Normal distribution confidence intervals and sample standard deviation problem












0












$begingroup$


I am confused by this relationship that in a normal distribution of sample means $x_i : x_i$~$N(mu,sigma)$ the sample mean $x_i$ is within $2$ standard deviations of the true mean $mu$ with $95$% confidence.



I am confused because of this second relationship that $sigma approx frac{sigma_i}{sqrt{n_i-1}}$



$n_i$ is the sample size corresponding to sample mean $x_i$



$x_1in B(mu,2sigma):sigmaapproxfrac{sigma_1}{sqrt{n_1-1}}rightarrow$$d(x_1,mu)leqmu+2sigma-(mu-2sigma)=4sigmaapprox4frac{sigma_1}{sqrt{n_1-1}}$



$x_2in B(mu,2sigma):sigmaapproxfrac{sigma_2}{sqrt{n_2-1}}rightarrow d(x_2,mu)leq4frac{sigma_2}{sqrt{n_2-1}}$



$d(x_1,x_2)leq d(x_1,mu)+d(x_2,mu)leq 4frac{sigma_1}{sqrt{n_1-1}}+4frac{sigma_2}{sqrt{n_2-1}}$



But, $frac{sigma_1}{sqrt{n_1-1}}approxsigmaapproxfrac{sigma_2}{sqrt{n_2-1}}rightarrow frac{sigma_1}{sqrt{n_1-1}}approxfrac{sigma_2}{sqrt{n_2-1}}$



This implies



$d(x_1,x_2)leq 4(frac{sigma_1}{sqrt{n_1-1}}+frac{sigma_1}{sqrt{n_1-1}})= 8frac{sigma_1}{sqrt{n_1-1}}$



This implies that for any $n_2$, if $n_1$ is very large, $d(x_1,x_2)leq0$



This result does not make sense in reality.










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    I am confused by this relationship that in a normal distribution of sample means $x_i : x_i$~$N(mu,sigma)$ the sample mean $x_i$ is within $2$ standard deviations of the true mean $mu$ with $95$% confidence.



    I am confused because of this second relationship that $sigma approx frac{sigma_i}{sqrt{n_i-1}}$



    $n_i$ is the sample size corresponding to sample mean $x_i$



    $x_1in B(mu,2sigma):sigmaapproxfrac{sigma_1}{sqrt{n_1-1}}rightarrow$$d(x_1,mu)leqmu+2sigma-(mu-2sigma)=4sigmaapprox4frac{sigma_1}{sqrt{n_1-1}}$



    $x_2in B(mu,2sigma):sigmaapproxfrac{sigma_2}{sqrt{n_2-1}}rightarrow d(x_2,mu)leq4frac{sigma_2}{sqrt{n_2-1}}$



    $d(x_1,x_2)leq d(x_1,mu)+d(x_2,mu)leq 4frac{sigma_1}{sqrt{n_1-1}}+4frac{sigma_2}{sqrt{n_2-1}}$



    But, $frac{sigma_1}{sqrt{n_1-1}}approxsigmaapproxfrac{sigma_2}{sqrt{n_2-1}}rightarrow frac{sigma_1}{sqrt{n_1-1}}approxfrac{sigma_2}{sqrt{n_2-1}}$



    This implies



    $d(x_1,x_2)leq 4(frac{sigma_1}{sqrt{n_1-1}}+frac{sigma_1}{sqrt{n_1-1}})= 8frac{sigma_1}{sqrt{n_1-1}}$



    This implies that for any $n_2$, if $n_1$ is very large, $d(x_1,x_2)leq0$



    This result does not make sense in reality.










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      I am confused by this relationship that in a normal distribution of sample means $x_i : x_i$~$N(mu,sigma)$ the sample mean $x_i$ is within $2$ standard deviations of the true mean $mu$ with $95$% confidence.



      I am confused because of this second relationship that $sigma approx frac{sigma_i}{sqrt{n_i-1}}$



      $n_i$ is the sample size corresponding to sample mean $x_i$



      $x_1in B(mu,2sigma):sigmaapproxfrac{sigma_1}{sqrt{n_1-1}}rightarrow$$d(x_1,mu)leqmu+2sigma-(mu-2sigma)=4sigmaapprox4frac{sigma_1}{sqrt{n_1-1}}$



      $x_2in B(mu,2sigma):sigmaapproxfrac{sigma_2}{sqrt{n_2-1}}rightarrow d(x_2,mu)leq4frac{sigma_2}{sqrt{n_2-1}}$



      $d(x_1,x_2)leq d(x_1,mu)+d(x_2,mu)leq 4frac{sigma_1}{sqrt{n_1-1}}+4frac{sigma_2}{sqrt{n_2-1}}$



      But, $frac{sigma_1}{sqrt{n_1-1}}approxsigmaapproxfrac{sigma_2}{sqrt{n_2-1}}rightarrow frac{sigma_1}{sqrt{n_1-1}}approxfrac{sigma_2}{sqrt{n_2-1}}$



      This implies



      $d(x_1,x_2)leq 4(frac{sigma_1}{sqrt{n_1-1}}+frac{sigma_1}{sqrt{n_1-1}})= 8frac{sigma_1}{sqrt{n_1-1}}$



      This implies that for any $n_2$, if $n_1$ is very large, $d(x_1,x_2)leq0$



      This result does not make sense in reality.










      share|cite|improve this question









      $endgroup$




      I am confused by this relationship that in a normal distribution of sample means $x_i : x_i$~$N(mu,sigma)$ the sample mean $x_i$ is within $2$ standard deviations of the true mean $mu$ with $95$% confidence.



      I am confused because of this second relationship that $sigma approx frac{sigma_i}{sqrt{n_i-1}}$



      $n_i$ is the sample size corresponding to sample mean $x_i$



      $x_1in B(mu,2sigma):sigmaapproxfrac{sigma_1}{sqrt{n_1-1}}rightarrow$$d(x_1,mu)leqmu+2sigma-(mu-2sigma)=4sigmaapprox4frac{sigma_1}{sqrt{n_1-1}}$



      $x_2in B(mu,2sigma):sigmaapproxfrac{sigma_2}{sqrt{n_2-1}}rightarrow d(x_2,mu)leq4frac{sigma_2}{sqrt{n_2-1}}$



      $d(x_1,x_2)leq d(x_1,mu)+d(x_2,mu)leq 4frac{sigma_1}{sqrt{n_1-1}}+4frac{sigma_2}{sqrt{n_2-1}}$



      But, $frac{sigma_1}{sqrt{n_1-1}}approxsigmaapproxfrac{sigma_2}{sqrt{n_2-1}}rightarrow frac{sigma_1}{sqrt{n_1-1}}approxfrac{sigma_2}{sqrt{n_2-1}}$



      This implies



      $d(x_1,x_2)leq 4(frac{sigma_1}{sqrt{n_1-1}}+frac{sigma_1}{sqrt{n_1-1}})= 8frac{sigma_1}{sqrt{n_1-1}}$



      This implies that for any $n_2$, if $n_1$ is very large, $d(x_1,x_2)leq0$



      This result does not make sense in reality.







      real-analysis probability-theory






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 4 at 7:37









      FrankFrank

      16210




      16210






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061397%2fnormal-distribution-confidence-intervals-and-sample-standard-deviation-problem%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061397%2fnormal-distribution-confidence-intervals-and-sample-standard-deviation-problem%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Ellipse (mathématiques)

          Mont Emei

          Quarter-circle Tiles