Laplace transform of “shifted” modified Bessel function












0












$begingroup$


Dear all: i'm trying to derive a closed form the following integral,
$$
X_n(R)=int_0^infty exp(-p, r)I_n(omega (r+R)), dr,
$$

where $I_n$ is the standard modified Bessel function of the first kind and $p>omega$, $0 leq omega<1$. I know that, when there is no shift ($R=0$), the values $X_n(R=0)$ are well-known because they are standard Laplace transforms $L[I_n(omega, cdot)](p)$, see for instance here.



Yet, for $R not =0$, i've come up with 2 possibilities,



-- using a "shift theorem" for the Laplace transform, which means that i change variable $r to r+R$ in order to get an exponential term $exp(pR)$ outside. However, this has an effect on the interval of integration,
$$
X_n(R)=exp(pR) int_R^infty exp(-pr)I_n(omega, r), dr,
$$

so that the value of the integral isn't well-known anymore. If $|R| ll 1$, one may use a polynomial approximation of $I_n$ in order to (approximately) compute the term
$$
Y_n(R)=int_0^R exp(-pr)I_n(omega, r), dr simeq int_0^R exp(-pr)frac{x^n}{2^n ,n!} , dr,
$$

which should be subtracted from the value of the Laplace transform as follows:
$$
X_n(R)=exp(pR)Big(L[I_n(omega, cdot)](p)-Y_n(R) Big).
$$



-- using the "summation formula" for Bessel functions,
$$
I_n(a+b)=sum_{k=-infty}^infty I_k(a)I_{n-k}(b),
$$

in order to retrieve
$$
X_n(R)=sum_{k=-infty}^infty I_{n-k}(omega R) int_0^infty exp(-p r) I_{k}(omega r), dr,
$$

which is a doubly.infinite series of Laplace transforms,
$$
X_n(R)=sum_{k=-infty}^infty I_{n-k}(omega R), L[I_{k}(omega, cdot)](p),
$$

and, thanks to the property $I_k(cdot)=I_{-k}(cdot)$, this expression factorizes with respect to $L[I_0(omega, cdot)](p)=1/sqrt{p^2 - omega^2}$ as follows,
$$
X_n(R)=frac{1}{sqrt{p^2 - omega^2}} sum_{k=-infty}^infty I_{n-k}(omega R), left(frac{omega}{p+sqrt{p^2 - omega^2}} right)^{|k|}.
$$

At this point, I was hoping to use the generating function to get rid of the series, at least in the simplest case $n=0$, but having the absolute value $|k|$ cancels all the negative powers, and makes this approach inconclusive. Especially because someone aleady asked for any good value of "half the sum" of the generating function here.



Did I miss anything ? or did i make errors in my derivations ? Any help on this delicate question will be greatly appreciated ... Happy new year 2019 to everyone!










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    Dear all: i'm trying to derive a closed form the following integral,
    $$
    X_n(R)=int_0^infty exp(-p, r)I_n(omega (r+R)), dr,
    $$

    where $I_n$ is the standard modified Bessel function of the first kind and $p>omega$, $0 leq omega<1$. I know that, when there is no shift ($R=0$), the values $X_n(R=0)$ are well-known because they are standard Laplace transforms $L[I_n(omega, cdot)](p)$, see for instance here.



    Yet, for $R not =0$, i've come up with 2 possibilities,



    -- using a "shift theorem" for the Laplace transform, which means that i change variable $r to r+R$ in order to get an exponential term $exp(pR)$ outside. However, this has an effect on the interval of integration,
    $$
    X_n(R)=exp(pR) int_R^infty exp(-pr)I_n(omega, r), dr,
    $$

    so that the value of the integral isn't well-known anymore. If $|R| ll 1$, one may use a polynomial approximation of $I_n$ in order to (approximately) compute the term
    $$
    Y_n(R)=int_0^R exp(-pr)I_n(omega, r), dr simeq int_0^R exp(-pr)frac{x^n}{2^n ,n!} , dr,
    $$

    which should be subtracted from the value of the Laplace transform as follows:
    $$
    X_n(R)=exp(pR)Big(L[I_n(omega, cdot)](p)-Y_n(R) Big).
    $$



