Evaluating $int_1^infty frac{1}{x(x^2+1)} dx$
$begingroup$
$$I=int_1^infty frac{1}{x(x^2+1)} dx$$
I tried to use partial fractions, but am unsure why I cann't evaluate it using partial fractions. Would appreciate any explanation about which step is incorrect.
$$frac{1}{x(x^2+1)} = frac{1}{2} left(frac{1}{x}-frac{1}{x+i} -frac{1}{x-i}right)$$
So
$$I = frac{1}{2}int_1^inftyfrac{1}{x}-frac{1}{x+i} -frac{1}{x-i} dx \ = frac{1}{2}left[log |x| - log(|x+i|) - log(|x-i|)right]_1^infty
$$
which evaluates to be $infty$.
integration proof-verification improper-integrals
$endgroup$
|
show 3 more comments
$begingroup$
$$I=int_1^infty frac{1}{x(x^2+1)} dx$$
I tried to use partial fractions, but am unsure why I cann't evaluate it using partial fractions. Would appreciate any explanation about which step is incorrect.
$$frac{1}{x(x^2+1)} = frac{1}{2} left(frac{1}{x}-frac{1}{x+i} -frac{1}{x-i}right)$$
So
$$I = frac{1}{2}int_1^inftyfrac{1}{x}-frac{1}{x+i} -frac{1}{x-i} dx \ = frac{1}{2}left[log |x| - log(|x+i|) - log(|x-i|)right]_1^infty
$$
which evaluates to be $infty$.
integration proof-verification improper-integrals
$endgroup$
4
$begingroup$
Try 1/x - x/(x^2+1)
$endgroup$
– jnyan
Nov 23 '17 at 6:03
$begingroup$
The factor $frac 12$ does not apply for $frac 1x$. Otherwise, you are on the right track if you simplify the complex terms.
$endgroup$
– Claude Leibovici
Nov 23 '17 at 6:07
$begingroup$
@ClaudeLeibovici How about if I don't simplify the complex terms (just substituting the limits in)? Wouldn't I get something like $-infty - infty$ (a sum of infinities)?
$endgroup$
– Natash1
Nov 23 '17 at 6:11
2
$begingroup$
You end up with $$ I = int_{1}^{infty} left( frac{1}{x} - frac{x}{1+x^2} right) , dx = int_{1}^{infty} left( frac{1}{x} - frac{1}{2(x+i)} - frac{1}{2(x-i)} right) , dx. $$ And notice that this is the limit $$ I = lim_{Rtoinfty} int_{1}^{R} left( frac{1}{x} - frac{1}{2(x+i)} - frac{1}{2(x-i)} right) , dx. $$ This does help in evaluating $I$ since you now have a direct control over the indeterminate of the form $infty - infty$.
$endgroup$
– Sangchul Lee
Nov 23 '17 at 6:15
1
$begingroup$
Possible duplicate of Evaluation of $int_1^infty frac{1}{x(x^2+1)} dx$
$endgroup$
– Nosrati
Dec 11 '18 at 11:06
|
show 3 more comments
$begingroup$
$$I=int_1^infty frac{1}{x(x^2+1)} dx$$
I tried to use partial fractions, but am unsure why I cann't evaluate it using partial fractions. Would appreciate any explanation about which step is incorrect.
$$frac{1}{x(x^2+1)} = frac{1}{2} left(frac{1}{x}-frac{1}{x+i} -frac{1}{x-i}right)$$
So
$$I = frac{1}{2}int_1^inftyfrac{1}{x}-frac{1}{x+i} -frac{1}{x-i} dx \ = frac{1}{2}left[log |x| - log(|x+i|) - log(|x-i|)right]_1^infty
$$
which evaluates to be $infty$.
integration proof-verification improper-integrals
$endgroup$
$$I=int_1^infty frac{1}{x(x^2+1)} dx$$
I tried to use partial fractions, but am unsure why I cann't evaluate it using partial fractions. Would appreciate any explanation about which step is incorrect.
$$frac{1}{x(x^2+1)} = frac{1}{2} left(frac{1}{x}-frac{1}{x+i} -frac{1}{x-i}right)$$
So
$$I = frac{1}{2}int_1^inftyfrac{1}{x}-frac{1}{x+i} -frac{1}{x-i} dx \ = frac{1}{2}left[log |x| - log(|x+i|) - log(|x-i|)right]_1^infty
$$
which evaluates to be $infty$.
integration proof-verification improper-integrals
integration proof-verification improper-integrals
edited Dec 11 '18 at 12:08
Martin Sleziak
44.8k9118272
44.8k9118272
asked Nov 23 '17 at 5:59
Natash1Natash1
619213
619213
4
$begingroup$
Try 1/x - x/(x^2+1)
$endgroup$
– jnyan
Nov 23 '17 at 6:03
$begingroup$
The factor $frac 12$ does not apply for $frac 1x$. Otherwise, you are on the right track if you simplify the complex terms.
