 31 '18 at 18:37






          • 1




            $begingroup$
            You seem to link any special function with any other special function. The link between elliptic integral and Legendre function is pretty smart. +1
            $endgroup$
            – Paramanand Singh
            Nov 1 '18 at 16:41










          • $begingroup$
            How do we show $$int_{Bbb R}frac{mathrm dx}{cosh(x)^{2k+1}}=frac{pi{2kchoose k}}{4^k}$$ It looks a lot like a Beta integral
            $endgroup$
            – clathratus
            Dec 21 '18 at 0:56






          • 1




            $begingroup$
            @clathratus: it is, indeed, it is enough to set $frac{1}{cosh(x)}=u$.
            $endgroup$
            – Jack D'Aurizio
            Dec 21 '18 at 10:48











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2978611%2fvalue-of-int-infty-infty-arcsin-frac1-cosh-x-dx%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          3 Answers
          3






          active

          oldest

          votes








          3 Answers
          3






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          11












          $begingroup$

          Wolfy says it is 4 times the Catalan's constant.



          One (not optimal) way to derive this is
          $$defsech{operatorname{sech}}
          begin{align*}
          int_{-infty}^inftyarcsinsech x,mathrm{d}x&=2int_0^inftyarcsinsech x,mathrm{d}x\
          &=2int_0^1frac{arcsin u,mathrm{d}u}{usqrt{1-u^2}}quad(u=sech x)\
          &=2int_0^{pi/2}frac{theta,mathrm{d}theta}{sintheta}quad(u=sintheta)\
          &=2int_0^1frac{2tan^{-1}t,frac{2,mathrm{d}t}{1+t^2}}{frac{2t}{1+t^2}}quad(t=tantfrac12theta)\
          &=4int_0^1frac{tan^{-1}t}{t},mathrm{d}t\
          &=4int_0^1sum_{n=0}^inftyfrac{(-1)^n}{2n+1}t^{2n},mathrm{d}t\
          &=4sum_{n=0}^inftyfrac{(-1)^n}{(2n+1)^2}=4G\
          end{align*}
          $$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Dude that's dope! Thank you!
            $endgroup$
            – clathratus
            Oct 31 '18 at 3:31










          • $begingroup$
            This substitution simplifies to $t=e^{-x}$.
            $endgroup$
            – J.G.
            Oct 31 '18 at 8:44










          • $begingroup$
            how do you get from $frac{theta dtheta}{sintheta}$ to $$frac{2arctan(t)frac{2dt}{1+t^2}}{frac{2t}{1+t^2}}$$ With the substitution $t=tanfractheta2$?
            $endgroup$
            – clathratus
            Nov 1 '18 at 23:06












          • $begingroup$
            I keep getting $$frac{theta dtheta}{sintheta}=frac{2arctan t}{tsqrt{t^2+1}}dt$$
            $endgroup$
            – clathratus
            Nov 1 '18 at 23:10






          • 1




            $begingroup$
            @clathratus This is the universal trigonometric substitution
            $endgroup$
            – user10354138
            Nov 1 '18 at 23:25
















          11












          $begingroup$

          Wolfy says it is 4 times the Catalan's constant.



          One (not optimal) way to derive this is
          $$defsech{operatorname{sech}}
          begin{align*}
          int_{-infty}^inftyarcsinsech x,mathrm{d}x&=2int_0^inftyarcsinsech x,mathrm{d}x\
          &=2int_0^1frac{arcsin u,mathrm{d}u}{usqrt{1-u^2}}quad(u=sech x)\
          &=2int_0^{pi/2}frac{theta,mathrm{d}theta}{sintheta}quad(u=sintheta)\
          &=2int_0^1frac{2tan^{-1}t,frac{2,mathrm{d}t}{1+t^2}}{frac{2t}{1+t^2}}quad(t=tantfrac12theta)\
          &=4int_0^1frac{tan^{-1}t}{t},mathrm{d}t\
          &=4int_0^1sum_{n=0}^inftyfrac{(-1)^n}{2n+1}t^{2n},mathrm{d}t\
          &=4sum_{n=0}^inftyfrac{(-1)^n}{(2n+1)^2}=4G\
          end{align*}
          $$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Dude that's dope! Thank you!
            $endgroup$
            – clathratus
            Oct 31 '18 at 3:31










          • $begingroup$
            This substitution simplifies to $t=e^{-x}$.
            $endgroup$
            – J.G.
            Oct 31 '18 at 8:44










