Are the permutations of the Group Caley table rows form the same Group?












0












$begingroup$


For Example :-
Z/Z4



0 1 2 3 -> ()

1 2 3 0 -> (0, 1, 2, 3)

2 3 0 1 -> (0, 2)(1, 3)

3 0 1 2 -> (0, 3, 2, 1)



The above Permutations under permutation combination operation also form the same group.



Example of Nonabelian Group:-
Group D_3



0 1 2 3 4 5 -> ()

1 2 0 4 5 3 -> (0 ,1 ,2)(3 ,4 ,5)

2 0 1 5 3 4 -> (0 ,2 ,1)(3 ,5 ,4)

3 5 4 0 2 1 -> (0 ,3)(1 ,5)(2 ,4)

4 3 5 1 0 2 -> (0 ,4)(1 ,3)(2 ,5)

5 4 3 2 1 0 -> (0 ,5)(1 ,4)(2 ,3)



The above Permutations under permutation combination operation also form the same group.



I haven't found counter example yet hence I'm wondering if Is this is true for all Groups? and can this relation be proven?










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    Yes, this is essentially Cayley's theorem.
    $endgroup$
    – Lord Shark the Unknown
    Dec 22 '18 at 8:34
















0












$begingroup$


For Example :-
Z/Z4



0 1 2 3 -> ()

1 2 3 0 -> (0, 1, 2, 3)

2 3 0 1 -> (0, 2)(1, 3)

3 0 1 2 -> (0, 3, 2, 1)



The above Permutations under permutation combination operation also form the same group.



Example of Nonabelian Group:-
Group D_3



0 1 2 3 4 5 -> ()

1 2 0 4 5 3 -> (0 ,1 ,2)(3 ,4 ,5)

2 0 1 5 3 4 -> (0 ,2 ,1)(3 ,5 ,4)

3 5 4 0 2 1 -> (0 ,3)(1 ,5)(2 ,4)

4 3 5 1 0 2 -> (0 ,4)(1 ,3)(2 ,5)

5 4 3 2 1 0 -> (0 ,5)(1 ,4)(2 ,3)



The above Permutations under permutation combination operation also form the same group.



I haven't found counter example yet hence I'm wondering if Is this is true for all Groups? and can this relation be proven?










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    Yes, this is essentially Cayley's theorem.
    $endgroup$
    – Lord Shark the Unknown
    Dec 22 '18 at 8:34














0












0








0





$begingroup$


For Example :-
Z/Z4



0 1 2 3 -> ()

1 2 3 0 -> (0, 1, 2, 3)

2 3 0 1 -> (0, 2)(1, 3)

3 0 1 2 -> (0, 3, 2, 1)



The above Permutations under permutation combination operation also form the same group.



Example of Nonabelian Group:-
Group D_3



0 1 2 3 4 5 -> ()

1 2 0 4 5 3 -> (0 ,1 ,2)(3 ,4 ,5)

2 0 1 5 3 4 -> (0 ,2 ,1)(3 ,5 ,4)

3 5 4 0 2 1 -> (0 ,3)(1 ,5)(2 ,4)

4 3 5 1 0 2 -> (0 ,4)(1 ,3)(2 ,5)

5 4 3 2 1 0 -> (0 ,5)(1 ,4)(2 ,3)



The above Permutations under permutation combination operation also form the same group.



I haven't found counter example yet hence I'm wondering if Is this is true for all Groups? and can this relation be proven?










share|cite|improve this question









$endgroup$




For Example :-
Z/Z4



0 1 2 3 -> ()

1 2 3 0 -> (0, 1, 2, 3)

2 3 0 1 -> (0, 2)(1, 3)

3 0 1 2 -> (0, 3, 2, 1)



The above Permutations under permutation combination operation also form the same group.



Example of Nonabelian Group:-
Group D_3



0 1 2 3 4 5 -> ()

1 2 0 4 5 3 -> (0 ,1 ,2)(3 ,4 ,5)

2 0 1 5 3 4 -> (0 ,2 ,1)(3 ,5 ,4)

3 5 4 0 2 1 -> (0 ,3)(1 ,5)(2 ,4)

4 3 5 1 0 2 -> (0 ,4)(1 ,3)(2 ,5)

5 4 3 2 1 0 -> (0 ,5)(1 ,4)(2 ,3)



The above Permutations under permutation combination operation also form the same group.



