Proof of $frac{q_n}{q_{n-1}} = [a_n,a_{n-1},a_{n-2},…,a_2,a_1]$?












1












$begingroup$


Proof of continued fractions axiom.



Let $c=[a_0,a_1,a_2,dots,a_n,dots] = a_0 + cfrac{1}{a_1 + cfrac{1}{a_2 + ddots}}$ be a continued fraction which could be finite or infinite.



By $frac{p_n}{q_n}$ we denote the $n$-th convergent of the continued fraction, i.e.
$$frac{p_n}{q_n}=[a_0,a_1,a_2,dots,a_n].$$



How to prove the formula formula: $$frac{q_n}{q_{n-1}} = [a_n,a_{n-1},a_{n-2},...,a_2,a_1]?$$



This formula is stated in the book Olds C.D. Continued fractions (Math.Assoc.Am., Yale, 1963) as a part of Problem 7 on page 26, together with a related formula
$$frac{p_n}{p_{n-1}} = [a_n,a_{n-1},dots,a_1,a_0].$$



It is also stated as formula (31) in Wolfram Mathworld article on continued fractions.



visual formula - https://s31.postimg.org/6l4ehkd8r/pic.png










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    I have tried to edit the post. Together with the OPs edits, I do not think the close reason "unclear what you're asking" applies any longer.
    $endgroup$
    – Martin Sleziak
    Jun 19 '16 at 14:45
















1












$begingroup$


Proof of continued fractions axiom.



Let $c=[a_0,a_1,a_2,dots,a_n,dots] = a_0 + cfrac{1}{a_1 + cfrac{1}{a_2 + ddots}}$ be a continued fraction which could be finite or infinite.



By $frac{p_n}{q_n}$ we denote the $n$-th convergent of the continued fraction, i.e.
$$frac{p_n}{q_n}=[a_0,a_1,a_2,dots,a_n].$$



How to prove the formula formula: $$frac{q_n}{q_{n-1}} = [a_n,a_{n-1},a_{n-2},...,a_2,a_1]?$$



This formula is stated in the book Olds C.D. Continued fractions (Math.Assoc.Am., Yale, 1963) as a part of Problem 7 on page 26, together with a related formula
$$frac{p_n}{p_{n-1}} = [a_n,a_{n-1},dots,a_1,a_0].$$



It is also stated as formula (31) in Wolfram Mathworld article on continued fractions.



visual formula - https://s31.postimg.org/6l4ehkd8r/pic.png










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    I have tried to edit the post. Together with the OPs edits, I do not think the close reason "unclear what you're asking" applies any longer.
    $endgroup$
    – Martin Sleziak
    Jun 19 '16 at 14:45














1












1








1





$begingroup$


Proof of continued fractions axiom.



Let $c=[a_0,a_1,a_2,dots,a_n,dots] = a_0 + cfrac{1}{a_1 + cfrac{1}{a_2 + ddots}}$ be a continued fraction which could be finite or infinite.



By $frac{p_n}{q_n}$ we denote the $n$-th convergent of the continued fraction, i.e.
$$frac{p_n}{q_n}=[a_0,a_1,a_2,dots,a_n].$$



How to prove the formula formula: $$frac{q_n}{q_{n-1}} = [a_n,a_{n-1},a_{n-2},...,a_2,a_1]?$$



This formula is stated in the book Olds C.D. Continued fractions (Math.Assoc.Am., Yale, 1963) as a part of Problem 7 on page 26, together with a related formula
$$frac{p_n}{p_{n-1}} = [a_n,a_{n-1},dots,a_1,a_0].$$



It is also stated as formula (31) in Wolfram Mathworld article on continued fractions.



visual formula - https://s31.postimg.org/6l4ehkd8r/pic.png










share|cite|improve this question











$endgroup$




Proof of continued fractions axiom.



Let $c=[a_0,a_1,a_2,dots,a_n,dots] = a_0 + cfrac{1}{a_1 + cfrac{1}{a_2 + ddots}}$ be a continued fraction which could be finite or infinite.



