The application $mu^*$ is an outer measure. A proof without the Fubin's Theorem.












6












$begingroup$



Theorem. Let $mathcal{K}subseteq 2^{X}$ a set family such that $emptyset inmathcal{K}$ and be given an application $nucolonmathcal{K}to[0,+infty]$ such that $nu(emptyset)=0$, we define $$mu^*(E)=infleft{sum_{ninmathbb{N}}nu(I_n);middle|;Esubseteqbigcup_{ninmathbb{N}}I_n;text{and};{I_n}_{ninmathbb{N}}subseteqmathcal{K}right},$$
then $mu^*$ is an outer measure.




Proof.(With Fubini's Theorem) We prove that $mu^*$ is $sigma$-subadditive, the other properties are trivial. Let ${E_n}_{ninmathbb{N}}subseteq 2^{X}$ a countable set family. We suppose that $mu^*(E_n)<+infty$ for all $ninmathbb{N}$, that is for all $ninmathbb{N}$ exists ${I_{n,k}}_{kinmathbb{N}}subseteq mathcal{K}$ such that $E_nsubseteqbigcup_{kinmathbb{N}}I_{n,k}$.



Be fixed $varepsilon> 0$. For what has been said above and for the properties of the infimum, for all $ninmathbb{N}$ exists ${I_{n,k}}subseteqmathcal{K}$ such that $$E_nsubseteqbigcup_{kinmathbb{N}}I_{n,k}quadtext{and}quadmu^*(E_n)+frac{varepsilon}{2^n}>sum_{kinmathbb{N}}nu(I_{n,k}).$$
We observe that $$bigcup_{ninmathbb{N}}E_nsubseteqbigcup_{ninmathbb{N}}bigcup_{kinmathbb{N}}I_{n,k}=bigcup_{(n,k)inmathbb{N}timesmathbb{N}}I_{n,k}quadtext{and}quad{I_{n,k}}_{n,kinmathbb{N}}subseteqmathcal{K}.$$ At this point, in order to apply the definition of $mu^*$, it is necessary to specify that it is equivalent to $$mu^*(E)=infleft{sum_{(n,k)inmathbb{N}timesmathbb{N}}nu(I_{n,k});middle|;Esubseteqbigcup_{(n,k)inmathbb{N}timesmathbb{N}}I_{n,k};text{and};{I_{n,k}}_{(n,k)inmathbb{N}timesmathbb{N}}subseteqmathcal{K}right}.$$ In general, what is important is that the set $E$ can be covered by a family ${I_gamma}_{gammainGamma}subseteqmathcal{K}$, where $Gamma$ is a countable set of indices. By definition of $mu^*$ we have
begin{equation}
mu^*bigg(bigcup_{ninmathbb{N}}E_nbigg)lesum_{(n,k)inmathbb{N}timesmathbb{N}}nu(I_{n,k})color{BLUE}{=}sum_{ninmathbb{N}}sum_{kinmathbb{N}}nu(I_{n,k})<sum_{ninmathbb{N}}bigg[nu(I_{n,k})+frac{varepsilon}{2^n}bigg]=sum_{ninmathbb{N}}mu^*(E_n)+varepsilon,
end{equation}

where the blue equal is the Fubini's Theorem.$hspace{9cm}square$



Proof.(Without Fubini's Theorem) Let ${E_n}_{ninmathbb{N}}subseteq 2^{X}$ a countable set family. We suppose that $mu^*(E_n)<+infty$ for all $ninmathbb{N}$, that is for all $ninmathbb{N}$ exists ${I_{nk}}_{kinmathbb{N}}subseteq mathcal{K}$ such that $E_nsubseteqbigcup_{kinmathbb{N}}I_{nk}$.



Be fixed $varepsilon> 0$. For what has been said above and for the properties of the infimum, for all $ninmathbb{N}$ exists ${I_{nk}}subseteqmathcal{K}$ such that $$E_nsubseteqbigcup_{kinmathbb{N}}I_{nk}quadtext{and}quadmu^*(E_n)+frac{varepsilon}{2^n}>sum_{kinmathbb{N}}nu(I_{nk}).$$ Let $fcolonmathbb{N}tomathbb{N}timesmathbb{N}$ be a bijection and we place $I_{n,k}:=I_{nk}$ for all $(n,k)inmathbb{N}timesmathbb{N}$. We consider the sequence ${I_{f(r)}}_{rinmathbb{N}}$. We prove that ${I_{f(r)}}_{rinmathbb{N}}subseteqmathcal{K}$ and that is a covering of $bigcup_{ninmathbb{N}} E_n$.We observe that $$bigcup_{rinmathbb{N}}I_{f(r)}= bigcup_{(n,k)inmathbb{N}timesmathbb{N}}I_{nk}=bigcup_{ninmathbb{N}}bigg[bigcup_{kinmathbb{N}}I_{nk}bigg]supseteqbigcup_{ninmathbb{N}}E_n.$$ By definition of $mu^*$ we have $$mu^*bigg(bigcup_{ninmathbb{N}}E_nbigg)lesum_{rinmathbb{N}}nu(I_{f(r)}).$$ Now we place $$f(r):=(n_r,k_r)quadtext{and}quad K_r=max{k_1,dots, k_r},$$ and we consider the partial sum s-th. Therefore
begin{equation}
begin{split}
sum_{r=1}^s nu(I_{f(r)})=&nu(I_{f(1)})+cdots+nu(I_{f(s)})\
=&nu(I_{n_1k_1})+cdots+nu(I_{n_sk_s})quadtext{We remember that}quad I_{nk}:=I_{n,k}\
color{RED}{le}& sum_{n=1}^{K_r}color{BLUE}{sum_{kinmathbb{N}}nu(I_{nk})}\
<&sum_{n=1}^{K_r}bigg[mu^*(E_n)+frac{varepsilon}{2^n}bigg]\
<&sum_{ninmathbb{N}}bigg[mu^*(E_n)+frac{varepsilon}{2^n}bigg]\
=&sum_{ninmathbb{N}}mu^*(E_n)+varepsilon.
end{split}
end{equation}

