Are the permutations of the Group Caley table rows form the same Group?
$begingroup$
For Example :-
Z/Z4
0 1 2 3 -> ()
1 2 3 0 -> (0, 1, 2, 3)
2 3 0 1 -> (0, 2)(1, 3)
3 0 1 2 -> (0, 3, 2, 1)
The above Permutations under permutation combination operation also form the same group.
Example of Nonabelian Group:-
Group D_3
0 1 2 3 4 5 -> ()
1 2 0 4 5 3 -> (0 ,1 ,2)(3 ,4 ,5)
2 0 1 5 3 4 -> (0 ,2 ,1)(3 ,5 ,4)
3 5 4 0 2 1 -> (0 ,3)(1 ,5)(2 ,4)
4 3 5 1 0 2 -> (0 ,4)(1 ,3)(2 ,5)
5 4 3 2 1 0 -> (0 ,5)(1 ,4)(2 ,3)
The above Permutations under permutation combination operation also form the same group.
I haven't found counter example yet hence I'm wondering if Is this is true for all Groups? and can this relation be proven?
abstract-algebra group-theory finite-groups permutations
$endgroup$
add a comment |
$begingroup$
For Example :-
Z/Z4
0 1 2 3 -> ()
1 2 3 0 -> (0, 1, 2, 3)
2 3 0 1 -> (0, 2)(1, 3)
3 0 1 2 -> (0, 3, 2, 1)
The above Permutations under permutation combination operation also form the same group.
Example of Nonabelian Group:-
Group D_3
0 1 2 3 4 5 -> ()
1 2 0 4 5 3 -> (0 ,1 ,2)(3 ,4 ,5)
2 0 1 5 3 4 -> (0 ,2 ,1)(3 ,5 ,4)
3 5 4 0 2 1 -> (0 ,3)(1 ,5)(2 ,4)
4 3 5 1 0 2 -> (0 ,4)(1 ,3)(2 ,5)
5 4 3 2 1 0 -> (0 ,5)(1 ,4)(2 ,3)
The above Permutations under permutation combination operation also form the same group.
I haven't found counter example yet hence I'm wondering if Is this is true for all Groups? and can this relation be proven?
abstract-algebra group-theory finite-groups permutations
$endgroup$
1
$begingroup$
Yes, this is essentially Cayley's theorem.
$endgroup$
– Lord Shark the Unknown
Dec 22 '18 at 8:34
add a comment |
$begingroup$
For Example :-
Z/Z4
0 1 2 3 -> ()
1 2 3 0 -> (0, 1, 2, 3)
2 3 0 1 -> (0, 2)(1, 3)
3 0 1 2 -> (0, 3, 2, 1)
The above Permutations under permutation combination operation also form the same group.
Example of Nonabelian Group:-
Group D_3
0 1 2 3 4 5 -> ()
1 2 0 4 5 3 -> (0 ,1 ,2)(3 ,4 ,5)
2 0 1 5 3 4 -> (0 ,2 ,1)(3 ,5 ,4)
3 5 4 0 2 1 -> (0 ,3)(1 ,5)(2 ,4)
4 3 5 1 0 2 -> (0 ,4)(1 ,3)(2 ,5)
5 4 3 2 1 0 -> (0 ,5)(1 ,4)(2 ,3)
The above Permutations under permutation combination operation also form the same group.
I haven't found counter example yet hence I'm wondering if Is this is true for all Groups? and can this relation be proven?
abstract-algebra group-theory finite-groups permutations
$endgroup$
For Example :-
Z/Z4
0 1 2 3 -> ()
1 2 3 0 -> (0, 1, 2, 3)
2 3 0 1 -> (0, 2)(1, 3)
3 0 1 2 -> (0, 3, 2, 1)
The above Permutations under permutation combination operation also form the same group.
Example of Nonabelian Group:-
Group D_3
0 1 2 3 4 5 -> ()
1 2 0 4 5 3 -> (0 ,1 ,2)(3 ,4 ,5)
2 0 1 5 3 4 -> (0 ,2 ,1)(3 ,5 ,4)
3 5 4 0 2 1 -> (0 ,3)(1 ,5)(2 ,4)
4 3 5 1 0 2 -> (0 ,4)(1 ,3)(2 ,5)
5 4 3 2 1 0 -> (0 ,5)(1 ,4)(2 ,3)
The above Permutations under permutation combination operation also form the same group.