By $frac{p_n}{q_n}$ we denote the $n$-th convergent of the continued fraction, i.e.
$$frac{p_n}{q_n}=[a_0,a_1,a_2,dots,a_n].$$



How to prove the formula formula: $$frac{q_n}{q_{n-1}} = [a_n,a_{n-1},a_{n-2},...,a_2,a_1]?$$



This formula is stated in the book Olds C.D. Continued fractions (Math.Assoc.Am., Yale, 1963) as a part of Problem 7 on page 26, together with a related formula
$$frac{p_n}{p_{n-1}} = [a_n,a_{n-1},dots,a_1,a_0].$$



It is also stated as formula (31) in Wolfram Mathworld article on continued fractions.



visual formula - https://s31.postimg.org/6l4ehkd8r/pic.png







fractions continued-fractions






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jun 19 '16 at 14:39









Martin Sleziak

44.8k9118272




44.8k9118272










asked Jun 18 '16 at 16:22









qwerryqwerry

314




314








  • 1




    $begingroup$
    I have tried to edit the post. Together with the OPs edits, I do not think the close reason "unclear what you're asking" applies any longer.
    $endgroup$
    – Martin Sleziak
    Jun 19 '16 at 14:45














  • 1




    $begingroup$
    I have tried to edit the post. Together with the OPs edits, I do not think the close reason "unclear what you're asking" applies any longer.
    $endgroup$
    – Martin Sleziak
    Jun 19 '16 at 14:45








1




1




$begingroup$
I have tried to edit the post. Together with the OPs edits, I do not think the close reason "unclear what you're asking" applies any longer.
$endgroup$
– Martin Sleziak
Jun 19 '16 at 14:45




$begingroup$
I have tried to edit the post. Together with the OPs edits, I do not think the close reason "unclear what you're asking" applies any longer.
$endgroup$
– Martin Sleziak
Jun 19 '16 at 14:45










1 Answer
1






active

oldest

votes


















2












$begingroup$

Ok, I guess it is by far simple answer, sorry for posting silly questions :(.



$frac{q_n}{q_{n-1}}$ =
$frac{a_n*q_{n-1}+q_{n-2}}{q_{n-1}}$ =
$frac{a_n*q_{n-1}}{q_{n-1}}$ +
$frac{q_{n-2}}{q_{n-1}}$ =
$a_n$ +
$frac{q_{n-2}}{q_{n-1}}$ =
$a_n$ + $frac{1}{frac{q_{n-1}}{q_{n-2}}}$



So $frac{q_n}{q_{n-1}}$ = $a_n$ + $frac{1}{frac{q_{n-1}}{q_{n-2}}}$



and $frac{q_{n-1}}{q_{n-2}}$ = $a_{n-1}$ + $frac{1}{frac{q_{n-2}}{q_{n-3}}}$



and $frac{q_{n-2}}{q_{n-3}}$ = $a_{n-2}$ + $frac{1}{frac{q_{n-3}}{q_{n-4}}}$



$vdots$



So by induction you will have:



$frac{q_n}{q_{n-1}}$ =
$a_n$ + $frac{1}
{a_{n-1} + frac{1}
{a_{n-2} + frac{1}
{frac{q_{n-3}}{
ddots}}}}$
= $[a_{n},a_{n-1},a_{n-2},dots,a_{1}]$






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1831001%2fproof-of-fracq-nq-n-1-a-n-a-n-1-a-n-2-a-2-a-1%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    Ok, I guess it is by far simple answer, sorry for posting silly questions :(.



    $frac{q_n}{q_{n-1}}$ =
    $frac{a_n*q_{n-1}+q_{n-2}}{q_{n-1}}$ =
    $frac{a_n*q_{n-1}}{q_{n-1}}$ +
    $frac{q_{n-2}}{q_{n-1}}$ =
    $a_n$ +
    $frac{q_{n-2}}{q_{n-1}}$ =
    $a_n$ + $frac{1}{frac{q_{n-1}}{q_{n-2}}}$



    So $frac{q_n}{q_{n-1}}$ = $a_n$ + $frac{1}{frac{q_{n-1}}{q_{n-2}}}$



    and $frac{q_{n-1}}{q_{n-2}}$ = $a_{n-1}$ + $frac{1}{frac{q_{n-2}}{q_{n-3}}}$



    and $frac{q_{n-2}}{q_{n-3}}$ = $a_{n-2}$ + $frac{1}{frac{q_{n-3}}{q_{n-4}}}$



    $vdots$



    So by induction you will have:



    $frac{q_n}{q_{n-1}}$ =
    $a_n$ + $frac{1}
    {a_{n-1} + frac{1}
    {a_{n-2} + frac{1}
    {frac{q_{n-3}}{
    ddots}}}}$
    = $[a_{n},a_{n-1},a_{n-2},dots,a_{1}]$






    share|cite|improve this answer











    $endgroup$


















      2












      $begingroup$

      Ok, I guess it is by far simple answer, sorry for posting silly questions :(.