    -- using the "summation formula" for Bessel functions,
    $$
    I_n(a+b)=sum_{k=-infty}^infty I_k(a)I_{n-k}(b),
    $$

    in order to retrieve
    $$
    X_n(R)=sum_{k=-infty}^infty I_{n-k}(omega R) int_0^infty exp(-p r) I_{k}(omega r), dr,
    $$

    which is a doubly.infinite series of Laplace transforms,
    $$
    X_n(R)=sum_{k=-infty}^infty I_{n-k}(omega R), L[I_{k}(omega, cdot)](p),
    $$

    and, thanks to the property $I_k(cdot)=I_{-k}(cdot)$, this expression factorizes with respect to $L[I_0(omega, cdot)](p)=1/sqrt{p^2 - omega^2}$ as follows,
    $$
    X_n(R)=frac{1}{sqrt{p^2 - omega^2}} sum_{k=-infty}^infty I_{n-k}(omega R), left(frac{omega}{p+sqrt{p^2 - omega^2}} right)^{|k|}.
    $$

    At this point, I was hoping to use the generating function to get rid of the series, at least in the simplest case $n=0$, but having the absolute value $|k|$ cancels all the negative powers, and makes this approach inconclusive. Especially because someone aleady asked for any good value of "half the sum" of the generating function here.



    Did I miss anything ? or did i make errors in my derivations ? Any help on this delicate question will be greatly appreciated ... Happy new year 2019 to everyone!










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      Dear all: i'm trying to derive a closed form the following integral,
      $$
      X_n(R)=int_0^infty exp(-p, r)I_n(omega (r+R)), dr,
      $$

      where $I_n$ is the standard modified Bessel function of the first kind and $p>omega$, $0 leq omega<1$. I know that, when there is no shift ($R=0$), the values $X_n(R=0)$ are well-known because they are standard Laplace transforms $L[I_n(omega, cdot)](p)$, see for instance here.



      Yet, for $R not =0$, i've come up with 2 possibilities,



      -- using a "shift theorem" for the Laplace transform, which means that i change variable $r to r+R$ in order to get an exponential term $exp(pR)$ outside. However, this has an effect on the interval of integration,
      $$
      X_n(R)=exp(pR) int_R^infty exp(-pr)I_n(omega, r), dr,
      $$

      so that the value of the integral isn't well-known anymore. If $|R| ll 1$, one may use a polynomial approximation of $I_n$ in order to (approximately) compute the term
      $$
      Y_n(R)=int_0^R exp(-pr)I_n(omega, r), dr simeq int_0^R exp(-pr)frac{x^n}{2^n ,n!} , dr,
      $$

      which should be subtracted from the value of the Laplace transform as follows:
      $$
      X_n(R)=exp(pR)Big(L[I_n(omega, cdot)](p)-Y_n(R) Big).
      $$



      -- using the "summation formula" for Bessel functions,
      $$
      I_n(a+b)=sum_{k=-infty}^infty I_k(a)I_{n-k}(b),
      $$

      in order to retrieve
      $$
      X_n(R)=sum_{k=-infty}^infty I_{n-k}(omega R) int_0^infty exp(-p r) I_{k}(omega r), dr,
      $$

      which is a doubly.infinite series of Laplace transforms,
      $$
      X_n(R)=sum_{k=-infty}^infty I_{n-k}(omega R), L[I_{k}(omega, cdot)](p),
      $$

      and, thanks to the property $I_k(cdot)=I_{-k}(cdot)$, this expression factorizes with respect to $L[I_0(omega, cdot)](p)=1/sqrt{p^2 - omega^2}$ as follows,
      $$
      X_n(R)=frac{1}{sqrt{p^2 - omega^2}} sum_{k=-infty}^infty I_{n-k}(omega R), left(frac{omega}{p+sqrt{p^2 - omega^2}} right)^{|k|}.
      $$

      At this point, I was hoping to use the generating function to get rid of the series, at least in the simplest case $n=0$, but having the absolute value $|k|$ cancels all the negative powers, and makes this approach inconclusive. Especially because someone aleady asked for any good value of "half the sum" of the generating function here.