For $varepsilonto 0$ we have $$sum_{r=1}^s nu(I_{f(r)})lesum_{ninmathbb{N}}mu^*(E_n).$$




Question 1. Why is the inequality in red true?




$$$$




Question 2. Could it be that some blue series is divergent?




$$$$



Therefore $$sum_{rinmathbb{N}}nu(I_{f(r)}):=lim_{sto+infty}sum_{r=1}^s nu(I_{f(r)})color{BLUE}{le}sum_{ninmathbb{N}}mu^*(E_n)$$




Question 3. Why is the inequality in blue true? In general if ${a_n}$ and ${b_n}$ are two real number sequence such that $lim a_n=ainmathbb{R}$ and $lim b_n=binmathbb{R}$, then if $a_nle b_n$ for all $ninmathbb{N}$, then $a<b$. Is this the case? That is, the series $sum_{ninmathbb{N}}mu^*(E_n)$ is convergent?




Thanks for your patience!










share|cite|improve this question









$endgroup$

















    6












    $begingroup$



    Theorem. Let $mathcal{K}subseteq 2^{X}$ a set family such that $emptyset inmathcal{K}$ and be given an application $nucolonmathcal{K}to[0,+infty]$ such that $nu(emptyset)=0$, we define $$mu^*(E)=infleft{sum_{ninmathbb{N}}nu(I_n);middle|;Esubseteqbigcup_{ninmathbb{N}}I_n;text{and};{I_n}_{ninmathbb{N}}subseteqmathcal{K}right},$$
    then $mu^*$ is an outer measure.




    Proof.(With Fubini's Theorem) We prove that $mu^*$ is $sigma$-subadditive, the other properties are trivial. Let ${E_n}_{ninmathbb{N}}subseteq 2^{X}$ a countable set family. We suppose that $mu^*(E_n)<+infty$ for all $ninmathbb{N}$, that is for all $ninmathbb{N}$ exists ${I_{n,k}}_{kinmathbb{N}}subseteq mathcal{K}$ such that $E_nsubseteqbigcup_{kinmathbb{N}}I_{n,k}$.



    Be fixed $varepsilon> 0$. For what has been said above and for the properties of the infimum, for all $ninmathbb{N}$ exists ${I_{n,k}}subseteqmathcal{K}$ such that $$E_nsubseteqbigcup_{kinmathbb{N}}I_{n,k}quadtext{and}quadmu^*(E_n)+frac{varepsilon}{2^n}>sum_{kinmathbb{N}}nu(I_{n,k}).$$
    We observe that $$bigcup_{ninmathbb{N}}E_nsubseteqbigcup_{ninmathbb{N}}bigcup_{kinmathbb{N}}I_{n,k}=bigcup_{(n,k)inmathbb{N}timesmathbb{N}}I_{n,k}quadtext{and}quad{I_{n,k}}_{n,kinmathbb{N}}subseteqmathcal{K}.$$ At this point, in order to apply the definition of $mu^*$, it is necessary to specify that it is equivalent to $$mu^*(E)=infleft{sum_{(n,k)inmathbb{N}timesmathbb{N}}nu(I_{n,k});middle|;Esubseteqbigcup_{(n,k)inmathbb{N}timesmathbb{N}}I_{n,k};text{and};{I_{n,k}}_{(n,k)inmathbb{N}timesmathbb{N}}subseteqmathcal{K}right}.$$ In general, what is important is that the set $E$ can be covered by a family ${I_gamma}_{gammainGamma}subseteqmathcal{K}$, where $Gamma$ is a countable set of indices. By definition of $mu^*$ we have
    begin{equation}
    mu^*bigg(bigcup_{ninmathbb{N}}E_nbigg)lesum_{(n,k)inmathbb{N}timesmathbb{N}}nu(I_{n,k})color{BLUE}{=}sum_{ninmathbb{N}}sum_{kinmathbb{N}}nu(I_{n,k})<sum_{ninmathbb{N}}bigg[nu(I_{n,k})+frac{varepsilon}{2^n}bigg]=sum_{ninmathbb{N}}mu^*(E_n)+varepsilon,
    end{equation}

    where the blue equal is the Fubini's Theorem.$hspace{9cm}square$



    Proof.(Without Fubini's Theorem) Let ${E_n}_{ninmathbb{N}}subseteq 2^{X}$ a countable set family. We suppose that $mu^*(E_n)<+infty$ for all $ninmathbb{N}$, that is for all $ninmathbb{N}$ exists ${I_{nk}}_{kinmathbb{N}}subseteq mathcal{K}$ such that $E_nsubseteqbigcup_{kinmathbb{N}}I_{nk}$.