$endgroup$
– Claude Leibovici
Nov 23 '17 at 6:07
$begingroup$
@ClaudeLeibovici How about if I don't simplify the complex terms (just substituting the limits in)? Wouldn't I get something like $-infty - infty$ (a sum of infinities)?
$endgroup$
– Natash1
Nov 23 '17 at 6:11
2
$begingroup$
You end up with $$ I = int_{1}^{infty} left( frac{1}{x} - frac{x}{1+x^2} right) , dx = int_{1}^{infty} left( frac{1}{x} - frac{1}{2(x+i)} - frac{1}{2(x-i)} right) , dx. $$ And notice that this is the limit $$ I = lim_{Rtoinfty} int_{1}^{R} left( frac{1}{x} - frac{1}{2(x+i)} - frac{1}{2(x-i)} right) , dx. $$ This does help in evaluating $I$ since you now have a direct control over the indeterminate of the form $infty - infty$.
$endgroup$
– Sangchul Lee
Nov 23 '17 at 6:15
1
$begingroup$
Possible duplicate of Evaluation of $int_1^infty frac{1}{x(x^2+1)} dx$
$endgroup$
– Nosrati
Dec 11 '18 at 11:06
|
show 3 more comments
4
$begingroup$
Try 1/x - x/(x^2+1)
$endgroup$
– jnyan
Nov 23 '17 at 6:03
$begingroup$
The factor $frac 12$ does not apply for $frac 1x$. Otherwise, you are on the right track if you simplify the complex terms.
$endgroup$
– Claude Leibovici
Nov 23 '17 at 6:07
$begingroup$
@ClaudeLeibovici How about if I don't simplify the complex terms (just substituting the limits in)? Wouldn't I get something like $-infty - infty$ (a sum of infinities)?
$endgroup$
– Natash1
Nov 23 '17 at 6:11
2
$begingroup$
You end up with $$ I = int_{1}^{infty} left( frac{1}{x} - frac{x}{1+x^2} right) , dx = int_{1}^{infty} left( frac{1}{x} - frac{1}{2(x+i)} - frac{1}{2(x-i)} right) , dx. $$ And notice that this is the limit $$ I = lim_{Rtoinfty} int_{1}^{R} left( frac{1}{x} - frac{1}{2(x+i)} - frac{1}{2(x-i)} right) , dx. $$ This does help in evaluating $I$ since you now have a direct control over the indeterminate of the form $infty - infty$.
$endgroup$
– Sangchul Lee
Nov 23 '17 at 6:15
1
$begingroup$
Possible duplicate of Evaluation of $int_1^infty frac{1}{x(x^2+1)} dx$
$endgroup$
– Nosrati
Dec 11 '18 at 11:06
4
4
$begingroup$
Try 1/x - x/(x^2+1)
$endgroup$
– jnyan
Nov 23 '17 at 6:03
$begingroup$
Try 1/x - x/(x^2+1)
$endgroup$
– jnyan
Nov 23 '17 at 6:03
$begingroup$
The factor $frac 12$ does not apply for $frac 1x$. Otherwise, you are on the right track if you simplify the complex terms.
$endgroup$
– Claude Leibovici
Nov 23 '17 at 6:07
$begingroup$
The factor $frac 12$ does not apply for $frac 1x$. Otherwise, you are on the right track if you simplify the complex terms.
$endgroup$
– Claude Leibovici
Nov 23 '17 at 6:07
$begingroup$
@ClaudeLeibovici How about if I don't simplify the complex terms (just substituting the limits in)? Wouldn't I get something like $-infty - infty$ (a sum of infinities)?
$endgroup$
– Natash1
Nov 23 '17 at 6:11
$begingroup$
@ClaudeLeibovici How about if I don't simplify the complex terms (just substituting the limits in)? Wouldn't I get something like $-infty - infty$ (a sum of infinities)?