          • $begingroup$
            how do you get from $frac{theta dtheta}{sintheta}$ to $$frac{2arctan(t)frac{2dt}{1+t^2}}{frac{2t}{1+t^2}}$$ With the substitution $t=tanfractheta2$?
            $endgroup$
            – clathratus
            Nov 1 '18 at 23:06












          • $begingroup$
            I keep getting $$frac{theta dtheta}{sintheta}=frac{2arctan t}{tsqrt{t^2+1}}dt$$
            $endgroup$
            – clathratus
            Nov 1 '18 at 23:10






          • 1




            $begingroup$
            @clathratus This is the universal trigonometric substitution
            $endgroup$
            – user10354138
            Nov 1 '18 at 23:25














          11












          11








          11





          $begingroup$

          Wolfy says it is 4 times the Catalan's constant.



          One (not optimal) way to derive this is
          $$defsech{operatorname{sech}}
          begin{align*}
          int_{-infty}^inftyarcsinsech x,mathrm{d}x&=2int_0^inftyarcsinsech x,mathrm{d}x\
          &=2int_0^1frac{arcsin u,mathrm{d}u}{usqrt{1-u^2}}quad(u=sech x)\
          &=2int_0^{pi/2}frac{theta,mathrm{d}theta}{sintheta}quad(u=sintheta)\
          &=2int_0^1frac{2tan^{-1}t,frac{2,mathrm{d}t}{1+t^2}}{frac{2t}{1+t^2}}quad(t=tantfrac12theta)\
          &=4int_0^1frac{tan^{-1}t}{t},mathrm{d}t\
          &=4int_0^1sum_{n=0}^inftyfrac{(-1)^n}{2n+1}t^{2n},mathrm{d}t\
          &=4sum_{n=0}^inftyfrac{(-1)^n}{(2n+1)^2}=4G\
          end{align*}
          $$






          share|cite|improve this answer











          $endgroup$



          Wolfy says it is 4 times the Catalan's constant.



          One (not optimal) way to derive this is
          $$defsech{operatorname{sech}}
          begin{align*}
          int_{-infty}^inftyarcsinsech x,mathrm{d}x&=2int_0^inftyarcsinsech x,mathrm{d}x\
          &=2int_0^1frac{arcsin u,mathrm{d}u}{usqrt{1-u^2}}quad(u=sech x)\
          &=2int_0^{pi/2}frac{theta,mathrm{d}theta}{sintheta}quad(u=sintheta)\
          &=2int_0^1frac{2tan^{-1}t,frac{2,mathrm{d}t}{1+t^2}}{frac{2t}{1+t^2}}quad(t=tantfrac12theta)\
          &=4int_0^1frac{tan^{-1}t}{t},mathrm{d}t\
          &=4int_0^1sum_{n=0}^inftyfrac{(-1)^n}{2n+1}t^{2n},mathrm{d}t\
          &=4sum_{n=0}^inftyfrac{(-1)^n}{(2n+1)^2}=4G\
          end{align*}
          $$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Oct 31 '18 at 8:34









          J.G.

          27.3k22843




          27.3k22843










          answered Oct 31 '18 at 3:22









          user10354138user10354138

          7,4322925




          7,4322925












          • $begingroup$
            Dude that's dope! Thank you!
            $endgroup$
            – clathratus
            Oct 31 '18 at 3:31










          • $begingroup$
            This substitution simplifies to $t=e^{-x}$.
            $endgroup$
            – J.G.
            Oct 31 '18 at 8:44










          • $begingroup$
            how do you get from $frac{theta dtheta}{sintheta}$ to $$frac{2arctan(t)frac{2dt}{1+t^2}}{frac{2t}{1+t^2}}$$ With the substitution $t=tanfractheta2$?
            $endgroup$
            – clathratus
            Nov 1 '18 at 23:06












          • $begingroup$
            I keep getting $$frac{theta dtheta}{sintheta}=frac{2arctan t}{tsqrt{t^2+1}}dt$$
            $endgroup$
            – clathratus
            Nov 1 '18 at 23:10






          • 1




            $begingroup$
            @clathratus This is the universal trigonometric substitution
            $endgroup$
            – user10354138
            Nov 1 '18 at 23:25


















          • $begingroup$
            Dude that's dope! Thank you!
            $endgroup$
            – clathratus
            Oct 31 '18 at 3:31










