How to calculate the line integral with respect to the circle in counterclockwise direction












1














Consider the vector field $F=<y,-x>$.



Compute the line integral $int_cFcdot dr$ where $C$ is the circle of radius $3$ centered at the origin counterclockwise.



My Try:



The circle is $x^2+y^2=9$



$x=3cos t$



$y=3sin t$ for $0le tle2pi$



Now how do I calculate $int_cFcdot dr$?



Can anyone explain how to solve this.










share|cite|improve this question






















  • Just follow the definition. Can you look up the definition?
    – Zachary Selk
    Nov 26 at 2:09










  • @ZacharySelk Here $F=<y,-x>$. Then what about $r(t)$?
    – user982787
    Nov 26 at 2:16
















1














Consider the vector field $F=<y,-x>$.



Compute the line integral $int_cFcdot dr$ where $C$ is the circle of radius $3$ centered at the origin counterclockwise.



My Try:



The circle is $x^2+y^2=9$



$x=3cos t$



$y=3sin t$ for $0le tle2pi$



Now how do I calculate $int_cFcdot dr$?



Can anyone explain how to solve this.










share|cite|improve this question






















  • Just follow the definition. Can you look up the definition?
    – Zachary Selk
    Nov 26 at 2:09










  • @ZacharySelk Here $F=<y,-x>$. Then what about $r(t)$?
    – user982787
    Nov 26 at 2:16














1












1








1


2





Consider the vector field $F=<y,-x>$.



Compute the line integral $int_cFcdot dr$ where $C$ is the circle of radius $3$ centered at the origin counterclockwise.



My Try:



The circle is $x^2+y^2=9$



$x=3cos t$



$y=3sin t$ for $0le tle2pi$



Now how do I calculate $int_cFcdot dr$?



Can anyone explain how to solve this.










share|cite|improve this question













Consider the vector field $F=<y,-x>$.



Compute the line integral $int_cFcdot dr$ where $C$ is the circle of radius $3$ centered at the origin counterclockwise.



My Try:



The circle is $x^2+y^2=9$



$x=3cos t$



$y=3sin t$ for $0le tle2pi$



Now how do I calculate $int_cFcdot dr$?



Can anyone explain how to solve this.







calculus integration multivariable-calculus line-integrals






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Nov 26 at 2:02









user982787

1117




1117












  • Just follow the definition. Can you look up the definition?
    – Zachary Selk
    Nov 26 at 2:09










  • @ZacharySelk Here $F=<y,-x>$. Then what about $r(t)$?
    – user982787
    Nov 26 at 2:16


















  • Just follow the definition. Can you look up the definition?
    – Zachary Selk
    Nov 26 at 2:09










  • @ZacharySelk Here $F=<y,-x>$. Then what about $r(t)$?
    – user982787
    Nov 26 at 2:16
















Just follow the definition. Can you look up the definition?
– Zachary Selk
Nov 26 at 2:09




Just follow the definition. Can you look up the definition?
– Zachary Selk
Nov 26 at 2:09












@ZacharySelk Here $F=<y,-x>$. Then what about $r(t)$?
– user982787
Nov 26 at 2:16




@ZacharySelk Here $F=<y,-x>$. Then what about $r(t)$?
– user982787
Nov 26 at 2:16










1 Answer
1






active

oldest

votes


















1














The radial vector is



$vec r = begin{pmatrix} x \ y end{pmatrix}; tag 1$



also,



$F = begin{pmatrix} y \ - x end{pmatrix}; tag 2$



with



$x = 3 cos t, tag 3$



$y = 3 sin t, tag 4$



we have



$vec r = begin{pmatrix} 3 cos t \ 3sin t end{pmatrix}, tag 5$



$d vec r = dfrac{d vec r}{dt} dt = begin{pmatrix} -3sin t \ 3cos t end{pmatrix} dt, tag 5$



and



$F = begin{pmatrix} 3sin t \ -3cos t end{pmatrix}; tag 6$



then



$F cdot d vec r = begin{pmatrix} 3sin t \ -3cos t end{pmatrix} cdot begin{pmatrix} -3sin t \ 3cos t end{pmatrix} dt$
$= (-9 sin^2 t - 9 cos^2 t)dt = -9(sin^2 t + cos^2 t)dt = -9(1)dt = -9dt; tag 7$



finally,



$displaystyle int_C F cdot d vec r = int_C -9 dt = -9 int_C dt = -9(2pi) = -18pi. tag 8$






share|cite|improve this answer





















    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3013712%2fhow-to-calculate-the-line-integral-with-respect-to-the-circle-in-counterclockwis%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1