$endgroup$
– Natash1
Nov 23 '17 at 6:11
2
2
$begingroup$
You end up with $$ I = int_{1}^{infty} left( frac{1}{x} - frac{x}{1+x^2} right) , dx = int_{1}^{infty} left( frac{1}{x} - frac{1}{2(x+i)} - frac{1}{2(x-i)} right) , dx. $$ And notice that this is the limit $$ I = lim_{Rtoinfty} int_{1}^{R} left( frac{1}{x} - frac{1}{2(x+i)} - frac{1}{2(x-i)} right) , dx. $$ This does help in evaluating $I$ since you now have a direct control over the indeterminate of the form $infty - infty$.
$endgroup$
– Sangchul Lee
Nov 23 '17 at 6:15
$begingroup$
You end up with $$ I = int_{1}^{infty} left( frac{1}{x} - frac{x}{1+x^2} right) , dx = int_{1}^{infty} left( frac{1}{x} - frac{1}{2(x+i)} - frac{1}{2(x-i)} right) , dx. $$ And notice that this is the limit $$ I = lim_{Rtoinfty} int_{1}^{R} left( frac{1}{x} - frac{1}{2(x+i)} - frac{1}{2(x-i)} right) , dx. $$ This does help in evaluating $I$ since you now have a direct control over the indeterminate of the form $infty - infty$.
$endgroup$
– Sangchul Lee
Nov 23 '17 at 6:15
1
1
$begingroup$
Possible duplicate of Evaluation of $int_1^infty frac{1}{x(x^2+1)} dx$
$endgroup$
– Nosrati
Dec 11 '18 at 11:06
$begingroup$
Possible duplicate of Evaluation of $int_1^infty frac{1}{x(x^2+1)} dx$
$endgroup$
– Nosrati
Dec 11 '18 at 11:06
|
show 3 more comments
5 Answers
5
active
oldest
votes
$begingroup$
Why complicate it with complex coefficients?
$$int_1^inftyfrac{1}{x(x^2+1)}dx=int_1^inftyleft(frac{1}{x}-frac{x}{x^2+1}right)dx=left(ln(x)-frac{1}{2}ln(x^2+1)right)biggvert_1^infty\=lnfrac{x}{sqrt{x^2+1}}biggvert_1^infty=lnfrac{1}{sqrt{1+1/x^2}}biggvert_1^infty=ln 1-lnfrac{1}{sqrt{2}}=lnsqrt 2$$
$endgroup$
$begingroup$
While your answer is correct, I think it'd be more helpful to show OP what was wrong in their method
$endgroup$
– Dylan
Nov 23 '17 at 7:33
add a comment |
$begingroup$
First of all:
$$frac{1}{x(x^2+1)} = frac{1}{x}-frac{1}{2}left(frac{1}{x+i} -frac{1}{x-i}right)$$
Second of all:
You have to evaluate the integral $int_1 ^ Rfrac{1}{x(x^2+1)}dx$ then take the limit as R goes to infinity and note that $infty -infty$ is undetermined.
$$int_1 ^ Rfrac{1}{x(x^2+1)} = int_1 ^ R left[frac{1}{x}-frac{1}{2}left(frac{1}{x+i} -frac{1}{x-i}right)right]dx$$
$$=[log |x| - frac{1}2{}log(|x+i|) - frac{1}{2}log(|x-i|)]_1^R$$
$$=[log |R| - frac{1}2{}log(|R+i|) - frac{1}{2}log(|R-i|)] + frac{1}2{}log(|1+i|) + frac{1}{2}log(|1-i|)]$$
$$=logleft|frac{R}{(R+i)^{frac{1}{2}}(R-i)^frac{1}{2}}right|+frac{1}{2}log(1+i)(1-i)$$
$$=logleft|frac{R}{(R^2+1)^frac{1}{2}}right|+frac{1}{2}log(2)$$
Now taking the limit yields $frac{1}{2}log(2)$.
