If $Φ$ is the cdf of the standard normal distribution and $φ_i:ℝ→ℝ$ is linear, are the 1st and 2nd...
$begingroup$
Let
$dinmathbb N$ with $d>1$
$lambda^d$ denote the Lebesuge measure on $mathcal Bleft(mathbb R^dright)$
$fin C^2(mathbb R)$ be positive and $$pi(x):=prod_{i=1}^df(x_i);;;text{for }xinmathbb R^d$$
$Phi$ denote the cdf of the standard normal distribution
$ell>0$ and $$sigma^2:=frac{ell^2}{d-1}$$
- $xinmathbb R^d$
$(Omega,mathcal A,operatorname P)$ be a probability space
$Y$ be a $mathbb R^d$-valued random variable on $(Omega,mathcal A,operatorname P)$ with $Ysimmathcal N(0,sigma I)$ (where $I$ denotes the $d$-dimensional identity matrix)
Now, let $$g(z):=frac1{d-1}sum_{i=2}^dleft|frac{f'(z_i)}{f(z_i)}right|^2;;;text{for }zinmathbb R^d,$$ $varepsilon:=g-g(x_1)$ and $$M(z):=Phileft(frac1{{g(x)}^{1/2}}left(frac zell-frac{ell g(x)}2right)right)+e^zPhileft(-frac z{ell{{g(x)}^{1/2}}}-frac{ell{g(x)}^{1/2}}2right);;;text{for }zinmathbb R.$$ Note that there is a real-valued random variable $W$ on $(Omega,mathcal A,operatorname P)$ with $$W(omega)inleft{(1-t)x_1+tY_1(omega):tin[0,1]right}tag1$$ and $$M(varepsilon(Y_1))=M(0)+frac12M(0)g'(x_1)(Y_1-x_1)+frac12left(T(W)right)(Y_1-x_1)^2tag2,$$ where $$T(w):=g''(w)M'(varepsilon(w))+{g'(w)}^2M''(varepsilon(w));;;text{for }winmathbb R.$$
How can we show that $T(W)$ is uniformly bounded with respect to $x$, if the domain of $x$ is restricted to a compact set?
Most probably, the question is highly overcomplicated. I've read that the claim follows by noting that $M'$ and $M''$ are bounded. However, if I'm not terribly wrong, $M'$ and $M''$ are unbounded. And even if they would be bounded, $g'$ and $g''$ (which also occur in the definition of $T$) should be unbounded ... So, I don't see what we need here.
probability-theory normal-distribution
$endgroup$
add a comment |
$begingroup$
Let
$dinmathbb N$ with $d>1$
$lambda^d$ denote the Lebesuge measure on $mathcal Bleft(mathbb R^dright)$
$fin C^2(mathbb R)$ be positive and $$pi(x):=prod_{i=1}^df(x_i);;;text{for }xinmathbb R^d$$
$Phi$ denote the cdf of the standard normal distribution
$ell>0$ and $$sigma^2:=frac{ell^2}{d-1}$$
- $xinmathbb R^d$
$(Omega,mathcal A,operatorname P)$ be a probability space
$Y$ be a $mathbb R^d$-valued random variable on $(Omega,mathcal A,operatorname P)$ with $Ysimmathcal N(0,sigma I)$ (where $I$ denotes the $d$-dimensional identity matrix)
Now, let $$g(z):=frac1{d-1}sum_{i=2}^dleft|frac{f'(z_i)}{f(z_i)}right|^2;;;text{for }zinmathbb R^d,$$ $varepsilon:=g-g(x_1)$ and $$M(z):=Phileft(frac1{{g(x)}^{1/2}}left(frac zell-frac{ell g(x)}2right)right)+e^zPhileft(-frac z{ell{{g(x)}^{1/2}}}-frac{ell{g(x)}^{1/2}}2right);;;text{for }zinmathbb R.$$ Note that there is a real-valued random variable $W$ on $(Omega,mathcal A,operatorname P)$ with $$W(omega)inleft{(1-t)x_1+tY_1(omega):tin[0,1]right}tag1$$ and $$M(varepsilon(Y_1))=M(0)+frac12M(0)g'(x_1)(Y_1-x_1)+frac12left(T(W)right)(Y_1-x_1)^2tag2,$$ where $$T(w):=g''(w)M'(varepsilon(w))+{g'(w)}^2M''(varepsilon(w));;;text{for }winmathbb R.$$
How can we show that $T(W)$ is uniformly bounded with respect to $x$, if the domain of $x$ is restricted to a compact set?