      $frac{q_n}{q_{n-1}}$ =
      $frac{a_n*q_{n-1}+q_{n-2}}{q_{n-1}}$ =
      $frac{a_n*q_{n-1}}{q_{n-1}}$ +
      $frac{q_{n-2}}{q_{n-1}}$ =
      $a_n$ +
      $frac{q_{n-2}}{q_{n-1}}$ =
      $a_n$ + $frac{1}{frac{q_{n-1}}{q_{n-2}}}$



      So $frac{q_n}{q_{n-1}}$ = $a_n$ + $frac{1}{frac{q_{n-1}}{q_{n-2}}}$



      and $frac{q_{n-1}}{q_{n-2}}$ = $a_{n-1}$ + $frac{1}{frac{q_{n-2}}{q_{n-3}}}$



      and $frac{q_{n-2}}{q_{n-3}}$ = $a_{n-2}$ + $frac{1}{frac{q_{n-3}}{q_{n-4}}}$



      $vdots$



      So by induction you will have:



      $frac{q_n}{q_{n-1}}$ =
      $a_n$ + $frac{1}
      {a_{n-1} + frac{1}
      {a_{n-2} + frac{1}
      {frac{q_{n-3}}{
      ddots}}}}$
      = $[a_{n},a_{n-1},a_{n-2},dots,a_{1}]$






      share|cite|improve this answer











      $endgroup$
















        2












        2








        2





        $begingroup$

        Ok, I guess it is by far simple answer, sorry for posting silly questions :(.



        $frac{q_n}{q_{n-1}}$ =
        $frac{a_n*q_{n-1}+q_{n-2}}{q_{n-1}}$ =
        $frac{a_n*q_{n-1}}{q_{n-1}}$ +
        $frac{q_{n-2}}{q_{n-1}}$ =
        $a_n$ +
        $frac{q_{n-2}}{q_{n-1}}$ =
        $a_n$ + $frac{1}{frac{q_{n-1}}{q_{n-2}}}$



        So $frac{q_n}{q_{n-1}}$ = $a_n$ + $frac{1}{frac{q_{n-1}}{q_{n-2}}}$



        and $frac{q_{n-1}}{q_{n-2}}$ = $a_{n-1}$ + $frac{1}{frac{q_{n-2}}{q_{n-3}}}$



        and $frac{q_{n-2}}{q_{n-3}}$ = $a_{n-2}$ + $frac{1}{frac{q_{n-3}}{q_{n-4}}}$



        $vdots$



        So by induction you will have:



        $frac{q_n}{q_{n-1}}$ =
        $a_n$ + $frac{1}
        {a_{n-1} + frac{1}
        {a_{n-2} + frac{1}
        {frac{q_{n-3}}{
        ddots}}}}$
        = $[a_{n},a_{n-1},a_{n-2},dots,a_{1}]$






        share|cite|improve this answer











        $endgroup$



        Ok, I guess it is by far simple answer, sorry for posting silly questions :(.



        $frac{q_n}{q_{n-1}}$ =
        $frac{a_n*q_{n-1}+q_{n-2}}{q_{n-1}}$ =
        $frac{a_n*q_{n-1}}{q_{n-1}}$ +
        $frac{q_{n-2}}{q_{n-1}}$ =
        $a_n$ +
        $frac{q_{n-2}}{q_{n-1}}$ =
        $a_n$ + $frac{1}{frac{q_{n-1}}{q_{n-2}}}$



        So $frac{q_n}{q_{n-1}}$ = $a_n$ + $frac{1}{frac{q_{n-1}}{q_{n-2}}}$



        and $frac{q_{n-1}}{q_{n-2}}$ = $a_{n-1}$ + $frac{1}{frac{q_{n-2}}{q_{n-3}}}$



        and $frac{q_{n-2}}{q_{n-3}}$ = $a_{n-2}$ + $frac{1}{frac{q_{n-3}}{q_{n-4}}}$



        $vdots$



        So by induction you will have:



        $frac{q_n}{q_{n-1}}$ =
        $a_n$ + $frac{1}
        {a_{n-1} + frac{1}
        {a_{n-2} + frac{1}
        {frac{q_{n-3}}{
        ddots}}}}$
        = $[a_{n},a_{n-1},a_{n-2},dots,a_{1}]$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Dec 11 '18 at 14:28









        Algebear

        616319




        616319










        answered Jun 19 '16 at 21:17









        qwerryqwerry

        314




        314






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1831001%2fproof-of-fracq-nq-n-1-a-n-a-n-1-a-n-2-a-2-a-1%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Quarter-circle Tiles

            build a pushdown automaton that recognizes the reverse language of a given pushdown automaton?

            Mont Emei