          • $begingroup$
            This substitution simplifies to $t=e^{-x}$.
            $endgroup$
            – J.G.
            Oct 31 '18 at 8:44










          • $begingroup$
            how do you get from $frac{theta dtheta}{sintheta}$ to $$frac{2arctan(t)frac{2dt}{1+t^2}}{frac{2t}{1+t^2}}$$ With the substitution $t=tanfractheta2$?
            $endgroup$
            – clathratus
            Nov 1 '18 at 23:06












          • $begingroup$
            I keep getting $$frac{theta dtheta}{sintheta}=frac{2arctan t}{tsqrt{t^2+1}}dt$$
            $endgroup$
            – clathratus
            Nov 1 '18 at 23:10






          • 1




            $begingroup$
            @clathratus This is the universal trigonometric substitution
            $endgroup$
            – user10354138
            Nov 1 '18 at 23:25
















          $begingroup$
          Dude that's dope! Thank you!
          $endgroup$
          – clathratus
          Oct 31 '18 at 3:31




          $begingroup$
          Dude that's dope! Thank you!
          $endgroup$
          – clathratus
          Oct 31 '18 at 3:31












          $begingroup$
          This substitution simplifies to $t=e^{-x}$.
          $endgroup$
          – J.G.
          Oct 31 '18 at 8:44




          $begingroup$
          This substitution simplifies to $t=e^{-x}$.
          $endgroup$
          – J.G.
          Oct 31 '18 at 8:44












          $begingroup$
          how do you get from $frac{theta dtheta}{sintheta}$ to $$frac{2arctan(t)frac{2dt}{1+t^2}}{frac{2t}{1+t^2}}$$ With the substitution $t=tanfractheta2$?
          $endgroup$
          – clathratus
          Nov 1 '18 at 23:06






          $begingroup$
          how do you get from $frac{theta dtheta}{sintheta}$ to $$frac{2arctan(t)frac{2dt}{1+t^2}}{frac{2t}{1+t^2}}$$ With the substitution $t=tanfractheta2$?
          $endgroup$
          – clathratus
          Nov 1 '18 at 23:06














          $begingroup$
          I keep getting $$frac{theta dtheta}{sintheta}=frac{2arctan t}{tsqrt{t^2+1}}dt$$
          $endgroup$
          – clathratus
          Nov 1 '18 at 23:10




          $begingroup$
          I keep getting $$frac{theta dtheta}{sintheta}=frac{2arctan t}{tsqrt{t^2+1}}dt$$
          $endgroup$
          – clathratus
          Nov 1 '18 at 23:10




          1




          1




          $begingroup$
          @clathratus This is the universal trigonometric substitution
          $endgroup$
          – user10354138
          Nov 1 '18 at 23:25




          $begingroup$
          @clathratus This is the universal trigonometric substitution
          $endgroup$
          – user10354138
          Nov 1 '18 at 23:25











          6












          $begingroup$

          Alternatively, you can integrate by parts:
          begin{align}
          int limits_{-infty}^infty arcsin(operatorname{sech}(x)) , mathrm{d} x &= 2 int limits_0^infty arcsin(operatorname{sech}(x)) , mathrm{d} x \
          &= 2x arcsin(operatorname{sech}(x)) Bigg rvert_{x=0}^{x=infty} - 2 int limits_0^infty x frac{- sinh(x) operatorname{sech}^2(x)}{sqrt{1-operatorname{sech}^2(x)}} , mathrm{d} x \
          &= 2 int limits_0^infty frac{x}{cosh(x)} , mathrm{d} x = 4 sum limits_{n=0}^infty (-1)^n int limits_0^infty x , mathrm{e}^{-(2n+1) x} , mathrm{d} x \
          &= 4 Gamma(2) sum limits_{n=0}^infty frac{(-1)^n}{(2n+1)^2} = 4 mathrm{G} , .
          end{align}






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            I'm a fan of the alternative approach. Thank you!
            $endgroup$
            – clathratus
            Oct 31 '18 at 14:59
