Most probably, the question is highly overcomplicated. I've read that the claim follows by noting that $M'$ and $M''$ are bounded. However, if I'm not terribly wrong, $M'$ and $M''$ are unbounded. And even if they would be bounded, $g'$ and $g''$ (which also occur in the definition of $T$) should be unbounded ... So, I don't see what we need here.
probability-theory normal-distribution
$endgroup$
add a comment |
$begingroup$
Let
$dinmathbb N$ with $d>1$
$lambda^d$ denote the Lebesuge measure on $mathcal Bleft(mathbb R^dright)$
$fin C^2(mathbb R)$ be positive and $$pi(x):=prod_{i=1}^df(x_i);;;text{for }xinmathbb R^d$$
$Phi$ denote the cdf of the standard normal distribution
$ell>0$ and $$sigma^2:=frac{ell^2}{d-1}$$
- $xinmathbb R^d$
$(Omega,mathcal A,operatorname P)$ be a probability space
$Y$ be a $mathbb R^d$-valued random variable on $(Omega,mathcal A,operatorname P)$ with $Ysimmathcal N(0,sigma I)$ (where $I$ denotes the $d$-dimensional identity matrix)
Now, let $$g(z):=frac1{d-1}sum_{i=2}^dleft|frac{f'(z_i)}{f(z_i)}right|^2;;;text{for }zinmathbb R^d,$$ $varepsilon:=g-g(x_1)$ and $$M(z):=Phileft(frac1{{g(x)}^{1/2}}left(frac zell-frac{ell g(x)}2right)right)+e^zPhileft(-frac z{ell{{g(x)}^{1/2}}}-frac{ell{g(x)}^{1/2}}2right);;;text{for }zinmathbb R.$$ Note that there is a real-valued random variable $W$ on $(Omega,mathcal A,operatorname P)$ with $$W(omega)inleft{(1-t)x_1+tY_1(omega):tin[0,1]right}tag1$$ and $$M(varepsilon(Y_1))=M(0)+frac12M(0)g'(x_1)(Y_1-x_1)+frac12left(T(W)right)(Y_1-x_1)^2tag2,$$ where $$T(w):=g''(w)M'(varepsilon(w))+{g'(w)}^2M''(varepsilon(w));;;text{for }winmathbb R.$$
How can we show that $T(W)$ is uniformly bounded with respect to $x$, if the domain of $x$ is restricted to a compact set?
Most probably, the question is highly overcomplicated. I've read that the claim follows by noting that $M'$ and $M''$ are bounded. However, if I'm not terribly wrong, $M'$ and $M''$ are unbounded. And even if they would be bounded, $g'$ and $g''$ (which also occur in the definition of $T$) should be unbounded ... So, I don't see what we need here.
probability-theory normal-distribution
$endgroup$
Let
$dinmathbb N$ with $d>1$
$lambda^d$ denote the Lebesuge measure on $mathcal Bleft(mathbb R^dright)$
$fin C^2(mathbb R)$ be positive and $$pi(x):=prod_{i=1}^df(x_i);;;text{for }xinmathbb R^d$$
$Phi$ denote the cdf of the standard normal distribution
$ell>0$ and $$sigma^2:=frac{ell^2}{d-1}$$
- $xinmathbb R^d$
$(Omega,mathcal A,operatorname P)$ be a probability space
$Y$ be a $mathbb R^d$-valued random variable on $(Omega,mathcal A,operatorname P)$ with $Ysimmathcal N(0,sigma I)$ (where $I$ denotes the $d$-dimensional identity matrix)
Now, let $$g(z):=frac1{d-1}sum_{i=2}^dleft|frac{f'(z_i)}{f(z_i)}right|^2;;;text{for }zinmathbb R^d,$$ $varepsilon:=g-g(x_1)$ and $$M(z):=Phileft(frac1{{g(x)}^{1/2}}left(frac zell-frac{ell g(x)}2right)right)+e^zPhileft(-frac z{ell{{g(x)}^{1/2}}}-frac{ell{g(x)}^{1/2}}2right);;;text{for }zinmathbb R.$$ Note that there is a real-valued random variable $W$ on $(Omega,mathcal A,operatorname P)$ with $$W(omega)inleft{(1-t)x_1+tY_1(omega):tin[0,1]right}tag1$$ and $$M(varepsilon(Y_1))=M(0)+frac12M(0)g'(x_1)(Y_1-x_1)+frac12left(T(W)right)(Y_1-x_1)^2tag2,$$ where $$T(w):=g''(w)M'(varepsilon(w))+{g'(w)}^2M''(varepsilon(w));;;text{for }winmathbb R.$$
How can we show that $T(W)$ is uniformly bounded with respect to $x$, if the domain of $x$ is restricted to a compact set?
Most probably, the question is highly overcomplicated. I've read that the claim follows by noting that $M'$ and $M''$ are bounded. However, if I'm not terribly wrong, $M'$ and $M''$ are unbounded. And even if they would be bounded, $g'$ and $g''$ (which also occur in the definition of $T$) should be unbounded ... So, I don't see what we need here.
probability-theory normal-distribution
probability-theory normal-distribution
asked Dec 11 '18 at 15:08
0xbadf00d0xbadf00d
1,91341531
1,91341531
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035383%2fif-%25ce%25a6-is-the-cdf-of-the-standard-normal-distribution-and-%25cf%2586-i%25e2%2584%259d%25e2%2586%2592%25e2%2584%259d-is-linear-a%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035383%2fif-%25ce%25a6-is-the-cdf-of-the-standard-normal-distribution-and-%25cf%2586-i%25e2%2584%259d%25e2%2586%2592%25e2%2584%259d-is-linear-a%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown