How to calculate the line integral with respect to the circle in counterclockwise direction
Consider the vector field $F=<y,-x>$.
Compute the line integral $int_cFcdot dr$ where $C$ is the circle of radius $3$ centered at the origin counterclockwise.
My Try:
The circle is $x^2+y^2=9$
$x=3cos t$
$y=3sin t$ for $0le tle2pi$
Now how do I calculate $int_cFcdot dr$?
Can anyone explain how to solve this.
calculus integration multivariable-calculus line-integrals
add a comment |
Consider the vector field $F=<y,-x>$.
Compute the line integral $int_cFcdot dr$ where $C$ is the circle of radius $3$ centered at the origin counterclockwise.
My Try:
The circle is $x^2+y^2=9$
$x=3cos t$
$y=3sin t$ for $0le tle2pi$
Now how do I calculate $int_cFcdot dr$?
Can anyone explain how to solve this.
calculus integration multivariable-calculus line-integrals
Just follow the definition. Can you look up the definition?
– Zachary Selk
Nov 26 at 2:09
@ZacharySelk Here $F=<y,-x>$. Then what about $r(t)$?
– user982787
Nov 26 at 2:16
add a comment |
Consider the vector field $F=<y,-x>$.
Compute the line integral $int_cFcdot dr$ where $C$ is the circle of radius $3$ centered at the origin counterclockwise.
My Try:
The circle is $x^2+y^2=9$
$x=3cos t$
$y=3sin t$ for $0le tle2pi$
Now how do I calculate $int_cFcdot dr$?
Can anyone explain how to solve this.
calculus integration multivariable-calculus line-integrals
Consider the vector field $F=<y,-x>$.
Compute the line integral $int_cFcdot dr$ where $C$ is the circle of radius $3$ centered at the origin counterclockwise.
My Try:
The circle is $x^2+y^2=9$
$x=3cos t$
$y=3sin t$ for $0le tle2pi$
Now how do I calculate $int_cFcdot dr$?
Can anyone explain how to solve this.
calculus integration multivariable-calculus line-integrals
calculus integration multivariable-calculus line-integrals
asked Nov 26 at 2:02
user982787
1117
1117
Just follow the definition. Can you look up the definition?
– Zachary Selk
Nov 26 at 2:09
@ZacharySelk Here $F=<y,-x>$. Then what about $r(t)$?
– user982787
Nov 26 at 2:16
add a comment |
Just follow the definition. Can you look up the definition?
– Zachary Selk
Nov 26 at 2:09
@ZacharySelk Here $F=<y,-x>$. Then what about $r(t)$?
– user982787
Nov 26 at 2:16
Just follow the definition. Can you look up the definition?
– Zachary Selk
Nov 26 at 2:09
Just follow the definition. Can you look up the definition?
– Zachary Selk
Nov 26 at 2:09
@ZacharySelk Here $F=<y,-x>$. Then what about $r(t)$?
– user982787
Nov 26 at 2:16
@ZacharySelk Here $F=<y,-x>$. Then what about $r(t)$?
– user982787
Nov 26 at 2:16
add a comment |
1 Answer
1
active
oldest
votes
The radial vector is
$vec r = begin{pmatrix} x \ y end{pmatrix}; tag 1$
also,
$F = begin{pmatrix} y \ - x end{pmatrix}; tag 2$
with
$x = 3 cos t, tag 3$
$y = 3 sin t, tag 4$
we have
$vec r = begin{pmatrix} 3 cos t \ 3sin t end{pmatrix}, tag 5$
$d vec r = dfrac{d vec r}{dt} dt = begin{pmatrix} -3sin t \ 3cos t end{pmatrix} dt, tag 5$
and
$F = begin{pmatrix} 3sin t \ -3cos t end{pmatrix}; tag 6$
then
$F cdot d vec r = begin{pmatrix} 3sin t \ -3cos t end{pmatrix} cdot begin{pmatrix} -3sin t \ 3cos t end{pmatrix} dt$
$= (-9 sin^2 t - 9 cos^2 t)dt = -9(sin^2 t + cos^2 t)dt = -9(1)dt = -9dt; tag 7$
finally,
$displaystyle int_C F cdot d vec r = int_C -9 dt = -9 int_C dt = -9(2pi) = -18pi. tag 8$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3013712%2fhow-to-calculate-the-line-integral-with-respect-to-the-circle-in-counterclockwis%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