          6












          $begingroup$

          Alternatively, you can integrate by parts:
          begin{align}
          int limits_{-infty}^infty arcsin(operatorname{sech}(x)) , mathrm{d} x &= 2 int limits_0^infty arcsin(operatorname{sech}(x)) , mathrm{d} x \
          &= 2x arcsin(operatorname{sech}(x)) Bigg rvert_{x=0}^{x=infty} - 2 int limits_0^infty x frac{- sinh(x) operatorname{sech}^2(x)}{sqrt{1-operatorname{sech}^2(x)}} , mathrm{d} x \
          &= 2 int limits_0^infty frac{x}{cosh(x)} , mathrm{d} x = 4 sum limits_{n=0}^infty (-1)^n int limits_0^infty x , mathrm{e}^{-(2n+1) x} , mathrm{d} x \
          &= 4 Gamma(2) sum limits_{n=0}^infty frac{(-1)^n}{(2n+1)^2} = 4 mathrm{G} , .
          end{align}






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            I'm a fan of the alternative approach. Thank you!
            $endgroup$
            – clathratus
            Oct 31 '18 at 14:59














          6












          6








          6





          $begingroup$

          Alternatively, you can integrate by parts:
          begin{align}
          int limits_{-infty}^infty arcsin(operatorname{sech}(x)) , mathrm{d} x &= 2 int limits_0^infty arcsin(operatorname{sech}(x)) , mathrm{d} x \
          &= 2x arcsin(operatorname{sech}(x)) Bigg rvert_{x=0}^{x=infty} - 2 int limits_0^infty x frac{- sinh(x) operatorname{sech}^2(x)}{sqrt{1-operatorname{sech}^2(x)}} , mathrm{d} x \
          &= 2 int limits_0^infty frac{x}{cosh(x)} , mathrm{d} x = 4 sum limits_{n=0}^infty (-1)^n int limits_0^infty x , mathrm{e}^{-(2n+1) x} , mathrm{d} x \
          &= 4 Gamma(2) sum limits_{n=0}^infty frac{(-1)^n}{(2n+1)^2} = 4 mathrm{G} , .
          end{align}






          share|cite|improve this answer









          $endgroup$



          Alternatively, you can integrate by parts:
          begin{align}
          int limits_{-infty}^infty arcsin(operatorname{sech}(x)) , mathrm{d} x &= 2 int limits_0^infty arcsin(operatorname{sech}(x)) , mathrm{d} x \
          &= 2x arcsin(operatorname{sech}(x)) Bigg rvert_{x=0}^{x=infty} - 2 int limits_0^infty x frac{- sinh(x) operatorname{sech}^2(x)}{sqrt{1-operatorname{sech}^2(x)}} , mathrm{d} x \
          &= 2 int limits_0^infty frac{x}{cosh(x)} , mathrm{d} x = 4 sum limits_{n=0}^infty (-1)^n int limits_0^infty x , mathrm{e}^{-(2n+1) x} , mathrm{d} x \
          &= 4 Gamma(2) sum limits_{n=0}^infty frac{(-1)^n}{(2n+1)^2} = 4 mathrm{G} , .
          end{align}







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Oct 31 '18 at 8:26









          ComplexYetTrivialComplexYetTrivial

          4,6032631




          4,6032631












          • $begingroup$
            I'm a fan of the alternative approach. Thank you!
            $endgroup$
            – clathratus
            Oct 31 '18 at 14:59


















          • $begingroup$
            I'm a fan of the alternative approach. Thank you!
            $endgroup$
            – clathratus
            Oct 31 '18 at 14:59
















          $begingroup$
          I'm a fan of the alternative approach. Thank you!
          $endgroup$
          – clathratus
          Oct 31 '18 at 14:59




          $begingroup$
          I'm a fan of the alternative approach. Thank you!
          $endgroup$
          – clathratus
          Oct 31 '18 at 14:59