    Be fixed $varepsilon> 0$. For what has been said above and for the properties of the infimum, for all $ninmathbb{N}$ exists ${I_{nk}}subseteqmathcal{K}$ such that $$E_nsubseteqbigcup_{kinmathbb{N}}I_{nk}quadtext{and}quadmu^*(E_n)+frac{varepsilon}{2^n}>sum_{kinmathbb{N}}nu(I_{nk}).$$ Let $fcolonmathbb{N}tomathbb{N}timesmathbb{N}$ be a bijection and we place $I_{n,k}:=I_{nk}$ for all $(n,k)inmathbb{N}timesmathbb{N}$. We consider the sequence ${I_{f(r)}}_{rinmathbb{N}}$. We prove that ${I_{f(r)}}_{rinmathbb{N}}subseteqmathcal{K}$ and that is a covering of $bigcup_{ninmathbb{N}} E_n$.We observe that $$bigcup_{rinmathbb{N}}I_{f(r)}= bigcup_{(n,k)inmathbb{N}timesmathbb{N}}I_{nk}=bigcup_{ninmathbb{N}}bigg[bigcup_{kinmathbb{N}}I_{nk}bigg]supseteqbigcup_{ninmathbb{N}}E_n.$$ By definition of $mu^*$ we have $$mu^*bigg(bigcup_{ninmathbb{N}}E_nbigg)lesum_{rinmathbb{N}}nu(I_{f(r)}).$$ Now we place $$f(r):=(n_r,k_r)quadtext{and}quad K_r=max{k_1,dots, k_r},$$ and we consider the partial sum s-th. Therefore
    begin{equation}
    begin{split}
    sum_{r=1}^s nu(I_{f(r)})=&nu(I_{f(1)})+cdots+nu(I_{f(s)})\
    =&nu(I_{n_1k_1})+cdots+nu(I_{n_sk_s})quadtext{We remember that}quad I_{nk}:=I_{n,k}\
    color{RED}{le}& sum_{n=1}^{K_r}color{BLUE}{sum_{kinmathbb{N}}nu(I_{nk})}\
    <&sum_{n=1}^{K_r}bigg[mu^*(E_n)+frac{varepsilon}{2^n}bigg]\
    <&sum_{ninmathbb{N}}bigg[mu^*(E_n)+frac{varepsilon}{2^n}bigg]\
    =&sum_{ninmathbb{N}}mu^*(E_n)+varepsilon.
    end{split}
    end{equation}

    For $varepsilonto 0$ we have $$sum_{r=1}^s nu(I_{f(r)})lesum_{ninmathbb{N}}mu^*(E_n).$$




    Question 1. Why is the inequality in red true?




    $$$$




    Question 2. Could it be that some blue series is divergent?




    $$$$



    Therefore $$sum_{rinmathbb{N}}nu(I_{f(r)}):=lim_{sto+infty}sum_{r=1}^s nu(I_{f(r)})color{BLUE}{le}sum_{ninmathbb{N}}mu^*(E_n)$$




    Question 3. Why is the inequality in blue true? In general if ${a_n}$ and ${b_n}$ are two real number sequence such that $lim a_n=ainmathbb{R}$ and $lim b_n=binmathbb{R}$, then if $a_nle b_n$ for all $ninmathbb{N}$, then $a<b$. Is this the case? That is, the series $sum_{ninmathbb{N}}mu^*(E_n)$ is convergent?




    Thanks for your patience!










    share|cite|improve this question









    $endgroup$















      6












      6








      6


      0



      $begingroup$



      Theorem. Let $mathcal{K}subseteq 2^{X}$ a set family such that $emptyset inmathcal{K}$ and be given an application $nucolonmathcal{K}to[0,+infty]$ such that $nu(emptyset)=0$, we define $$mu^*(E)=infleft{sum_{ninmathbb{N}}nu(I_n);middle|;Esubseteqbigcup_{ninmathbb{N}}I_n;text{and};{I_n}_{ninmathbb{N}}subseteqmathcal{K}right},$$
      then $mu^*$ is an outer measure.




      Proof.(With Fubini's Theorem) We prove that $mu^*$ is $sigma$-subadditive, the other properties are trivial. Let ${E_n}_{ninmathbb{N}}subseteq 2^{X}$ a countable set family. We suppose that $mu^*(E_n)<+infty$ for all $ninmathbb{N}$, that is for all $ninmathbb{N}$ exists ${I_{n,k}}_{kinmathbb{N}}subseteq mathcal{K}$ such that $E_nsubseteqbigcup_{kinmathbb{N}}I_{n,k}$.



      Be fixed $varepsilon> 0$. For what has been said above and for the properties of the infimum, for all $ninmathbb{N}$ exists ${I_{n,k}}subseteqmathcal{K}$ such that $$E_nsubseteqbigcup_{kinmathbb{N}}I_{n,k}quadtext{and}quadmu^*(E_n)+frac{varepsilon}{2^n}>sum_{kinmathbb{N}}nu(I_{n,k}).$$
      We observe that $$bigcup_{ninmathbb{N}}E_nsubseteqbigcup_{ninmathbb{N}}bigcup_{kinmathbb{N}}I_{n,k}=bigcup_{(n,k)inmathbb{N}timesmathbb{N}}I_{n,k}quadtext{and}quad{I_{n,k}}_{n,kinmathbb{N}}subseteqmathcal{K}.$$ At this point, in order to apply the definition of $mu^*$, it is necessary to specify that it is equivalent to $$mu^*(E)=infleft{sum_{(n,k)inmathbb{N}timesmathbb{N}}nu(I_{n,k});middle|;Esubseteqbigcup_{(n,k)inmathbb{N}timesmathbb{N}}I_{n,k};text{and};{I_{n,k}}_{(n,k)inmathbb{N}timesmathbb{N}}subseteqmathcal{K}right}.$$ In general, what is important is that the set $E$ can be covered by a family ${I_gamma}_{gammainGamma}subseteqmathcal{K}$, where $Gamma$ is a countable set of indices. By definition of $mu^*$ we have
      begin{equation}
      mu^*bigg(bigcup_{ninmathbb{N}}E_nbigg)lesum_{(n,k)inmathbb{N}timesmathbb{N}}nu(I_{n,k})color{BLUE}{=}sum_{ninmathbb{N}}sum_{kinmathbb{N}}nu(I_{n,k})<sum_{ninmathbb{N}}bigg[nu(I_{n,k})+frac{varepsilon}{2^n}bigg]=sum_{ninmathbb{N}}mu^*(E_n)+varepsilon,
      end{equation}

      where the blue equal is the Fubini's Theorem.$hspace{9cm}square$



      Proof.(Without Fubini's Theorem) Let ${E_n}_{ninmathbb{N}}subseteq 2^{X}$ a countable set family. We suppose that $mu^*(E_n)<+infty$ for all $ninmathbb{N}$, that is for all $ninmathbb{N}$ exists ${I_{nk}}_{kinmathbb{N}}subseteq mathcal{K}$ such that $E_nsubseteqbigcup_{kinmathbb{N}}I_{nk}$.