      Did I miss anything ? or did i make errors in my derivations ? Any help on this delicate question will be greatly appreciated ... Happy new year 2019 to everyone!










      share|cite|improve this question









      $endgroup$




      Dear all: i'm trying to derive a closed form the following integral,
      $$
      X_n(R)=int_0^infty exp(-p, r)I_n(omega (r+R)), dr,
      $$

      where $I_n$ is the standard modified Bessel function of the first kind and $p>omega$, $0 leq omega<1$. I know that, when there is no shift ($R=0$), the values $X_n(R=0)$ are well-known because they are standard Laplace transforms $L[I_n(omega, cdot)](p)$, see for instance here.



      Yet, for $R not =0$, i've come up with 2 possibilities,



      -- using a "shift theorem" for the Laplace transform, which means that i change variable $r to r+R$ in order to get an exponential term $exp(pR)$ outside. However, this has an effect on the interval of integration,
      $$
      X_n(R)=exp(pR) int_R^infty exp(-pr)I_n(omega, r), dr,
      $$

      so that the value of the integral isn't well-known anymore. If $|R| ll 1$, one may use a polynomial approximation of $I_n$ in order to (approximately) compute the term
      $$
      Y_n(R)=int_0^R exp(-pr)I_n(omega, r), dr simeq int_0^R exp(-pr)frac{x^n}{2^n ,n!} , dr,
      $$

      which should be subtracted from the value of the Laplace transform as follows:
      $$
      X_n(R)=exp(pR)Big(L[I_n(omega, cdot)](p)-Y_n(R) Big).
      $$



      -- using the "summation formula" for Bessel functions,
      $$
      I_n(a+b)=sum_{k=-infty}^infty I_k(a)I_{n-k}(b),
      $$

      in order to retrieve
      $$
      X_n(R)=sum_{k=-infty}^infty I_{n-k}(omega R) int_0^infty exp(-p r) I_{k}(omega r), dr,
      $$

      which is a doubly.infinite series of Laplace transforms,
      $$
      X_n(R)=sum_{k=-infty}^infty I_{n-k}(omega R), L[I_{k}(omega, cdot)](p),
      $$

      and, thanks to the property $I_k(cdot)=I_{-k}(cdot)$, this expression factorizes with respect to $L[I_0(omega, cdot)](p)=1/sqrt{p^2 - omega^2}$ as follows,
      $$
      X_n(R)=frac{1}{sqrt{p^2 - omega^2}} sum_{k=-infty}^infty I_{n-k}(omega R), left(frac{omega}{p+sqrt{p^2 - omega^2}} right)^{|k|}.
      $$

      At this point, I was hoping to use the generating function to get rid of the series, at least in the simplest case $n=0$, but having the absolute value $|k|$ cancels all the negative powers, and makes this approach inconclusive. Especially because someone aleady asked for any good value of "half the sum" of the generating function here.



      Did I miss anything ? or did i make errors in my derivations ? Any help on this delicate question will be greatly appreciated ... Happy new year 2019 to everyone!







      laplace-transform generating-functions bessel-functions






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 4 at 10:37









      LaurentLaurent

      127




      127






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          Well, we know that the standard modified Bessel function of the first kind is:



          $$mathcal{I}_1left(omegacdotleft(t+text{R}right)right)=sum_{text{n}=0}^inftyfrac{1}{text{n}!cdotGammaleft(1+text{n}right)}cdotleft(frac{omegacdotleft(t+text{R}right)}{2}right)^{2text{n}}=$$
          $$sum_{text{n}=0}^inftyfrac{left(t+text{R}right)^{2text{n}}}{text{n}!cdotGammaleft(1+text{n}right)}cdotleft(frac{omega}{2}right)^{2text{n}}tag1$$