          6












          $begingroup$

          Yet another alternative approach: once shown that
          $$ int_{mathbb{R}}frac{dx}{cosh(x)^{2k+1}} = frac{pi binom{2k}{k}}{4^k}tag{1}$$
          and recalled that
          $$ arcsin z = sum_{kgeq 0}frac{binom{2k}{k}}{4^k(2k+1)}z^{2k+1} tag{2} $$
          we have the following identity:
          $$ int_{mathbb{R}}arcsinfrac{1}{cosh x},dx = pisum_{kgeq 0}frac{1}{2k+1}left[frac{1}{4^k}binom{2k}{k}right]^2.tag{3} $$
          Now we may invoke a function whose Maclaurin series involves squared central binomial coefficients, namely the complete elliptic integral of the first kind $K(x)$, here denoted according to Mathematica's notation (the argument of $K$ is the elliptic modulus):
          $$ sum_{kgeq 0}left[frac{1}{4^k}binom{2k}{k}right]^2 x^{2k}=frac{2}{pi}K(x^2)tag{4} $$
          leading to:
          $$ int_{mathbb{R}}arcsinfrac{1}{cosh x},dx = 2int_{0}^{1} K(x^2),dx = int_{0}^{1}frac{K(x)}{sqrt{x}},dx.tag{5} $$
          At last, we recall that both $K(x)$ and $frac{1}{sqrt{x}}$ have fairly simple Fourier-Legendre series expansions:
          $$ K(x)=2sum_{ngeq 0}frac{P_n(2x-1)}{2n+1},qquad frac{1}{sqrt{x}}=2sum_{ngeq 0}(-1)^n P_n(2x-1) $$
          and by the orthogonality of shifted Legendre polynomials




          $$ int_{mathbb{R}}arcsinfrac{1}{cosh x},dx =int_{0}^{1}frac{K(x)}{sqrt{x}},dx = 4sum_{ngeq 0}frac{(-1)^n}{(2n+1)^2} = 4G.tag{6} $$







          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            This is really cool. I'll have to look at this one a little more in order to understand it better... But this is great. Thanks!
            $endgroup$
            – clathratus
            Oct 31 '18 at 18:37






          • 1




            $begingroup$
            You seem to link any special function with any other special function. The link between elliptic integral and Legendre function is pretty smart. +1
            $endgroup$
            – Paramanand Singh
            Nov 1 '18 at 16:41










          • $begingroup$
            How do we show $$int_{Bbb R}frac{mathrm dx}{cosh(x)^{2k+1}}=frac{pi{2kchoose k}}{4^k}$$ It looks a lot like a Beta integral
            $endgroup$
            – clathratus
            Dec 21 '18 at 0:56






          • 1




            $begingroup$
            @clathratus: it is, indeed, it is enough to set $frac{1}{cosh(x)}=u$.
            $endgroup$
            – Jack D'Aurizio
            Dec 21 '18 at 10:48
















          6












          $begingroup$

          Yet another alternative approach: once shown that
          $$ int_{mathbb{R}}frac{dx}{cosh(x)^{2k+1}} = frac{pi binom{2k}{k}}{4^k}tag{1}$$
          and recalled that
          $$ arcsin z = sum_{kgeq 0}frac{binom{2k}{k}}{4^k(2k+1)}z^{2k+1} tag{2} $$
          we have the following identity:
          $$ int_{mathbb{R}}arcsinfrac{1}{cosh x},dx = pisum_{kgeq 0}frac{1}{2k+1}left[frac{1}{4^k}binom{2k}{k}right]^2.tag{3} $$
          Now we may invoke a function whose Maclaurin series involves squared central binomial coefficients, namely the complete elliptic integral of the first kind $K(x)$, here denoted according to Mathematica's notation (the argument of $K$ is the elliptic modulus):
          $$ sum_{kgeq 0}left[frac{1}{4^k}binom{2k}{k}right]^2 x^{2k}=frac{2}{pi}K(x^2)tag{4} $$
          leading to:
          $$ int_{mathbb{R}}arcsinfrac{1}{cosh x},dx = 2int_{0}^{1} K(x^2),dx = int_{0}^{1}frac{K(x)}{sqrt{x}},dx.tag{5} $$
          At last, we recall that both $K(x)$ and $frac{1}{sqrt{x}}$ have fairly simple Fourier-Legendre series expansions:
          $$ K(x)=2sum_{ngeq 0}frac{P_n(2x-1)}{2n+1},qquad frac{1}{sqrt{x}}=2sum_{ngeq 0}(-1)^n P_n(2x-1) $$
          and by the orthogonality of shifted Legendre polynomials




          $$ int_{mathbb{R}}arcsinfrac{1}{cosh x},dx =int_{0}^{1}frac{K(x)}{sqrt{x}},dx = 4sum_{ngeq 0}frac{(-1)^n}{(2n+1)^2} = 4G.tag{6} $$







          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            This is really cool. I'll have to look at this one a little more in order to understand it better... But this is great. Thanks!
            $endgroup$
            – clathratus
            Oct 31 '18 at 18:37






          • 1




            $begingroup$
            You seem to link any special function with any other special function. The link between elliptic integral and Legendre function is pretty smart. +1
            $endgroup$
            – Paramanand Singh
            Nov 1 '18 at 16:41