$endgroup$
add a comment |
$begingroup$
put $x = tan theta$ given integral is
$$int_{frac{pi}{4}}^{frac{pi}{2}} frac{sec^2 theta}{tan theta sec^2 theta} = frac{d(sin theta)}{sin theta} = ln [|sin theta|]^{frac{pi}{2}}_{frac{pi}{4}} = 0-ln frac{1}{sqrt{2}}=ln sqrt{2}$$
$endgroup$
add a comment |
$begingroup$
Your partial fraction decomposition is incorrect. If you still want to use complex numbers, it's
$$ frac{1}{x(1+x^2)} = frac{1}{x} - frac{1}{2(x+i)} - frac{1}{2(x-i)} $$
Then
$$ int_1^{infty} f(x) dx = left.left(ln |x| - frac{1}{2}ln |x+i| -
frac{1}{2} ln |x-i|right)right|_1^{infty} = left. ln left|frac{x}{sqrt{x^2+1}} right|right|_1^{infty} = frac{1}{2}ln 2 $$
Note that
$$ lim_{xto infty} frac{x}{sqrt{x^2+1}} = lim_{xtoinfty}frac{1}{sqrt{1+frac{1}{x^2}}} = 1 $$
$endgroup$
1
$begingroup$
The limit at $1$ is not $0$. How can the integral of a positive function be $0$?
$endgroup$
– Andrei
Nov 23 '17 at 8:09
$begingroup$
Thanks. For some reason I thought it evaluates to $ln 1$. I've updated my answer
$endgroup$
– Dylan
Nov 23 '17 at 9:08
$begingroup$
No problem. Happens to everyone from time to time
$endgroup$
– Andrei
Nov 23 '17 at 9:20
add a comment |
$begingroup$
By enforcing the substitution $x=frac{1}{z}$ the result is straightforward to find:
$$ int_{1}^{+infty}frac{dx}{x(x^2+1)}=int_{0}^{1}frac{z,dz}{z^2+1}=left[frac{1}{2}log(1+z^2)right]_{0}^{1}=color{red}{frac{log 2}{2}}.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2533478%2fevaluating-int-1-infty-frac1xx21-dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Why complicate it with complex coefficients?
$$int_1^inftyfrac{1}{x(x^2+1)}dx=int_1^inftyleft(frac{1}{x}-frac{x}{x^2+1}right)dx=left(ln(x)-frac{1}{2}ln(x^2+1)right)biggvert_1^infty\=lnfrac{x}{sqrt{x^2+1}}biggvert_1^infty=lnfrac{1}{sqrt{1+1/x^2}}biggvert_1^infty=ln 1-lnfrac{1}{sqrt{2}}=lnsqrt 2$$
$endgroup$
$begingroup$
While your answer is correct, I think it'd be more helpful to show OP what was wrong in their method
$endgroup$
– Dylan
Nov 23 '17 at 7:33
add a comment |
$begingroup$
Why complicate it with complex coefficients?
$$int_1^inftyfrac{1}{x(x^2+1)}dx=int_1^inftyleft(frac{1}{x}-frac{x}{x^2+1}right)dx=left(ln(x)-frac{1}{2}ln(x^2+1)right)biggvert_1^infty\=lnfrac{x}{sqrt{x^2+1}}biggvert_1^infty=lnfrac{1}{sqrt{1+1/x^2}}biggvert_1^infty=ln 1-lnfrac{1}{sqrt{2}}=lnsqrt 2$$
$endgroup$
$begingroup$
While your answer is correct, I think it'd be more helpful to show OP what was wrong in their method
$endgroup$
– Dylan
Nov 23 '17 at 7:33
add a comment |
$begingroup$
Why complicate it with complex coefficients?
$$int_1^inftyfrac{1}{x(x^2+1)}dx=int_1^inftyleft(frac{1}{x}-frac{x}{x^2+1}right)dx=left(ln(x)-frac{1}{2}ln(x^2+1)right)biggvert_1^infty\=lnfrac{x}{sqrt{x^2+1}}biggvert_1^infty=lnfrac{1}{sqrt{1+1/x^2}}biggvert_1^infty=ln 1-lnfrac{1}{sqrt{2}}=lnsqrt 2$$
$endgroup$
Why complicate it with complex coefficients?