          Now, for the Laplace transform we know that:



          $$mathcal{L}_tleft[mathcal{I}_1left(omegacdotleft(t+text{R}right)right)right]_{left(text{s}right)}:=int_0^inftyexpleft(-text{s}tright)cdotmathcal{I}_1left(omegacdotleft(t+text{R}right)right)spacetext{d}t=$$
          $$int_0^inftyexpleft(-text{s}tright)cdotsum_{text{n}=0}^inftyfrac{left(t+text{R}right)^{2text{n}}}{text{n}!cdotGammaleft(1+text{n}right)}cdotleft(frac{omega}{2}right)^{2text{n}}spacetext{d}t=$$
          $$sum_{text{n}=0}^inftyfrac{1}{text{n}!cdotGammaleft(1+text{n}right)}cdotleft(frac{omega}{2}right)^{2text{n}}cdotleft{int_0^inftyexpleft(-text{s}tright)cdotleft(t+text{R}right)^{2text{n}}spacetext{d}tright}tag2$$



          Now, the integral equals (when $Releft(text{s}right)>0spacewedgeReleft(text{R}right)>0$):



          $$int_0^inftyexpleft(-text{s}tright)cdotleft(t+text{R}right)^{2text{n}}spacetext{d}t=frac{expleft(text{R}text{s}right)cdotGammaleft(1+2text{n},text{R}text{s}right)}{text{s}^{1+2text{n}}}tag3$$



          So:



          $$mathcal{L}_tleft[mathcal{I}_1left(omegacdotleft(t+text{R}right)right)right]_{left(text{s}right)}=$$
          $$sum_{text{n}=0}^inftyfrac{1}{text{n}!cdotGammaleft(1+text{n}right)}cdotleft(frac{omega}{2}right)^{2text{n}}cdotfrac{expleft(text{R}text{s}right)cdotGammaleft(1+2text{n},text{R}text{s}right)}{text{s}^{1+2text{n}}}tag4$$






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061505%2flaplace-transform-of-shifted-modified-bessel-function%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            Well, we know that the standard modified Bessel function of the first kind is:



            $$mathcal{I}_1left(omegacdotleft(t+text{R}right)right)=sum_{text{n}=0}^inftyfrac{1}{text{n}!cdotGammaleft(1+text{n}right)}cdotleft(frac{omegacdotleft(t+text{R}right)}{2}right)^{2text{n}}=$$
            $$sum_{text{n}=0}^inftyfrac{left(t+text{R}right)^{2text{n}}}{text{n}!cdotGammaleft(1+text{n}right)}cdotleft(frac{omega}{2}right)^{2text{n}}tag1$$



            Now, for the Laplace transform we know that:



            $$mathcal{L}_tleft[mathcal{I}_1left(omegacdotleft(t+text{R}right)right)right]_{left(text{s}right)}:=int_0^inftyexpleft(-text{s}tright)cdotmathcal{I}_1left(omegacdotleft(t+text{R}right)right)spacetext{d}t=$$
            $$int_0^inftyexpleft(-text{s}tright)cdotsum_{text{n}=0}^inftyfrac{left(t+text{R}right)^{2text{n}}}{text{n}!cdotGammaleft(1+text{n}right)}cdotleft(frac{omega}{2}right)^{2text{n}}spacetext{d}t=$$
            $$sum_{text{n}=0}^inftyfrac{1}{text{n}!cdotGammaleft(1+text{n}right)}cdotleft(frac{omega}{2}right)^{2text{n}}cdotleft{int_0^inftyexpleft(-text{s}tright)cdotleft(t+text{R}right)^{2text{n}}spacetext{d}tright}tag2$$



            Now, the integral equals (when $Releft(text{s}right)>0spacewedgeReleft(text{R}right)>0$):



            $$int_0^inftyexpleft(-text{s}tright)cdotleft(t+text{R}right)^{2text{n}}spacetext{d}t=frac{expleft(text{R}text{s}right)cdotGammaleft(1+2text{n},text{R}text{s}right)}{text{s}^{1+2text{n}}}tag3$$