      Be fixed $varepsilon> 0$. For what has been said above and for the properties of the infimum, for all $ninmathbb{N}$ exists ${I_{nk}}subseteqmathcal{K}$ such that $$E_nsubseteqbigcup_{kinmathbb{N}}I_{nk}quadtext{and}quadmu^*(E_n)+frac{varepsilon}{2^n}>sum_{kinmathbb{N}}nu(I_{nk}).$$ Let $fcolonmathbb{N}tomathbb{N}timesmathbb{N}$ be a bijection and we place $I_{n,k}:=I_{nk}$ for all $(n,k)inmathbb{N}timesmathbb{N}$. We consider the sequence ${I_{f(r)}}_{rinmathbb{N}}$. We prove that ${I_{f(r)}}_{rinmathbb{N}}subseteqmathcal{K}$ and that is a covering of $bigcup_{ninmathbb{N}} E_n$.We observe that $$bigcup_{rinmathbb{N}}I_{f(r)}= bigcup_{(n,k)inmathbb{N}timesmathbb{N}}I_{nk}=bigcup_{ninmathbb{N}}bigg[bigcup_{kinmathbb{N}}I_{nk}bigg]supseteqbigcup_{ninmathbb{N}}E_n.$$ By definition of $mu^*$ we have $$mu^*bigg(bigcup_{ninmathbb{N}}E_nbigg)lesum_{rinmathbb{N}}nu(I_{f(r)}).$$ Now we place $$f(r):=(n_r,k_r)quadtext{and}quad K_r=max{k_1,dots, k_r},$$ and we consider the partial sum s-th. Therefore
      begin{equation}
      begin{split}
      sum_{r=1}^s nu(I_{f(r)})=&nu(I_{f(1)})+cdots+nu(I_{f(s)})\
      =&nu(I_{n_1k_1})+cdots+nu(I_{n_sk_s})quadtext{We remember that}quad I_{nk}:=I_{n,k}\
      color{RED}{le}& sum_{n=1}^{K_r}color{BLUE}{sum_{kinmathbb{N}}nu(I_{nk})}\
      <&sum_{n=1}^{K_r}bigg[mu^*(E_n)+frac{varepsilon}{2^n}bigg]\
      <&sum_{ninmathbb{N}}bigg[mu^*(E_n)+frac{varepsilon}{2^n}bigg]\
      =&sum_{ninmathbb{N}}mu^*(E_n)+varepsilon.
      end{split}
      end{equation}

      For $varepsilonto 0$ we have $$sum_{r=1}^s nu(I_{f(r)})lesum_{ninmathbb{N}}mu^*(E_n).$$




      Question 1. Why is the inequality in red true?




      $$$$




      Question 2. Could it be that some blue series is divergent?




      $$$$



      Therefore $$sum_{rinmathbb{N}}nu(I_{f(r)}):=lim_{sto+infty}sum_{r=1}^s nu(I_{f(r)})color{BLUE}{le}sum_{ninmathbb{N}}mu^*(E_n)$$




      Question 3. Why is the inequality in blue true? In general if ${a_n}$ and ${b_n}$ are two real number sequence such that $lim a_n=ainmathbb{R}$ and $lim b_n=binmathbb{R}$, then if $a_nle b_n$ for all $ninmathbb{N}$, then $a<b$. Is this the case? That is, the series $sum_{ninmathbb{N}}mu^*(E_n)$ is convergent?




      Thanks for your patience!










      share|cite|improve this question









      $endgroup$





      Theorem. Let $mathcal{K}subseteq 2^{X}$ a set family such that $emptyset inmathcal{K}$ and be given an application $nucolonmathcal{K}to[0,+infty]$ such that $nu(emptyset)=0$, we define $$mu^*(E)=infleft{sum_{ninmathbb{N}}nu(I_n);middle|;Esubseteqbigcup_{ninmathbb{N}}I_n;text{and};{I_n}_{ninmathbb{N}}subseteqmathcal{K}right},$$
      then $mu^*$ is an outer measure.




      Proof.(With Fubini's Theorem) We prove that $mu^*$ is $sigma$-subadditive, the other properties are trivial. Let ${E_n}_{ninmathbb{N}}subseteq 2^{X}$ a countable set family. We suppose that $mu^*(E_n)<+infty$ for all $ninmathbb{N}$, that is for all $ninmathbb{N}$ exists ${I_{n,k}}_{kinmathbb{N}}subseteq mathcal{K}$ such that $E_nsubseteqbigcup_{kinmathbb{N}}I_{n,k}$.