$$int_1^inftyfrac{1}{x(x^2+1)}dx=int_1^inftyleft(frac{1}{x}-frac{x}{x^2+1}right)dx=left(ln(x)-frac{1}{2}ln(x^2+1)right)biggvert_1^infty\=lnfrac{x}{sqrt{x^2+1}}biggvert_1^infty=lnfrac{1}{sqrt{1+1/x^2}}biggvert_1^infty=ln 1-lnfrac{1}{sqrt{2}}=lnsqrt 2$$
answered Nov 23 '17 at 7:10
AndreiAndrei
11.8k21126
11.8k21126
$begingroup$
While your answer is correct, I think it'd be more helpful to show OP what was wrong in their method
$endgroup$
– Dylan
Nov 23 '17 at 7:33
add a comment |
$begingroup$
While your answer is correct, I think it'd be more helpful to show OP what was wrong in their method
$endgroup$
– Dylan
Nov 23 '17 at 7:33
$begingroup$
While your answer is correct, I think it'd be more helpful to show OP what was wrong in their method
$endgroup$
– Dylan
Nov 23 '17 at 7:33
$begingroup$
While your answer is correct, I think it'd be more helpful to show OP what was wrong in their method
$endgroup$
– Dylan
Nov 23 '17 at 7:33
add a comment |
$begingroup$
First of all:
$$frac{1}{x(x^2+1)} = frac{1}{x}-frac{1}{2}left(frac{1}{x+i} -frac{1}{x-i}right)$$
Second of all:
You have to evaluate the integral $int_1 ^ Rfrac{1}{x(x^2+1)}dx$ then take the limit as R goes to infinity and note that $infty -infty$ is undetermined.
$$int_1 ^ Rfrac{1}{x(x^2+1)} = int_1 ^ R left[frac{1}{x}-frac{1}{2}left(frac{1}{x+i} -frac{1}{x-i}right)right]dx$$
$$=[log |x| - frac{1}2{}log(|x+i|) - frac{1}{2}log(|x-i|)]_1^R$$
$$=[log |R| - frac{1}2{}log(|R+i|) - frac{1}{2}log(|R-i|)] + frac{1}2{}log(|1+i|) + frac{1}{2}log(|1-i|)]$$
$$=logleft|frac{R}{(R+i)^{frac{1}{2}}(R-i)^frac{1}{2}}right|+frac{1}{2}log(1+i)(1-i)$$
$$=logleft|frac{R}{(R^2+1)^frac{1}{2}}right|+frac{1}{2}log(2)$$
Now taking the limit yields $frac{1}{2}log(2)$.
$endgroup$
add a comment |
$begingroup$
First of all:
$$frac{1}{x(x^2+1)} = frac{1}{x}-frac{1}{2}left(frac{1}{x+i} -frac{1}{x-i}right)$$
Second of all:
You have to evaluate the integral $int_1 ^ Rfrac{1}{x(x^2+1)}dx$ then take the limit as R goes to infinity and note that $infty -infty$ is undetermined.
$$int_1 ^ Rfrac{1}{x(x^2+1)} = int_1 ^ R left[frac{1}{x}-frac{1}{2}left(frac{1}{x+i} -frac{1}{x-i}right)right]dx$$
$$=[log |x| - frac{1}2{}log(|x+i|) - frac{1}{2}log(|x-i|)]_1^R$$
$$=[log |R| - frac{1}2{}log(|R+i|) - frac{1}{2}log(|R-i|)] + frac{1}2{}log(|1+i|) + frac{1}{2}log(|1-i|)]$$
$$=logleft|frac{R}{(R+i)^{frac{1}{2}}(R-i)^frac{1}{2}}right|+frac{1}{2}log(1+i)(1-i)$$
$$=logleft|frac{R}{(R^2+1)^frac{1}{2}}right|+frac{1}{2}log(2)$$
Now taking the limit yields $frac{1}{2}log(2)$.
$endgroup$
add a comment |
$begingroup$
First of all:
$$frac{1}{x(x^2+1)} = frac{1}{x}-frac{1}{2}left(frac{1}{x+i} -frac{1}{x-i}right)$$
Second of all:
You have to evaluate the integral $int_1 ^ Rfrac{1}{x(x^2+1)}dx$ then take the limit as R goes to infinity and note that $infty -infty$ is undetermined.
$$int_1 ^ Rfrac{1}{x(x^2+1)} = int_1 ^ R left[frac{1}{x}-frac{1}{2}left(frac{1}{x+i} -frac{1}{x-i}right)right]dx$$
$$=[log |x| - frac{1}2{}log(|x+i|) - frac{1}{2}log(|x-i|)]_1^R$$
$$=[log |R| - frac{1}2{}log(|R+i|) - frac{1}{2}log(|R-i|)] + frac{1}2{}log(|1+i|) + frac{1}{2}log(|1-i|)]$$
$$=logleft|frac{R}{(R+i)^{frac{1}{2}}(R-i)^frac{1}{2}}right|+frac{1}{2}log(1+i)(1-i)$$
$$=logleft|frac{R}{(R^2+1)^frac{1}{2}}right|+frac{1}{2}log(2)$$
Now taking the limit yields $frac{1}{2}log(2)$.
$endgroup$
First of all:
$$frac{1}{x(x^2+1)} = frac{1}{x}-frac{1}{2}left(frac{1}{x+i} -frac{1}{x-i}right)$$
Second of all:
You have to evaluate the integral $int_1 ^ Rfrac{1}{x(x^2+1)}dx$ then take the limit as R goes to infinity and note that $infty -infty$ is undetermined.
$$int_1 ^ Rfrac{1}{x(x^2+1)} = int_1 ^ R left[frac{1}{x}-frac{1}{2}left(frac{1}{x+i} -frac{1}{x-i}right)right]dx$$
$$=[log |x| - frac{1}2{}log(|x+i|) - frac{1}{2}log(|x-i|)]_1^R$$
$$=[log |R| - frac{1}2{}log(|R+i|) - frac{1}{2}log(|R-i|)] + frac{1}2{}log(|1+i|) + frac{1}{2}log(|1-i|)]$$
$$=logleft|frac{R}{(R+i)^{frac{1}{2}}(R-i)^frac{1}{2}}right|+frac{1}{2}log(1+i)(1-i)$$
$$=logleft|frac{R}{(R^2+1)^frac{1}{2}}right|+frac{1}{2}log(2)$$
Now taking the limit yields $frac{1}{2}log(2)$.
answered Nov 23 '17 at 7:38
MereMortal47MereMortal47
1,274314
1,274314
add a comment |
add a comment |
$begingroup$
put $x = tan theta$ given integral is
$$int_{frac{pi}{4}}^{frac{pi}{2}} frac{sec^2 theta}{tan theta sec^2 theta} = frac{d(sin theta)}{sin theta} = ln [|sin theta|]^{frac{pi}{2}}_{frac{pi}{4}} = 0-ln frac{1}{sqrt{2}}=ln sqrt{2}$$
$endgroup$
add a comment |
$begingroup$
put $x = tan theta$ given integral is
$$int_{frac{pi}{4}}^{frac{pi}{2}} frac{sec^2 theta}{tan theta sec^2 theta} = frac{d(sin theta)}{sin theta} = ln [|sin theta|]^{frac{pi}{2}}_{frac{pi}{4}} = 0-ln frac{1}{sqrt{2}}=ln sqrt{2}$$
$endgroup$
add a comment |
$begingroup$
put $x = tan theta$ given integral is
$$int_{frac{pi}{4}}^{frac{pi}{2}} frac{sec^2 theta}{tan theta sec^2 theta} = frac{d(sin theta)}{sin theta} = ln [|sin theta|]^{frac{pi}{2}}_{frac{pi}{4}} = 0-ln frac{1}{sqrt{2}}=ln sqrt{2}$$
$endgroup$
put $x = tan theta$ given integral is
$$int_{frac{pi}{4}}^{frac{pi}{2}} frac{sec^2 theta}{tan theta sec^2 theta} = frac{d(sin theta)}{sin theta} = ln [|sin theta|]^{frac{pi}{2}}_{frac{pi}{4}} = 0-ln frac{1}{sqrt{2}}=ln sqrt{2}$$
edited Nov 23 '17 at 8:09
Nosrati
26.5k62354
26.5k62354
answered Nov 23 '17 at 6:53
MagnetoMagneto
886213
886213
add a comment |
add a comment |
$begingroup$
Your partial fraction decomposition is incorrect. If you still want to use complex numbers, it's
$$ frac{1}{x(1+x^2)} = frac{1}{x} - frac{1}{2(x+i)} - frac{1}{2(x-i)} $$
Then
$$ int_1^{infty} f(x) dx = left.left(ln |x| - frac{1}{2}ln |x+i| -
frac{1}{2} ln |x-i|right)right|_1^{infty} = left. ln left|frac{x}{sqrt{x^2+1}} right|right|_1^{infty} = frac{1}{2}ln 2 $$
Note that
$$ lim_{xto infty} frac{x}{sqrt{x^2+1}} = lim_{xtoinfty}frac{1}{sqrt{1+frac{1}{x^2}}} = 1 $$
$endgroup$
1
$begingroup$
The limit at $1$ is not $0$. How can the integral of a positive function be $0$?
