Value of ratio of $2$ definite Integration












-1












$begingroup$



Evaluation of $$ 2^{2010}frac{int^{1}_{0}x^{1004}(1-x)^{1004}dx}{int^{1}_{0}x^{1004}(1-x^{2010})^{1004}dx}$$




Try: Let $displaystyle I =int^{1}_{0}x^{1004}(1-x)^{1004}dx$ and $displaystyle J =int^{1}_{0}x^{1004}(1-x^{2010})^{1004}dx$



put $x^{1005}=t$ and $displaystyle x^{1004}dx=frac{1}{1005}dt$



So $displaystyle J =frac{1}{1005}int^{1}_{0}(1-t^2)dt$



Now i am struck here , I did not understand how to solve it



Could some help me to solve it, Thanks










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    Bhai beta function ki property check kar le wikipedia se. Best of luck.
    $endgroup$
    – NewBornMATH
    Dec 11 '18 at 15:24










  • $begingroup$
    bhai tu sahi bola ye beta baba hee hain
    $endgroup$
    – deleteprofile
    Dec 11 '18 at 15:41
















-1












$begingroup$



Evaluation of $$ 2^{2010}frac{int^{1}_{0}x^{1004}(1-x)^{1004}dx}{int^{1}_{0}x^{1004}(1-x^{2010})^{1004}dx}$$




Try: Let $displaystyle I =int^{1}_{0}x^{1004}(1-x)^{1004}dx$ and $displaystyle J =int^{1}_{0}x^{1004}(1-x^{2010})^{1004}dx$



put $x^{1005}=t$ and $displaystyle x^{1004}dx=frac{1}{1005}dt$



So $displaystyle J =frac{1}{1005}int^{1}_{0}(1-t^2)dt$



Now i am struck here , I did not understand how to solve it



Could some help me to solve it, Thanks










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    Bhai beta function ki property check kar le wikipedia se. Best of luck.
    $endgroup$
    – NewBornMATH
    Dec 11 '18 at 15:24










  • $begingroup$
    bhai tu sahi bola ye beta baba hee hain
    $endgroup$
    – deleteprofile
    Dec 11 '18 at 15:41














-1












-1








-1





$begingroup$



Evaluation of $$ 2^{2010}frac{int^{1}_{0}x^{1004}(1-x)^{1004}dx}{int^{1}_{0}x^{1004}(1-x^{2010})^{1004}dx}$$




Try: Let $displaystyle I =int^{1}_{0}x^{1004}(1-x)^{1004}dx$ and $displaystyle J =int^{1}_{0}x^{1004}(1-x^{2010})^{1004}dx$



put $x^{1005}=t$ and $displaystyle x^{1004}dx=frac{1}{1005}dt$



So $displaystyle J =frac{1}{1005}int^{1}_{0}(1-t^2)dt$



Now i am struck here , I did not understand how to solve it



Could some help me to solve it, Thanks










share|cite|improve this question









$endgroup$





Evaluation of $$ 2^{2010}frac{int^{1}_{0}x^{1004}(1-x)^{1004}dx}{int^{1}_{0}x^{1004}(1-x^{2010})^{1004}dx}$$




Try: Let $displaystyle I =int^{1}_{0}x^{1004}(1-x)^{1004}dx$ and $displaystyle J =int^{1}_{0}x^{1004}(1-x^{2010})^{1004}dx$



put $x^{1005}=t$ and $displaystyle x^{1004}dx=frac{1}{1005}dt$



So $displaystyle J =frac{1}{1005}int^{1}_{0}(1-t^2)dt$



Now i am struck here , I did not understand how to solve it



Could some help me to solve it, Thanks







definite-integrals






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 11 '18 at 15:02









DXTDXT

5,6742630




5,6742630








  • 2




    $begingroup$
    Bhai beta function ki property check kar le wikipedia se. Best of luck.
    $endgroup$
    – NewBornMATH
    Dec 11 '18 at 15:24










  • $begingroup$
    bhai tu sahi bola ye beta baba hee hain
    $endgroup$
    – deleteprofile
    Dec 11 '18 at 15:41