      Be fixed $varepsilon> 0$. For what has been said above and for the properties of the infimum, for all $ninmathbb{N}$ exists ${I_{n,k}}subseteqmathcal{K}$ such that $$E_nsubseteqbigcup_{kinmathbb{N}}I_{n,k}quadtext{and}quadmu^*(E_n)+frac{varepsilon}{2^n}>sum_{kinmathbb{N}}nu(I_{n,k}).$$
      We observe that $$bigcup_{ninmathbb{N}}E_nsubseteqbigcup_{ninmathbb{N}}bigcup_{kinmathbb{N}}I_{n,k}=bigcup_{(n,k)inmathbb{N}timesmathbb{N}}I_{n,k}quadtext{and}quad{I_{n,k}}_{n,kinmathbb{N}}subseteqmathcal{K}.$$ At this point, in order to apply the definition of $mu^*$, it is necessary to specify that it is equivalent to $$mu^*(E)=infleft{sum_{(n,k)inmathbb{N}timesmathbb{N}}nu(I_{n,k});middle|;Esubseteqbigcup_{(n,k)inmathbb{N}timesmathbb{N}}I_{n,k};text{and};{I_{n,k}}_{(n,k)inmathbb{N}timesmathbb{N}}subseteqmathcal{K}right}.$$ In general, what is important is that the set $E$ can be covered by a family ${I_gamma}_{gammainGamma}subseteqmathcal{K}$, where $Gamma$ is a countable set of indices. By definition of $mu^*$ we have
      begin{equation}
      mu^*bigg(bigcup_{ninmathbb{N}}E_nbigg)lesum_{(n,k)inmathbb{N}timesmathbb{N}}nu(I_{n,k})color{BLUE}{=}sum_{ninmathbb{N}}sum_{kinmathbb{N}}nu(I_{n,k})<sum_{ninmathbb{N}}bigg[nu(I_{n,k})+frac{varepsilon}{2^n}bigg]=sum_{ninmathbb{N}}mu^*(E_n)+varepsilon,
      end{equation}

      where the blue equal is the Fubini's Theorem.$hspace{9cm}square$



      Proof.(Without Fubini's Theorem) Let ${E_n}_{ninmathbb{N}}subseteq 2^{X}$ a countable set family. We suppose that $mu^*(E_n)<+infty$ for all $ninmathbb{N}$, that is for all $ninmathbb{N}$ exists ${I_{nk}}_{kinmathbb{N}}subseteq mathcal{K}$ such that $E_nsubseteqbigcup_{kinmathbb{N}}I_{nk}$.



      Be fixed $varepsilon> 0$. For what has been said above and for the properties of the infimum, for all $ninmathbb{N}$ exists ${I_{nk}}subseteqmathcal{K}$ such that $$E_nsubseteqbigcup_{kinmathbb{N}}I_{nk}quadtext{and}quadmu^*(E_n)+frac{varepsilon}{2^n}>sum_{kinmathbb{N}}nu(I_{nk}).$$ Let $fcolonmathbb{N}tomathbb{N}timesmathbb{N}$ be a bijection and we place $I_{n,k}:=I_{nk}$ for all $(n,k)inmathbb{N}timesmathbb{N}$. We consider the sequence ${I_{f(r)}}_{rinmathbb{N}}$. We prove that ${I_{f(r)}}_{rinmathbb{N}}subseteqmathcal{K}$ and that is a covering of $bigcup_{ninmathbb{N}} E_n$.We observe that $$bigcup_{rinmathbb{N}}I_{f(r)}= bigcup_{(n,k)inmathbb{N}timesmathbb{N}}I_{nk}=bigcup_{ninmathbb{N}}bigg[bigcup_{kinmathbb{N}}I_{nk}bigg]supseteqbigcup_{ninmathbb{N}}E_n.$$ By definition of $mu^*$ we have $$mu^*bigg(bigcup_{ninmathbb{N}}E_nbigg)lesum_{rinmathbb{N}}nu(I_{f(r)}).$$ Now we place $$f(r):=(n_r,k_r)quadtext{and}quad K_r=max{k_1,dots, k_r},$$ and we consider the partial sum s-th. Therefore
      begin{equation}
      begin{split}
      sum_{r=1}^s nu(I_{f(r)})=&nu(I_{f(1)})+cdots+nu(I_{f(s)})\
      =&nu(I_{n_1k_1})+cdots+nu(I_{n_sk_s})quadtext{We remember that}quad I_{nk}:=I_{n,k}\
      color{RED}{le}& sum_{n=1}^{K_r}color{BLUE}{sum_{kinmathbb{N}}nu(I_{nk})}\
      <&sum_{n=1}^{K_r}bigg[mu^*(E_n)+frac{varepsilon}{2^n}bigg]\
      <&sum_{ninmathbb{N}}bigg[mu^*(E_n)+frac{varepsilon}{2^n}bigg]\
      =&sum_{ninmathbb{N}}mu^*(E_n)+varepsilon.
      end{split}
      end{equation}

      For $varepsilonto 0$ we have $$sum_{r=1}^s nu(I_{f(r)})lesum_{ninmathbb{N}}mu^*(E_n).$$




      Question 1. Why is the inequality in red true?




      $$$$




      Question 2. Could it be that some blue series is divergent?




      $$$$



      Therefore $$sum_{rinmathbb{N}}nu(I_{f(r)}):=lim_{sto+infty}sum_{r=1}^s nu(I_{f(r)})color{BLUE}{le}sum_{ninmathbb{N}}mu^*(E_n)$$




      Question 3. Why is the inequality in blue true? In general if ${a_n}$ and ${b_n}$ are two real number sequence such that $lim a_n=ainmathbb{R}$ and $lim b_n=binmathbb{R}$, then if $a_nle b_n$ for all $ninmathbb{N}$, then $a<b$. Is this the case? That is, the series $sum_{ninmathbb{N}}mu^*(E_n)$ is convergent?




      Thanks for your patience!







      measure-theory proof-verification proof-writing proof-explanation






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 26 '18 at 12:20









      Jack J.Jack J.

      4292419




      4292419






















          1 Answer
          1






          active

          oldest

          votes


















          3












          $begingroup$


          Question 1. Why is the inequality in red true?




          Because if $a_ngeq0$ for all $n $, then for any $k $ you have $a_kleqsum_na_n $.