    The radial vector is



    $vec r = begin{pmatrix} x \ y end{pmatrix}; tag 1$



    also,



    $F = begin{pmatrix} y \ - x end{pmatrix}; tag 2$



    with



    $x = 3 cos t, tag 3$



    $y = 3 sin t, tag 4$



    we have



    $vec r = begin{pmatrix} 3 cos t \ 3sin t end{pmatrix}, tag 5$



    $d vec r = dfrac{d vec r}{dt} dt = begin{pmatrix} -3sin t \ 3cos t end{pmatrix} dt, tag 5$



    and



    $F = begin{pmatrix} 3sin t \ -3cos t end{pmatrix}; tag 6$



    then



    $F cdot d vec r = begin{pmatrix} 3sin t \ -3cos t end{pmatrix} cdot begin{pmatrix} -3sin t \ 3cos t end{pmatrix} dt$
    $= (-9 sin^2 t - 9 cos^2 t)dt = -9(sin^2 t + cos^2 t)dt = -9(1)dt = -9dt; tag 7$



    finally,



    $displaystyle int_C F cdot d vec r = int_C -9 dt = -9 int_C dt = -9(2pi) = -18pi. tag 8$






    share|cite|improve this answer


























      1














      The radial vector is



      $vec r = begin{pmatrix} x \ y end{pmatrix}; tag 1$



      also,



      $F = begin{pmatrix} y \ - x end{pmatrix}; tag 2$



      with



      $x = 3 cos t, tag 3$



      $y = 3 sin t, tag 4$



      we have



      $vec r = begin{pmatrix} 3 cos t \ 3sin t end{pmatrix}, tag 5$



      $d vec r = dfrac{d vec r}{dt} dt = begin{pmatrix} -3sin t \ 3cos t end{pmatrix} dt, tag 5$



      and



      $F = begin{pmatrix} 3sin t \ -3cos t end{pmatrix}; tag 6$



      then



      $F cdot d vec r = begin{pmatrix} 3sin t \ -3cos t end{pmatrix} cdot begin{pmatrix} -3sin t \ 3cos t end{pmatrix} dt$
      $= (-9 sin^2 t - 9 cos^2 t)dt = -9(sin^2 t + cos^2 t)dt = -9(1)dt = -9dt; tag 7$



      finally,



      $displaystyle int_C F cdot d vec r = int_C -9 dt = -9 int_C dt = -9(2pi) = -18pi. tag 8$






      share|cite|improve this answer
























        1












        1








        1






        The radial vector is



        $vec r = begin{pmatrix} x \ y end{pmatrix}; tag 1$



        also,



        $F = begin{pmatrix} y \ - x end{pmatrix}; tag 2$



        with



        $x = 3 cos t, tag 3$



        $y = 3 sin t, tag 4$



        we have



        $vec r = begin{pmatrix} 3 cos t \ 3sin t end{pmatrix}, tag 5$



        $d vec r = dfrac{d vec r}{dt} dt = begin{pmatrix} -3sin t \ 3cos t end{pmatrix} dt, tag 5$



        and



        $F = begin{pmatrix} 3sin t \ -3cos t end{pmatrix}; tag 6$



        then



        $F cdot d vec r = begin{pmatrix} 3sin t \ -3cos t end{pmatrix} cdot begin{pmatrix} -3sin t \ 3cos t end{pmatrix} dt$
        $= (-9 sin^2 t - 9 cos^2 t)dt = -9(sin^2 t + cos^2 t)dt = -9(1)dt = -9dt; tag 7$



        finally,



        $displaystyle int_C F cdot d vec r = int_C -9 dt = -9 int_C dt = -9(2pi) = -18pi. tag 8$






        share|cite|improve this answer












        The radial vector is



        $vec r = begin{pmatrix} x \ y end{pmatrix}; tag 1$



        also,



        $F = begin{pmatrix} y \ - x end{pmatrix}; tag 2$



        with



        $x = 3 cos t, tag 3$



        $y = 3 sin t, tag 4$



        we have



        $vec r = begin{pmatrix} 3 cos t \ 3sin t end{pmatrix}, tag 5$



        $d vec r = dfrac{d vec r}{dt} dt = begin{pmatrix} -3sin t \ 3cos t end{pmatrix} dt, tag 5$



        and



        $F = begin{pmatrix} 3sin t \ -3cos t end{pmatrix}; tag 6$



        then



        $F cdot d vec r = begin{pmatrix} 3sin t \ -3cos t end{pmatrix} cdot begin{pmatrix} -3sin t \ 3cos t end{pmatrix} dt$
        $= (-9 sin^2 t - 9 cos^2 t)dt = -9(sin^2 t + cos^2 t)dt = -9(1)dt = -9dt; tag 7$



        finally,



        $displaystyle int_C F cdot d vec r = int_C -9 dt = -9 int_C dt = -9(2pi) = -18pi. tag 8$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Nov 26 at 2:26









        Robert Lewis

        43.5k22863




        43.5k22863






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3013712%2fhow-to-calculate-the-line-integral-with-respect-to-the-circle-in-counterclockwis%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Ellipse (mathématiques)

            Quarter-circle Tiles

            Mont Emei