          • $begingroup$
            How do we show $$int_{Bbb R}frac{mathrm dx}{cosh(x)^{2k+1}}=frac{pi{2kchoose k}}{4^k}$$ It looks a lot like a Beta integral
            $endgroup$
            – clathratus
            Dec 21 '18 at 0:56






          • 1




            $begingroup$
            @clathratus: it is, indeed, it is enough to set $frac{1}{cosh(x)}=u$.
            $endgroup$
            – Jack D'Aurizio
            Dec 21 '18 at 10:48














          6












          6








          6





          $begingroup$

          Yet another alternative approach: once shown that
          $$ int_{mathbb{R}}frac{dx}{cosh(x)^{2k+1}} = frac{pi binom{2k}{k}}{4^k}tag{1}$$
          and recalled that
          $$ arcsin z = sum_{kgeq 0}frac{binom{2k}{k}}{4^k(2k+1)}z^{2k+1} tag{2} $$
          we have the following identity:
          $$ int_{mathbb{R}}arcsinfrac{1}{cosh x},dx = pisum_{kgeq 0}frac{1}{2k+1}left[frac{1}{4^k}binom{2k}{k}right]^2.tag{3} $$
          Now we may invoke a function whose Maclaurin series involves squared central binomial coefficients, namely the complete elliptic integral of the first kind $K(x)$, here denoted according to Mathematica's notation (the argument of $K$ is the elliptic modulus):
          $$ sum_{kgeq 0}left[frac{1}{4^k}binom{2k}{k}right]^2 x^{2k}=frac{2}{pi}K(x^2)tag{4} $$
          leading to:
          $$ int_{mathbb{R}}arcsinfrac{1}{cosh x},dx = 2int_{0}^{1} K(x^2),dx = int_{0}^{1}frac{K(x)}{sqrt{x}},dx.tag{5} $$
          At last, we recall that both $K(x)$ and $frac{1}{sqrt{x}}$ have fairly simple Fourier-Legendre series expansions:
          $$ K(x)=2sum_{ngeq 0}frac{P_n(2x-1)}{2n+1},qquad frac{1}{sqrt{x}}=2sum_{ngeq 0}(-1)^n P_n(2x-1) $$
          and by the orthogonality of shifted Legendre polynomials




          $$ int_{mathbb{R}}arcsinfrac{1}{cosh x},dx =int_{0}^{1}frac{K(x)}{sqrt{x}},dx = 4sum_{ngeq 0}frac{(-1)^n}{(2n+1)^2} = 4G.tag{6} $$







          share|cite|improve this answer











          $endgroup$



          Yet another alternative approach: once shown that
          $$ int_{mathbb{R}}frac{dx}{cosh(x)^{2k+1}} = frac{pi binom{2k}{k}}{4^k}tag{1}$$
          and recalled that
          $$ arcsin z = sum_{kgeq 0}frac{binom{2k}{k}}{4^k(2k+1)}z^{2k+1} tag{2} $$
          we have the following identity:
          $$ int_{mathbb{R}}arcsinfrac{1}{cosh x},dx = pisum_{kgeq 0}frac{1}{2k+1}left[frac{1}{4^k}binom{2k}{k}right]^2.tag{3} $$
          Now we may invoke a function whose Maclaurin series involves squared central binomial coefficients, namely the complete elliptic integral of the first kind $K(x)$, here denoted according to Mathematica's notation (the argument of $K$ is the elliptic modulus):
          $$ sum_{kgeq 0}left[frac{1}{4^k}binom{2k}{k}right]^2 x^{2k}=frac{2}{pi}K(x^2)tag{4} $$
          leading to:
          $$ int_{mathbb{R}}arcsinfrac{1}{cosh x},dx = 2int_{0}^{1} K(x^2),dx = int_{0}^{1}frac{K(x)}{sqrt{x}},dx.tag{5} $$
          At last, we recall that both $K(x)$ and $frac{1}{sqrt{x}}$ have fairly simple Fourier-Legendre series expansions:
          $$ K(x)=2sum_{ngeq 0}frac{P_n(2x-1)}{2n+1},qquad frac{1}{sqrt{x}}=2sum_{ngeq 0}(-1)^n P_n(2x-1) $$
          and by the orthogonality of shifted Legendre polynomials




          $$ int_{mathbb{R}}arcsinfrac{1}{cosh x},dx =int_{0}^{1}frac{K(x)}{sqrt{x}},dx = 4sum_{ngeq 0}frac{(-1)^n}{(2n+1)^2} = 4G.tag{6} $$