          Question 2. Could it be that some blue series is divergent?




          No, you assumed that it was bounded above by $mu^*(E_n)+varepsilon/2^n $ and that $mu^*(E_n)<infty $.




          Question 3. Why is the inequality in blue true? In general if ${a_n}$ and ${b_n}$ are two real number sequence such that $lim a_n=ainmathbb{R}$ and $lim b_n=binmathbb{R}$, then if $a_nle b_n$ for all $ninmathbb{N}$, then $a<b$. Is this the case? That is, the series $sum_{ninmathbb{N}}mu^*(E_n)$ is convergent?




          Almost. If $a_nleq b_n $ for all $n $, then $aleq b $.



          And no, bounding a series below tells you nothing about its convergence. And it could very well be the case that $mu^*(bigcup_nE_n)=infty $ and $sum_rnu (I_{f (r)}=infty $.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thanks for your answer. So, if we place $a_s:=sum_{r=1}^s nu(I_{f(r)})$, and we have already proved that $a_slesum_{ninmathbb{N}}mu^*(E_n):=lim_{kto+infty}sum_{n=1}^kmu^*(E_k)$ for all $sinmathbb{N}$, then can we conclude that $lim_{sto+infty} a_slelim_{kto+infty}sum_{n=1}^kmu^*(E_k)$? Even if we do not know if the term $lim_{kto+infty}sum_{n=1}^kmu^*(E_k)$ is finite?
            $endgroup$
            – Jack J.
            Dec 26 '18 at 15:04












          • $begingroup$
            I think that I have understand: With the notations of the above comment. The sequence ${a_s}_{sinmathbb{N}}$ is increasing, then $lim_{sto+infty}a_s=sup_s{a_s}$. Now, if the right term is finite we have that $a_sle R$ for all $sinmathbb{N}$, then $sup_s{a_s}le R$, where $Rinmathbb{R}$. If the right term is $+infty$, with the order relation in $bar{mathbb{R}}_+$, we have that $a_sle+infty$ for all $sinmathbb{N}$, then $sup_s{a_s}=+infty.$ Correct?
            $endgroup$
            – Jack J.
            Dec 26 '18 at 15:29












          • $begingroup$
            Yes and yes, but you cannot conclude that $sup{a_s}=infty $. It may be finite, for all you know.
            $endgroup$
            – Martin Argerami
            Dec 26 '18 at 15:41










          • $begingroup$
            Sorry, obviously "$le$". Thanks!
            $endgroup$
            – Jack J.
            Dec 26 '18 at 15:51











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3052899%2fthe-application-mu-is-an-outer-measure-a-proof-without-the-fubins-theorem%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          3












          $begingroup$


          Question 1. Why is the inequality in red true?




          Because if $a_ngeq0$ for all $n $, then for any $k $ you have $a_kleqsum_na_n $.




          Question 2. Could it be that some blue series is divergent?




          No, you assumed that it was bounded above by $mu^*(E_n)+varepsilon/2^n $ and that $mu^*(E_n)<infty $.




          Question 3. Why is the inequality in blue true? In general if ${a_n}$ and ${b_n}$ are two real number sequence such that $lim a_n=ainmathbb{R}$ and $lim b_n=binmathbb{R}$, then if $a_nle b_n$ for all $ninmathbb{N}$, then $a<b$. Is this the case? That is, the series $sum_{ninmathbb{N}}mu^*(E_n)$ is convergent?




          Almost. If $a_nleq b_n $ for all $n $, then $aleq b $.



          And no, bounding a series below tells you nothing about its convergence. And it could very well be the case that $mu^*(bigcup_nE_n)=infty $ and $sum_rnu (I_{f (r)}=infty $.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thanks for your answer. So, if we place $a_s:=sum_{r=1}^s nu(I_{f(r)})$, and we have already proved that $a_slesum_{ninmathbb{N}}mu^*(E_n):=lim_{kto+infty}sum_{n=1}^kmu^*(E_k)$ for all $sinmathbb{N}$, then can we conclude that $lim_{sto+infty} a_slelim_{kto+infty}sum_{n=1}^kmu^*(E_k)$? Even if we do not know if the term $lim_{kto+infty}sum_{n=1}^kmu^*(E_k)$ is finite?
            $endgroup$
            – Jack J.
            Dec 26 '18 at 15:04












          • $begingroup$
            I think that I have understand: With the notations of the above comment. The sequence ${a_s}_{sinmathbb{N}}$ is increasing, then $lim_{sto+infty}a_s=sup_s{a_s}$. Now, if the right term is finite we have that $a_sle R$ for all $sinmathbb{N}$, then $sup_s{a_s}le R$, where $Rinmathbb{R}$. If the right term is $+infty$, with the order relation in $bar{mathbb{R}}_+$, we have that $a_sle+infty$ for all $sinmathbb{N}$, then $sup_s{a_s}=+infty.$ Correct?
            $endgroup$
            – Jack J.
            Dec 26 '18 at 15:29












          • $begingroup$
            Yes and yes, but you cannot conclude that $sup{a_s}=infty $. It may be finite, for all you know.
            $endgroup$
            – Martin Argerami
            Dec 26 '18 at 15:41










          • $begingroup$
            Sorry, obviously "$le$". Thanks!
            $endgroup$
            – Jack J.
            Dec 26 '18 at 15:51
















          3












          $begingroup$


          Question 1. Why is the inequality in red true?




          Because if $a_ngeq0$ for all $n $, then for any $k $ you have $a_kleqsum_na_n $.




          Question 2. Could it be that some blue series is divergent?




          No, you assumed that it was bounded above by $mu^*(E_n)+varepsilon/2^n $ and that $mu^*(E_n)<infty $.