I haven't found counter example yet hence I'm wondering if Is this is true for all Groups? and can this relation be proven?
abstract-algebra group-theory finite-groups permutations
abstract-algebra group-theory finite-groups permutations
asked Dec 22 '18 at 8:30
HHJHHJ
132
132
1
$begingroup$
Yes, this is essentially Cayley's theorem.
$endgroup$
– Lord Shark the Unknown
Dec 22 '18 at 8:34
add a comment |
1
$begingroup$
Yes, this is essentially Cayley's theorem.
$endgroup$
– Lord Shark the Unknown
Dec 22 '18 at 8:34
1
1
$begingroup$
Yes, this is essentially Cayley's theorem.
$endgroup$
– Lord Shark the Unknown
Dec 22 '18 at 8:34
$begingroup$
Yes, this is essentially Cayley's theorem.
$endgroup$
– Lord Shark the Unknown
Dec 22 '18 at 8:34
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Well, given a group $G={g_1,ldots,g_n}$, consider the left multiplications $l_{g_i}:Grightarrow G: gmapsto g_ig$. The left multiplications correspond to the rows in the group table.
The set of left multiplications $L={l_{g_1},ldots,l_{g_n}}$ forms a subgroup of the symmetric group $S_G={fmid f:Grightarrow Gmbox{ bij.}}$, since $l_{g}l_h=l_{gh}$ and $l_g^{-1}=l_{g^{-1}}$.
Thus the left multiplications are permutations of the set $G$ and so have a representation in cycle form.
Have a look into Cayley's theorem.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3049222%2fare-the-permutations-of-the-group-caley-table-rows-form-the-same-group%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Well, given a group $G={g_1,ldots,g_n}$, consider the left multiplications $l_{g_i}:Grightarrow G: gmapsto g_ig$. The left multiplications correspond to the rows in the group table.
The set of left multiplications $L={l_{g_1},ldots,l_{g_n}}$ forms a subgroup of the symmetric group $S_G={fmid f:Grightarrow Gmbox{ bij.}}$, since $l_{g}l_h=l_{gh}$ and $l_g^{-1}=l_{g^{-1}}$.
Thus the left multiplications are permutations of the set $G$ and so have a representation in cycle form.
Have a look into Cayley's theorem.
$endgroup$
add a comment |
$begingroup$
Well, given a group $G={g_1,ldots,g_n}$, consider the left multiplications $l_{g_i}:Grightarrow G: gmapsto g_ig$. The left multiplications correspond to the rows in the group table.
The set of left multiplications $L={l_{g_1},ldots,l_{g_n}}$ forms a subgroup of the symmetric group $S_G={fmid f:Grightarrow Gmbox{ bij.}}$, since $l_{g}l_h=l_{gh}$ and $l_g^{-1}=l_{g^{-1}}$.
Thus the left multiplications are permutations of the set $G$ and so have a representation in cycle form.
Have a look into Cayley's theorem.
$endgroup$
add a comment |
$begingroup$
Well, given a group $G={g_1,ldots,g_n}$, consider the left multiplications $l_{g_i}:Grightarrow G: gmapsto g_ig$. The left multiplications correspond to the rows in the group table.
The set of left multiplications $L={l_{g_1},ldots,l_{g_n}}$ forms a subgroup of the symmetric group $S_G={fmid f:Grightarrow Gmbox{ bij.}}$, since $l_{g}l_h=l_{gh}$ and $l_g^{-1}=l_{g^{-1}}$.
Thus the left multiplications are permutations of the set $G$ and so have a representation in cycle form.
Have a look into Cayley's theorem.
$endgroup$
Well, given a group $G={g_1,ldots,g_n}$, consider the left multiplications $l_{g_i}:Grightarrow G: gmapsto g_ig$. The left multiplications correspond to the rows in the group table.
The set of left multiplications $L={l_{g_1},ldots,l_{g_n}}$ forms a subgroup of the symmetric group $S_G={fmid f:Grightarrow Gmbox{ bij.}}$, since $l_{g}l_h=l_{gh}$ and $l_g^{-1}=l_{g^{-1}}$.
Thus the left multiplications are permutations of the set $G$ and so have a representation in cycle form.
Have a look into Cayley's theorem.
edited Dec 22 '18 at 8:52
answered Dec 22 '18 at 8:45
WuestenfuxWuestenfux
4,7331413
4,7331413
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3049222%2fare-the-permutations-of-the-group-caley-table-rows-form-the-same-group%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Yes, this is essentially Cayley's theorem.
$endgroup$
– Lord Shark the Unknown
Dec 22 '18 at 8:34