          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Dec 22 '18 at 22:10









          clathratus

          4,583337




          4,583337










          answered Oct 31 '18 at 17:07









          Jack D'AurizioJack D'Aurizio

          290k33282662




          290k33282662












          • $begingroup$
            This is really cool. I'll have to look at this one a little more in order to understand it better... But this is great. Thanks!
            $endgroup$
            – clathratus
            Oct 31 '18 at 18:37






          • 1




            $begingroup$
            You seem to link any special function with any other special function. The link between elliptic integral and Legendre function is pretty smart. +1
            $endgroup$
            – Paramanand Singh
            Nov 1 '18 at 16:41










          • $begingroup$
            How do we show $$int_{Bbb R}frac{mathrm dx}{cosh(x)^{2k+1}}=frac{pi{2kchoose k}}{4^k}$$ It looks a lot like a Beta integral
            $endgroup$
            – clathratus
            Dec 21 '18 at 0:56






          • 1




            $begingroup$
            @clathratus: it is, indeed, it is enough to set $frac{1}{cosh(x)}=u$.
            $endgroup$
            – Jack D'Aurizio
            Dec 21 '18 at 10:48


















          • $begingroup$
            This is really cool. I'll have to look at this one a little more in order to understand it better... But this is great. Thanks!
            $endgroup$
            – clathratus
            Oct 31 '18 at 18:37






          • 1




            $begingroup$
            You seem to link any special function with any other special function. The link between elliptic integral and Legendre function is pretty smart. +1
            $endgroup$
            – Paramanand Singh
            Nov 1 '18 at 16:41










          • $begingroup$
            How do we show $$int_{Bbb R}frac{mathrm dx}{cosh(x)^{2k+1}}=frac{pi{2kchoose k}}{4^k}$$ It looks a lot like a Beta integral
            $endgroup$
            – clathratus
            Dec 21 '18 at 0:56






          • 1




            $begingroup$
            @clathratus: it is, indeed, it is enough to set $frac{1}{cosh(x)}=u$.
            $endgroup$
            – Jack D'Aurizio
            Dec 21 '18 at 10:48
















          $begingroup$
          This is really cool. I'll have to look at this one a little more in order to understand it better... But this is great. Thanks!
          $endgroup$
          – clathratus
          Oct 31 '18 at 18:37




          $begingroup$
          This is really cool. I'll have to look at this one a little more in order to understand it better... But this is great. Thanks!
          $endgroup$
          – clathratus
          Oct 31 '18 at 18:37




          1




          1




          $begingroup$
          You seem to link any special function with any other special function. The link between elliptic integral and Legendre function is pretty smart. +1
          $endgroup$
          – Paramanand Singh
          Nov 1 '18 at 16:41




          $begingroup$
          You seem to link any special function with any other special function. The link between elliptic integral and Legendre function is pretty smart. +1
          $endgroup$
          – Paramanand Singh
          Nov 1 '18 at 16:41












          $begingroup$
          How do we show $$int_{Bbb R}frac{mathrm dx}{cosh(x)^{2k+1}}=frac{pi{2kchoose k}}{4^k}$$ It looks a lot like a Beta integral
          $endgroup$
          – clathratus
          Dec 21 '18 at 0:56




          $begingroup$
          How do we show $$int_{Bbb R}frac{mathrm dx}{cosh(x)^{2k+1}}=frac{pi{2kchoose k}}{4^k}$$ It looks a lot like a Beta integral
          $endgroup$
          – clathratus
          Dec 21 '18 at 0:56




          1




          1




          $begingroup$
          @clathratus: it is, indeed, it is enough to set $frac{1}{cosh(x)}=u$.
          $endgroup$
          – Jack D'Aurizio
          Dec 21 '18 at 10:48




          $begingroup$
          @clathratus: it is, indeed, it is enough to set $frac{1}{cosh(x)}=u$.
          $endgroup$
          – Jack D'Aurizio
          Dec 21 '18 at 10:48


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2978611%2fvalue-of-int-infty-infty-arcsin-frac1-cosh-x-dx%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Ellipse (mathématiques)

          Quarter-circle Tiles

          Mont Emei