The radial vector is
$vec r = begin{pmatrix} x \ y end{pmatrix}; tag 1$
also,
$F = begin{pmatrix} y \ - x end{pmatrix}; tag 2$
with
$x = 3 cos t, tag 3$
$y = 3 sin t, tag 4$
we have
$vec r = begin{pmatrix} 3 cos t \ 3sin t end{pmatrix}, tag 5$
$d vec r = dfrac{d vec r}{dt} dt = begin{pmatrix} -3sin t \ 3cos t end{pmatrix} dt, tag 5$
and
$F = begin{pmatrix} 3sin t \ -3cos t end{pmatrix}; tag 6$
then
$F cdot d vec r = begin{pmatrix} 3sin t \ -3cos t end{pmatrix} cdot begin{pmatrix} -3sin t \ 3cos t end{pmatrix} dt$
$= (-9 sin^2 t - 9 cos^2 t)dt = -9(sin^2 t + cos^2 t)dt = -9(1)dt = -9dt; tag 7$
finally,
$displaystyle int_C F cdot d vec r = int_C -9 dt = -9 int_C dt = -9(2pi) = -18pi. tag 8$
add a comment |
The radial vector is
$vec r = begin{pmatrix} x \ y end{pmatrix}; tag 1$
also,
$F = begin{pmatrix} y \ - x end{pmatrix}; tag 2$
with
$x = 3 cos t, tag 3$
$y = 3 sin t, tag 4$
we have
$vec r = begin{pmatrix} 3 cos t \ 3sin t end{pmatrix}, tag 5$
$d vec r = dfrac{d vec r}{dt} dt = begin{pmatrix} -3sin t \ 3cos t end{pmatrix} dt, tag 5$
and
$F = begin{pmatrix} 3sin t \ -3cos t end{pmatrix}; tag 6$
then
$F cdot d vec r = begin{pmatrix} 3sin t \ -3cos t end{pmatrix} cdot begin{pmatrix} -3sin t \ 3cos t end{pmatrix} dt$
$= (-9 sin^2 t - 9 cos^2 t)dt = -9(sin^2 t + cos^2 t)dt = -9(1)dt = -9dt; tag 7$
finally,
$displaystyle int_C F cdot d vec r = int_C -9 dt = -9 int_C dt = -9(2pi) = -18pi. tag 8$
add a comment |
The radial vector is
$vec r = begin{pmatrix} x \ y end{pmatrix}; tag 1$
also,
$F = begin{pmatrix} y \ - x end{pmatrix}; tag 2$
with
$x = 3 cos t, tag 3$
$y = 3 sin t, tag 4$
we have
$vec r = begin{pmatrix} 3 cos t \ 3sin t end{pmatrix}, tag 5$
$d vec r = dfrac{d vec r}{dt} dt = begin{pmatrix} -3sin t \ 3cos t end{pmatrix} dt, tag 5$
and
$F = begin{pmatrix} 3sin t \ -3cos t end{pmatrix}; tag 6$
then
$F cdot d vec r = begin{pmatrix} 3sin t \ -3cos t end{pmatrix} cdot begin{pmatrix} -3sin t \ 3cos t end{pmatrix} dt$
$= (-9 sin^2 t - 9 cos^2 t)dt = -9(sin^2 t + cos^2 t)dt = -9(1)dt = -9dt; tag 7$
finally,
$displaystyle int_C F cdot d vec r = int_C -9 dt = -9 int_C dt = -9(2pi) = -18pi. tag 8$
The radial vector is
$vec r = begin{pmatrix} x \ y end{pmatrix}; tag 1$
also,
$F = begin{pmatrix} y \ - x end{pmatrix}; tag 2$
with
$x = 3 cos t, tag 3$
$y = 3 sin t, tag 4$
we have
$vec r = begin{pmatrix} 3 cos t \ 3sin t end{pmatrix}, tag 5$
$d vec r = dfrac{d vec r}{dt} dt = begin{pmatrix} -3sin t \ 3cos t end{pmatrix} dt, tag 5$
and
$F = begin{pmatrix} 3sin t \ -3cos t end{pmatrix}; tag 6$
then
$F cdot d vec r = begin{pmatrix} 3sin t \ -3cos t end{pmatrix} cdot begin{pmatrix} -3sin t \ 3cos t end{pmatrix} dt$
$= (-9 sin^2 t - 9 cos^2 t)dt = -9(sin^2 t + cos^2 t)dt = -9(1)dt = -9dt; tag 7$
finally,
$displaystyle int_C F cdot d vec r = int_C -9 dt = -9 int_C dt = -9(2pi) = -18pi. tag 8$
answered Nov 26 at 2:26
Robert Lewis
43.5k22863
43.5k22863
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3013712%2fhow-to-calculate-the-line-integral-with-respect-to-the-circle-in-counterclockwis%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Just follow the definition. Can you look up the definition?
– Zachary Selk
Nov 26 at 2:09
@ZacharySelk Here $F=<y,-x>$. Then what about $r(t)$?
– user982787
Nov 26 at 2:16