  • 2




    $begingroup$
    Bhai beta function ki property check kar le wikipedia se. Best of luck.
    $endgroup$
    – NewBornMATH
    Dec 11 '18 at 15:24










  • $begingroup$
    bhai tu sahi bola ye beta baba hee hain
    $endgroup$
    – deleteprofile
    Dec 11 '18 at 15:41








2




2




$begingroup$
Bhai beta function ki property check kar le wikipedia se. Best of luck.
$endgroup$
– NewBornMATH
Dec 11 '18 at 15:24




$begingroup$
Bhai beta function ki property check kar le wikipedia se. Best of luck.
$endgroup$
– NewBornMATH
Dec 11 '18 at 15:24












$begingroup$
bhai tu sahi bola ye beta baba hee hain
$endgroup$
– deleteprofile
Dec 11 '18 at 15:41




$begingroup$
bhai tu sahi bola ye beta baba hee hain
$endgroup$
– deleteprofile
Dec 11 '18 at 15:41










1 Answer
1






active

oldest

votes


















2












$begingroup$

With $a = 1004$ and $b = 2010$ and $B$ the beta function,
$$eqalign{I &= {frac {a{rm B} left(a,aright)}{4,a+2}}cr
J &= frac{a{rm B} left(a,frac{a+1}{b}right)}{ab + a + 1}
}
$$

and thus $$frac{I}{J} = frac{1+a+ab}{4a+2} frac{{rm B}(a,a)}{{rm B}(a,(a+1)/b)}$$
In your case I get
$$ 2^{2010} I/J = 4020$$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035376%2fvalue-of-ratio-of-2-definite-integration%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    With $a = 1004$ and $b = 2010$ and $B$ the beta function,
    $$eqalign{I &= {frac {a{rm B} left(a,aright)}{4,a+2}}cr
    J &= frac{a{rm B} left(a,frac{a+1}{b}right)}{ab + a + 1}
    }
    $$

    and thus $$frac{I}{J} = frac{1+a+ab}{4a+2} frac{{rm B}(a,a)}{{rm B}(a,(a+1)/b)}$$
    In your case I get
    $$ 2^{2010} I/J = 4020$$






    share|cite|improve this answer









    $endgroup$


















      2












      $begingroup$

      With $a = 1004$ and $b = 2010$ and $B$ the beta function,
      $$eqalign{I &= {frac {a{rm B} left(a,aright)}{4,a+2}}cr
      J &= frac{a{rm B} left(a,frac{a+1}{b}right)}{ab + a + 1}
      }
      $$

      and thus $$frac{I}{J} = frac{1+a+ab}{4a+2} frac{{rm B}(a,a)}{{rm B}(a,(a+1)/b)}$$
      In your case I get
      $$ 2^{2010} I/J = 4020$$






      share|cite|improve this answer









      $endgroup$
















        2












        2








        2





        $begingroup$

        With $a = 1004$ and $b = 2010$ and $B$ the beta function,
        $$eqalign{I &= {frac {a{rm B} left(a,aright)}{4,a+2}}cr
        J &= frac{a{rm B} left(a,frac{a+1}{b}right)}{ab + a + 1}
        }
        $$

        and thus $$frac{I}{J} = frac{1+a+ab}{4a+2} frac{{rm B}(a,a)}{{rm B}(a,(a+1)/b)}$$
        In your case I get
        $$ 2^{2010} I/J = 4020$$






        share|cite|improve this answer









        $endgroup$



        With $a = 1004$ and $b = 2010$ and $B$ the beta function,
        $$eqalign{I &= {frac {a{rm B} left(a,aright)}{4,a+2}}cr
        J &= frac{a{rm B} left(a,frac{a+1}{b}right)}{ab + a + 1}
        }
        $$

        and thus $$frac{I}{J} = frac{1+a+ab}{4a+2} frac{{rm B}(a,a)}{{rm B}(a,(a+1)/b)}$$
        In your case I get
        $$ 2^{2010} I/J = 4020$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 11 '18 at 15:15









        Robert IsraelRobert Israel

        321k23211465




        321k23211465






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035376%2fvalue-of-ratio-of-2-definite-integration%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Ellipse (mathématiques)

            Quarter-circle Tiles

            Mont Emei