$endgroup$
– Andrei
Nov 23 '17 at 8:09
$begingroup$
Thanks. For some reason I thought it evaluates to $ln 1$. I've updated my answer
$endgroup$
– Dylan
Nov 23 '17 at 9:08
$begingroup$
No problem. Happens to everyone from time to time
$endgroup$
– Andrei
Nov 23 '17 at 9:20
add a comment |
$begingroup$
Your partial fraction decomposition is incorrect. If you still want to use complex numbers, it's
$$ frac{1}{x(1+x^2)} = frac{1}{x} - frac{1}{2(x+i)} - frac{1}{2(x-i)} $$
Then
$$ int_1^{infty} f(x) dx = left.left(ln |x| - frac{1}{2}ln |x+i| -
frac{1}{2} ln |x-i|right)right|_1^{infty} = left. ln left|frac{x}{sqrt{x^2+1}} right|right|_1^{infty} = frac{1}{2}ln 2 $$
Note that
$$ lim_{xto infty} frac{x}{sqrt{x^2+1}} = lim_{xtoinfty}frac{1}{sqrt{1+frac{1}{x^2}}} = 1 $$
$endgroup$
1
$begingroup$
The limit at $1$ is not $0$. How can the integral of a positive function be $0$?
$endgroup$
– Andrei
Nov 23 '17 at 8:09
$begingroup$
Thanks. For some reason I thought it evaluates to $ln 1$. I've updated my answer
$endgroup$
– Dylan
Nov 23 '17 at 9:08
$begingroup$
No problem. Happens to everyone from time to time
$endgroup$
– Andrei
Nov 23 '17 at 9:20
add a comment |
$begingroup$
Your partial fraction decomposition is incorrect. If you still want to use complex numbers, it's
$$ frac{1}{x(1+x^2)} = frac{1}{x} - frac{1}{2(x+i)} - frac{1}{2(x-i)} $$
Then
$$ int_1^{infty} f(x) dx = left.left(ln |x| - frac{1}{2}ln |x+i| -
frac{1}{2} ln |x-i|right)right|_1^{infty} = left. ln left|frac{x}{sqrt{x^2+1}} right|right|_1^{infty} = frac{1}{2}ln 2 $$
Note that
$$ lim_{xto infty} frac{x}{sqrt{x^2+1}} = lim_{xtoinfty}frac{1}{sqrt{1+frac{1}{x^2}}} = 1 $$
$endgroup$
Your partial fraction decomposition is incorrect. If you still want to use complex numbers, it's
$$ frac{1}{x(1+x^2)} = frac{1}{x} - frac{1}{2(x+i)} - frac{1}{2(x-i)} $$
Then
$$ int_1^{infty} f(x) dx = left.left(ln |x| - frac{1}{2}ln |x+i| -
frac{1}{2} ln |x-i|right)right|_1^{infty} = left. ln left|frac{x}{sqrt{x^2+1}} right|right|_1^{infty} = frac{1}{2}ln 2 $$
Note that
$$ lim_{xto infty} frac{x}{sqrt{x^2+1}} = lim_{xtoinfty}frac{1}{sqrt{1+frac{1}{x^2}}} = 1 $$
edited Nov 23 '17 at 9:08
answered Nov 23 '17 at 7:32
DylanDylan
12.7k31026
12.7k31026
1
$begingroup$
The limit at $1$ is not $0$. How can the integral of a positive function be $0$?
$endgroup$
– Andrei
Nov 23 '17 at 8:09
$begingroup$
Thanks. For some reason I thought it evaluates to $ln 1$. I've updated my answer
$endgroup$
– Dylan
Nov 23 '17 at 9:08
$begingroup$
No problem. Happens to everyone from time to time
$endgroup$
– Andrei
Nov 23 '17 at 9:20
add a comment |
1
$begingroup$
The limit at $1$ is not $0$. How can the integral of a positive function be $0$?