            So:



            $$mathcal{L}_tleft[mathcal{I}_1left(omegacdotleft(t+text{R}right)right)right]_{left(text{s}right)}=$$
            $$sum_{text{n}=0}^inftyfrac{1}{text{n}!cdotGammaleft(1+text{n}right)}cdotleft(frac{omega}{2}right)^{2text{n}}cdotfrac{expleft(text{R}text{s}right)cdotGammaleft(1+2text{n},text{R}text{s}right)}{text{s}^{1+2text{n}}}tag4$$






            share|cite|improve this answer









            $endgroup$


















              0












              $begingroup$

              Well, we know that the standard modified Bessel function of the first kind is:



              $$mathcal{I}_1left(omegacdotleft(t+text{R}right)right)=sum_{text{n}=0}^inftyfrac{1}{text{n}!cdotGammaleft(1+text{n}right)}cdotleft(frac{omegacdotleft(t+text{R}right)}{2}right)^{2text{n}}=$$
              $$sum_{text{n}=0}^inftyfrac{left(t+text{R}right)^{2text{n}}}{text{n}!cdotGammaleft(1+text{n}right)}cdotleft(frac{omega}{2}right)^{2text{n}}tag1$$



              Now, for the Laplace transform we know that:



              $$mathcal{L}_tleft[mathcal{I}_1left(omegacdotleft(t+text{R}right)right)right]_{left(text{s}right)}:=int_0^inftyexpleft(-text{s}tright)cdotmathcal{I}_1left(omegacdotleft(t+text{R}right)right)spacetext{d}t=$$
              $$int_0^inftyexpleft(-text{s}tright)cdotsum_{text{n}=0}^inftyfrac{left(t+text{R}right)^{2text{n}}}{text{n}!cdotGammaleft(1+text{n}right)}cdotleft(frac{omega}{2}right)^{2text{n}}spacetext{d}t=$$
              $$sum_{text{n}=0}^inftyfrac{1}{text{n}!cdotGammaleft(1+text{n}right)}cdotleft(frac{omega}{2}right)^{2text{n}}cdotleft{int_0^inftyexpleft(-text{s}tright)cdotleft(t+text{R}right)^{2text{n}}spacetext{d}tright}tag2$$



              Now, the integral equals (when $Releft(text{s}right)>0spacewedgeReleft(text{R}right)>0$):



              $$int_0^inftyexpleft(-text{s}tright)cdotleft(t+text{R}right)^{2text{n}}spacetext{d}t=frac{expleft(text{R}text{s}right)cdotGammaleft(1+2text{n},text{R}text{s}right)}{text{s}^{1+2text{n}}}tag3$$



              So:



              $$mathcal{L}_tleft[mathcal{I}_1left(omegacdotleft(t+text{R}right)right)right]_{left(text{s}right)}=$$
              $$sum_{text{n}=0}^inftyfrac{1}{text{n}!cdotGammaleft(1+text{n}right)}cdotleft(frac{omega}{2}right)^{2text{n}}cdotfrac{expleft(text{R}text{s}right)cdotGammaleft(1+2text{n},text{R}text{s}right)}{text{s}^{1+2text{n}}}tag4$$






              share|cite|improve this answer









              $endgroup$
















                0












                0








                0





                $begingroup$

                Well, we know that the standard modified Bessel function of the first kind is:



                $$mathcal{I}_1left(omegacdotleft(t+text{R}right)right)=sum_{text{n}=0}^inftyfrac{1}{text{n}!cdotGammaleft(1+text{n}right)}cdotleft(frac{omegacdotleft(t+text{R}right)}{2}right)^{2text{n}}=$$
                $$sum_{text{n}=0}^inftyfrac{left(t+text{R}right)^{2text{n}}}{text{n}!cdotGammaleft(1+text{n}right)}cdotleft(frac{omega}{2}right)^{2text{n}}tag1$$



                Now, for the Laplace transform we know that:



                $$mathcal{L}_tleft[mathcal{I}_1left(omegacdotleft(t+text{R}right)right)right]_{left(text{s}right)}:=int_0^inftyexpleft(-text{s}tright)cdotmathcal{I}_1left(omegacdotleft(t+text{R}right)right)spacetext{d}t=$$
                $$int_0^inftyexpleft(-text{s}tright)cdotsum_{text{n}=0}^inftyfrac{left(t+text{R}right)^{2text{n}}}{text{n}!cdotGammaleft(1+text{n}right)}cdotleft(frac{omega}{2}right)^{2text{n}}spacetext{d}t=$$
                $$sum_{text{n}=0}^inftyfrac{1}{text{n}!cdotGammaleft(1+text{n}right)}cdotleft(frac{omega}{2}right)^{2text{n}}cdotleft{int_0^inftyexpleft(-text{s}tright)cdotleft(t+text{R}right)^{2text{n}}spacetext{d}tright}tag2$$