          Question 3. Why is the inequality in blue true? In general if ${a_n}$ and ${b_n}$ are two real number sequence such that $lim a_n=ainmathbb{R}$ and $lim b_n=binmathbb{R}$, then if $a_nle b_n$ for all $ninmathbb{N}$, then $a<b$. Is this the case? That is, the series $sum_{ninmathbb{N}}mu^*(E_n)$ is convergent?




          Almost. If $a_nleq b_n $ for all $n $, then $aleq b $.



          And no, bounding a series below tells you nothing about its convergence. And it could very well be the case that $mu^*(bigcup_nE_n)=infty $ and $sum_rnu (I_{f (r)}=infty $.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thanks for your answer. So, if we place $a_s:=sum_{r=1}^s nu(I_{f(r)})$, and we have already proved that $a_slesum_{ninmathbb{N}}mu^*(E_n):=lim_{kto+infty}sum_{n=1}^kmu^*(E_k)$ for all $sinmathbb{N}$, then can we conclude that $lim_{sto+infty} a_slelim_{kto+infty}sum_{n=1}^kmu^*(E_k)$? Even if we do not know if the term $lim_{kto+infty}sum_{n=1}^kmu^*(E_k)$ is finite?
            $endgroup$
            – Jack J.
            Dec 26 '18 at 15:04












          • $begingroup$
            I think that I have understand: With the notations of the above comment. The sequence ${a_s}_{sinmathbb{N}}$ is increasing, then $lim_{sto+infty}a_s=sup_s{a_s}$. Now, if the right term is finite we have that $a_sle R$ for all $sinmathbb{N}$, then $sup_s{a_s}le R$, where $Rinmathbb{R}$. If the right term is $+infty$, with the order relation in $bar{mathbb{R}}_+$, we have that $a_sle+infty$ for all $sinmathbb{N}$, then $sup_s{a_s}=+infty.$ Correct?
            $endgroup$
            – Jack J.
            Dec 26 '18 at 15:29












          • $begingroup$
            Yes and yes, but you cannot conclude that $sup{a_s}=infty $. It may be finite, for all you know.
            $endgroup$
            – Martin Argerami
            Dec 26 '18 at 15:41










          • $begingroup$
            Sorry, obviously "$le$". Thanks!
            $endgroup$
            – Jack J.
            Dec 26 '18 at 15:51














          3












          3








          3





          $begingroup$


          Question 1. Why is the inequality in red true?




          Because if $a_ngeq0$ for all $n $, then for any $k $ you have $a_kleqsum_na_n $.




          Question 2. Could it be that some blue series is divergent?




          No, you assumed that it was bounded above by $mu^*(E_n)+varepsilon/2^n $ and that $mu^*(E_n)<infty $.




          Question 3. Why is the inequality in blue true? In general if ${a_n}$ and ${b_n}$ are two real number sequence such that $lim a_n=ainmathbb{R}$ and $lim b_n=binmathbb{R}$, then if $a_nle b_n$ for all $ninmathbb{N}$, then $a<b$. Is this the case? That is, the series $sum_{ninmathbb{N}}mu^*(E_n)$ is convergent?




          Almost. If $a_nleq b_n $ for all $n $, then $aleq b $.



          And no, bounding a series below tells you nothing about its convergence. And it could very well be the case that $mu^*(bigcup_nE_n)=infty $ and $sum_rnu (I_{f (r)}=infty $.






          share|cite|improve this answer









          $endgroup$




          Question 1. Why is the inequality in red true?




          Because if $a_ngeq0$ for all $n $, then for any $k $ you have $a_kleqsum_na_n $.




          Question 2. Could it be that some blue series is divergent?




          No, you assumed that it was bounded above by $mu^*(E_n)+varepsilon/2^n $ and that $mu^*(E_n)<infty $.




          Question 3. Why is the inequality in blue true? In general if ${a_n}$ and ${b_n}$ are two real number sequence such that $lim a_n=ainmathbb{R}$ and $lim b_n=binmathbb{R}$, then if $a_nle b_n$ for all $ninmathbb{N}$, then $a<b$. Is this the case? That is, the series $sum_{ninmathbb{N}}mu^*(E_n)$ is convergent?




          Almost. If $a_nleq b_n $ for all $n $, then $aleq b $.



          And no, bounding a series below tells you nothing about its convergence. And it could very well be the case that $mu^*(bigcup_nE_n)=infty $ and $sum_rnu (I_{f (r)}=infty $.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 26 '18 at 13:05









          Martin ArgeramiMartin Argerami

          127k1182183




          127k1182183












          • $begingroup$
            Thanks for your answer. So, if we place $a_s:=sum_{r=1}^s nu(I_{f(r)})$, and we have already proved that $a_slesum_{ninmathbb{N}}mu^*(E_n):=lim_{kto+infty}sum_{n=1}^kmu^*(E_k)$ for all $sinmathbb{N}$, then can we conclude that $lim_{sto+infty} a_slelim_{kto+infty}sum_{n=1}^kmu^*(E_k)$? Even if we do not know if the term $lim_{kto+infty}sum_{n=1}^kmu^*(E_k)$ is finite?
            $endgroup$
            – Jack J.
            Dec 26 '18 at 15:04












          • $begingroup$
            I think that I have understand: With the notations of the above comment. The sequence ${a_s}_{sinmathbb{N}}$ is increasing, then $lim_{sto+infty}a_s=sup_s{a_s}$. Now, if the right term is finite we have that $a_sle R$ for all $sinmathbb{N}$, then $sup_s{a_s}le R$, where $Rinmathbb{R}$. If the right term is $+infty$, with the order relation in $bar{mathbb{R}}_+$, we have that $a_sle+infty$ for all $sinmathbb{N}$, then $sup_s{a_s}=+infty.$ Correct?
            $endgroup$
            – Jack J.
            Dec 26 '18 at 15:29