$endgroup$
– Andrei
Nov 23 '17 at 8:09
$begingroup$
Thanks. For some reason I thought it evaluates to $ln 1$. I've updated my answer
$endgroup$
– Dylan
Nov 23 '17 at 9:08
$begingroup$
No problem. Happens to everyone from time to time
$endgroup$
– Andrei
Nov 23 '17 at 9:20
1
1
$begingroup$
The limit at $1$ is not $0$. How can the integral of a positive function be $0$?
$endgroup$
– Andrei
Nov 23 '17 at 8:09
$begingroup$
The limit at $1$ is not $0$. How can the integral of a positive function be $0$?
$endgroup$
– Andrei
Nov 23 '17 at 8:09
$begingroup$
Thanks. For some reason I thought it evaluates to $ln 1$. I've updated my answer
$endgroup$
– Dylan
Nov 23 '17 at 9:08
$begingroup$
Thanks. For some reason I thought it evaluates to $ln 1$. I've updated my answer
$endgroup$
– Dylan
Nov 23 '17 at 9:08
$begingroup$
No problem. Happens to everyone from time to time
$endgroup$
– Andrei
Nov 23 '17 at 9:20
$begingroup$
No problem. Happens to everyone from time to time
$endgroup$
– Andrei
Nov 23 '17 at 9:20
add a comment |
$begingroup$
By enforcing the substitution $x=frac{1}{z}$ the result is straightforward to find:
$$ int_{1}^{+infty}frac{dx}{x(x^2+1)}=int_{0}^{1}frac{z,dz}{z^2+1}=left[frac{1}{2}log(1+z^2)right]_{0}^{1}=color{red}{frac{log 2}{2}}.$$
$endgroup$
add a comment |
$begingroup$
By enforcing the substitution $x=frac{1}{z}$ the result is straightforward to find:
$$ int_{1}^{+infty}frac{dx}{x(x^2+1)}=int_{0}^{1}frac{z,dz}{z^2+1}=left[frac{1}{2}log(1+z^2)right]_{0}^{1}=color{red}{frac{log 2}{2}}.$$
$endgroup$
add a comment |
$begingroup$
By enforcing the substitution $x=frac{1}{z}$ the result is straightforward to find:
$$ int_{1}^{+infty}frac{dx}{x(x^2+1)}=int_{0}^{1}frac{z,dz}{z^2+1}=left[frac{1}{2}log(1+z^2)right]_{0}^{1}=color{red}{frac{log 2}{2}}.$$
$endgroup$
By enforcing the substitution $x=frac{1}{z}$ the result is straightforward to find:
$$ int_{1}^{+infty}frac{dx}{x(x^2+1)}=int_{0}^{1}frac{z,dz}{z^2+1}=left[frac{1}{2}log(1+z^2)right]_{0}^{1}=color{red}{frac{log 2}{2}}.$$
answered Nov 23 '17 at 19:08
Jack D'AurizioJack D'Aurizio
289k33281661
289k33281661
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2533478%2fevaluating-int-1-infty-frac1xx21-dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
4
$begingroup$
Try 1/x - x/(x^2+1)
$endgroup$
– jnyan
Nov 23 '17 at 6:03
$begingroup$
The factor $frac 12$ does not apply for $frac 1x$. Otherwise, you are on the right track if you simplify the complex terms.
$endgroup$
– Claude Leibovici
Nov 23 '17 at 6:07
$begingroup$
@ClaudeLeibovici How about if I don't simplify the complex terms (just substituting the limits in)? Wouldn't I get something like $-infty - infty$ (a sum of infinities)?
$endgroup$
– Natash1
Nov 23 '17 at 6:11
2
$begingroup$
You end up with $$ I = int_{1}^{infty} left( frac{1}{x} - frac{x}{1+x^2} right) , dx = int_{1}^{infty} left( frac{1}{x} - frac{1}{2(x+i)} - frac{1}{2(x-i)} right) , dx. $$ And notice that this is the limit $$ I = lim_{Rtoinfty} int_{1}^{R} left( frac{1}{x} - frac{1}{2(x+i)} - frac{1}{2(x-i)} right) , dx. $$ This does help in evaluating $I$ since you now have a direct control over the indeterminate of the form $infty - infty$.
$endgroup$
– Sangchul Lee
Nov 23 '17 at 6:15
1
$begingroup$
Possible duplicate of Evaluation of $int_1^infty frac{1}{x(x^2+1)} dx$
$endgroup$
– Nosrati
Dec 11 '18 at 11:06