                Now, the integral equals (when $Releft(text{s}right)>0spacewedgeReleft(text{R}right)>0$):



                $$int_0^inftyexpleft(-text{s}tright)cdotleft(t+text{R}right)^{2text{n}}spacetext{d}t=frac{expleft(text{R}text{s}right)cdotGammaleft(1+2text{n},text{R}text{s}right)}{text{s}^{1+2text{n}}}tag3$$



                So:



                $$mathcal{L}_tleft[mathcal{I}_1left(omegacdotleft(t+text{R}right)right)right]_{left(text{s}right)}=$$
                $$sum_{text{n}=0}^inftyfrac{1}{text{n}!cdotGammaleft(1+text{n}right)}cdotleft(frac{omega}{2}right)^{2text{n}}cdotfrac{expleft(text{R}text{s}right)cdotGammaleft(1+2text{n},text{R}text{s}right)}{text{s}^{1+2text{n}}}tag4$$






                share|cite|improve this answer









                $endgroup$



                Well, we know that the standard modified Bessel function of the first kind is:



                $$mathcal{I}_1left(omegacdotleft(t+text{R}right)right)=sum_{text{n}=0}^inftyfrac{1}{text{n}!cdotGammaleft(1+text{n}right)}cdotleft(frac{omegacdotleft(t+text{R}right)}{2}right)^{2text{n}}=$$
                $$sum_{text{n}=0}^inftyfrac{left(t+text{R}right)^{2text{n}}}{text{n}!cdotGammaleft(1+text{n}right)}cdotleft(frac{omega}{2}right)^{2text{n}}tag1$$



                Now, for the Laplace transform we know that:



                $$mathcal{L}_tleft[mathcal{I}_1left(omegacdotleft(t+text{R}right)right)right]_{left(text{s}right)}:=int_0^inftyexpleft(-text{s}tright)cdotmathcal{I}_1left(omegacdotleft(t+text{R}right)right)spacetext{d}t=$$
                $$int_0^inftyexpleft(-text{s}tright)cdotsum_{text{n}=0}^inftyfrac{left(t+text{R}right)^{2text{n}}}{text{n}!cdotGammaleft(1+text{n}right)}cdotleft(frac{omega}{2}right)^{2text{n}}spacetext{d}t=$$
                $$sum_{text{n}=0}^inftyfrac{1}{text{n}!cdotGammaleft(1+text{n}right)}cdotleft(frac{omega}{2}right)^{2text{n}}cdotleft{int_0^inftyexpleft(-text{s}tright)cdotleft(t+text{R}right)^{2text{n}}spacetext{d}tright}tag2$$



                Now, the integral equals (when $Releft(text{s}right)>0spacewedgeReleft(text{R}right)>0$):



                $$int_0^inftyexpleft(-text{s}tright)cdotleft(t+text{R}right)^{2text{n}}spacetext{d}t=frac{expleft(text{R}text{s}right)cdotGammaleft(1+2text{n},text{R}text{s}right)}{text{s}^{1+2text{n}}}tag3$$



                So:



                $$mathcal{L}_tleft[mathcal{I}_1left(omegacdotleft(t+text{R}right)right)right]_{left(text{s}right)}=$$
                $$sum_{text{n}=0}^inftyfrac{1}{text{n}!cdotGammaleft(1+text{n}right)}cdotleft(frac{omega}{2}right)^{2text{n}}cdotfrac{expleft(text{R}text{s}right)cdotGammaleft(1+2text{n},text{R}text{s}right)}{text{s}^{1+2text{n}}}tag4$$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jan 4 at 11:06









                JanJan

                22k31340




                22k31340






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061505%2flaplace-transform-of-shifted-modified-bessel-function%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Quarter-circle Tiles

                    build a pushdown automaton that recognizes the reverse language of a given pushdown automaton?

                    Mont Emei