I haven't found counter example yet hence I'm wondering if Is this is true for all Groups? and can this relation be proven?







abstract-algebra group-theory finite-groups permutations






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 22 '18 at 8:30









HHJHHJ

132




132








  • 1




    $begingroup$
    Yes, this is essentially Cayley's theorem.
    $endgroup$
    – Lord Shark the Unknown
    Dec 22 '18 at 8:34














  • 1




    $begingroup$
    Yes, this is essentially Cayley's theorem.
    $endgroup$
    – Lord Shark the Unknown
    Dec 22 '18 at 8:34








1




1




$begingroup$
Yes, this is essentially Cayley's theorem.
$endgroup$
– Lord Shark the Unknown
Dec 22 '18 at 8:34




$begingroup$
Yes, this is essentially Cayley's theorem.
$endgroup$
– Lord Shark the Unknown
Dec 22 '18 at 8:34










1 Answer
1






active

oldest

votes


















1












$begingroup$

Well, given a group $G={g_1,ldots,g_n}$, consider the left multiplications $l_{g_i}:Grightarrow G: gmapsto g_ig$. The left multiplications correspond to the rows in the group table.



The set of left multiplications $L={l_{g_1},ldots,l_{g_n}}$ forms a subgroup of the symmetric group $S_G={fmid f:Grightarrow Gmbox{ bij.}}$, since $l_{g}l_h=l_{gh}$ and $l_g^{-1}=l_{g^{-1}}$.



Thus the left multiplications are permutations of the set $G$ and so have a representation in cycle form.



Have a look into Cayley's theorem.






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3049222%2fare-the-permutations-of-the-group-caley-table-rows-form-the-same-group%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    Well, given a group $G={g_1,ldots,g_n}$, consider the left multiplications $l_{g_i}:Grightarrow G: gmapsto g_ig$. The left multiplications correspond to the rows in the group table.



    The set of left multiplications $L={l_{g_1},ldots,l_{g_n}}$ forms a subgroup of the symmetric group $S_G={fmid f:Grightarrow Gmbox{ bij.}}$, since $l_{g}l_h=l_{gh}$ and $l_g^{-1}=l_{g^{-1}}$.



    Thus the left multiplications are permutations of the set $G$ and so have a representation in cycle form.



    Have a look into Cayley's theorem.






    share|cite|improve this answer











    $endgroup$


















      1












      $begingroup$

      Well, given a group $G={g_1,ldots,g_n}$, consider the left multiplications $l_{g_i}:Grightarrow G: gmapsto g_ig$. The left multiplications correspond to the rows in the group table.



      The set of left multiplications $L={l_{g_1},ldots,l_{g_n}}$ forms a subgroup of the symmetric group $S_G={fmid f:Grightarrow Gmbox{ bij.}}$, since $l_{g}l_h=l_{gh}$ and $l_g^{-1}=l_{g^{-1}}$.



      Thus the left multiplications are permutations of the set $G$ and so have a representation in cycle form.



      Have a look into Cayley's theorem.






      share|cite|improve this answer











      $endgroup$
















        1












        1








        1





        $begingroup$

        Well, given a group $G={g_1,ldots,g_n}$, consider the left multiplications $l_{g_i}:Grightarrow G: gmapsto g_ig$. The left multiplications correspond to the rows in the group table.



        The set of left multiplications $L={l_{g_1},ldots,l_{g_n}}$ forms a subgroup of the symmetric group $S_G={fmid f:Grightarrow Gmbox{ bij.}}$, since $l_{g}l_h=l_{gh}$ and $l_g^{-1}=l_{g^{-1}}$.



        Thus the left multiplications are permutations of the set $G$ and so have a representation in cycle form.



        Have a look into Cayley's theorem.






        share|cite|improve this answer











        $endgroup$



        Well, given a group $G={g_1,ldots,g_n}$, consider the left multiplications $l_{g_i}:Grightarrow G: gmapsto g_ig$. The left multiplications correspond to the rows in the group table.



        The set of left multiplications $L={l_{g_1},ldots,l_{g_n}}$ forms a subgroup of the symmetric group $S_G={fmid f:Grightarrow Gmbox{ bij.}}$, since $l_{g}l_h=l_{gh}$ and $l_g^{-1}=l_{g^{-1}}$.



        Thus the left multiplications are permutations of the set $G$ and so have a representation in cycle form.



        Have a look into Cayley's theorem.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Dec 22 '18 at 8:52

























        answered Dec 22 '18 at 8:45









        WuestenfuxWuestenfux

        4,7331413




        4,7331413






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3049222%2fare-the-permutations-of-the-group-caley-table-rows-form-the-same-group%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Ellipse (mathématiques)

            Quarter-circle Tiles

            Mont Emei