          • $begingroup$
            Yes and yes, but you cannot conclude that $sup{a_s}=infty $. It may be finite, for all you know.
            $endgroup$
            – Martin Argerami
            Dec 26 '18 at 15:41










          • $begingroup$
            Sorry, obviously "$le$". Thanks!
            $endgroup$
            – Jack J.
            Dec 26 '18 at 15:51


















          • $begingroup$
            Thanks for your answer. So, if we place $a_s:=sum_{r=1}^s nu(I_{f(r)})$, and we have already proved that $a_slesum_{ninmathbb{N}}mu^*(E_n):=lim_{kto+infty}sum_{n=1}^kmu^*(E_k)$ for all $sinmathbb{N}$, then can we conclude that $lim_{sto+infty} a_slelim_{kto+infty}sum_{n=1}^kmu^*(E_k)$? Even if we do not know if the term $lim_{kto+infty}sum_{n=1}^kmu^*(E_k)$ is finite?
            $endgroup$
            – Jack J.
            Dec 26 '18 at 15:04












          • $begingroup$
            I think that I have understand: With the notations of the above comment. The sequence ${a_s}_{sinmathbb{N}}$ is increasing, then $lim_{sto+infty}a_s=sup_s{a_s}$. Now, if the right term is finite we have that $a_sle R$ for all $sinmathbb{N}$, then $sup_s{a_s}le R$, where $Rinmathbb{R}$. If the right term is $+infty$, with the order relation in $bar{mathbb{R}}_+$, we have that $a_sle+infty$ for all $sinmathbb{N}$, then $sup_s{a_s}=+infty.$ Correct?
            $endgroup$
            – Jack J.
            Dec 26 '18 at 15:29












          • $begingroup$
            Yes and yes, but you cannot conclude that $sup{a_s}=infty $. It may be finite, for all you know.
            $endgroup$
            – Martin Argerami
            Dec 26 '18 at 15:41










          • $begingroup$
            Sorry, obviously "$le$". Thanks!
            $endgroup$
            – Jack J.
            Dec 26 '18 at 15:51
















          $begingroup$
          Thanks for your answer. So, if we place $a_s:=sum_{r=1}^s nu(I_{f(r)})$, and we have already proved that $a_slesum_{ninmathbb{N}}mu^*(E_n):=lim_{kto+infty}sum_{n=1}^kmu^*(E_k)$ for all $sinmathbb{N}$, then can we conclude that $lim_{sto+infty} a_slelim_{kto+infty}sum_{n=1}^kmu^*(E_k)$? Even if we do not know if the term $lim_{kto+infty}sum_{n=1}^kmu^*(E_k)$ is finite?
          $endgroup$
          – Jack J.
          Dec 26 '18 at 15:04






          $begingroup$
          Thanks for your answer. So, if we place $a_s:=sum_{r=1}^s nu(I_{f(r)})$, and we have already proved that $a_slesum_{ninmathbb{N}}mu^*(E_n):=lim_{kto+infty}sum_{n=1}^kmu^*(E_k)$ for all $sinmathbb{N}$, then can we conclude that $lim_{sto+infty} a_slelim_{kto+infty}sum_{n=1}^kmu^*(E_k)$? Even if we do not know if the term $lim_{kto+infty}sum_{n=1}^kmu^*(E_k)$ is finite?
          $endgroup$
          – Jack J.
          Dec 26 '18 at 15:04














          $begingroup$
          I think that I have understand: With the notations of the above comment. The sequence ${a_s}_{sinmathbb{N}}$ is increasing, then $lim_{sto+infty}a_s=sup_s{a_s}$. Now, if the right term is finite we have that $a_sle R$ for all $sinmathbb{N}$, then $sup_s{a_s}le R$, where $Rinmathbb{R}$. If the right term is $+infty$, with the order relation in $bar{mathbb{R}}_+$, we have that $a_sle+infty$ for all $sinmathbb{N}$, then $sup_s{a_s}=+infty.$ Correct?
          $endgroup$
          – Jack J.
          Dec 26 '18 at 15:29






          $begingroup$
          I think that I have understand: With the notations of the above comment. The sequence ${a_s}_{sinmathbb{N}}$ is increasing, then $lim_{sto+infty}a_s=sup_s{a_s}$. Now, if the right term is finite we have that $a_sle R$ for all $sinmathbb{N}$, then $sup_s{a_s}le R$, where $Rinmathbb{R}$. If the right term is $+infty$, with the order relation in $bar{mathbb{R}}_+$, we have that $a_sle+infty$ for all $sinmathbb{N}$, then $sup_s{a_s}=+infty.$ Correct?
          $endgroup$
          – Jack J.
          Dec 26 '18 at 15:29














          $begingroup$
          Yes and yes, but you cannot conclude that $sup{a_s}=infty $. It may be finite, for all you know.
          $endgroup$
          – Martin Argerami
          Dec 26 '18 at 15:41




          $begingroup$
          Yes and yes, but you cannot conclude that $sup{a_s}=infty $. It may be finite, for all you know.
          $endgroup$
          – Martin Argerami
          Dec 26 '18 at 15:41












          $begingroup$
          Sorry, obviously "$le$". Thanks!
          $endgroup$
          – Jack J.
          Dec 26 '18 at 15:51




          $begingroup$
          Sorry, obviously "$le$". Thanks!
          $endgroup$
          – Jack J.
          Dec 26 '18 at 15:51


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3052899%2fthe-application-mu-is-an-outer-measure-a-proof-without-the-fubins-theorem%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Ellipse (mathématiques)

          Quarter-circle Tiles

          Mont Emei