Indefinite integral of $frac{tan{(1+x^2)}}{1+x^2}$
$begingroup$
Let $f(x) = frac{tan{(1+x^2)}}{1+x^2}$ , find $int f(x)dx$ . I've tried many substitutions (including trigonometric substitutions like $x=tan theta$ ) and also integration by parts but didn't work . We can apply power series but it doesn't solve problem .
real-analysis calculus integration indefinite-integrals
$endgroup$
|
show 11 more comments
$begingroup$
Let $f(x) = frac{tan{(1+x^2)}}{1+x^2}$ , find $int f(x)dx$ . I've tried many substitutions (including trigonometric substitutions like $x=tan theta$ ) and also integration by parts but didn't work . We can apply power series but it doesn't solve problem .
real-analysis calculus integration indefinite-integrals
$endgroup$
2
$begingroup$
I am afraid that, even using special functions, closed form solutions could be difficult to get.
$endgroup$
– Claude Leibovici
Dec 22 '18 at 8:20
1
$begingroup$
Hmm.. this guy is fighting back pretty hard..
$endgroup$
– InertialObserver
Dec 22 '18 at 8:21
$begingroup$
Where did you find this beast?
$endgroup$
– Mohammad Zuhair Khan
Dec 22 '18 at 8:26
$begingroup$
@MohammadZuhairKhan My friend asked that beast!
$endgroup$
– S.H.W
Dec 22 '18 at 8:31
3
$begingroup$
Are you sure that he/she is a friend ?
$endgroup$
– Claude Leibovici
Dec 22 '18 at 9:00
|
show 11 more comments
$begingroup$
Let $f(x) = frac{tan{(1+x^2)}}{1+x^2}$ , find $int f(x)dx$ . I've tried many substitutions (including trigonometric substitutions like $x=tan theta$ ) and also integration by parts but didn't work . We can apply power series but it doesn't solve problem .
real-analysis calculus integration indefinite-integrals
$endgroup$
Let $f(x) = frac{tan{(1+x^2)}}{1+x^2}$ , find $int f(x)dx$ . I've tried many substitutions (including trigonometric substitutions like $x=tan theta$ ) and also integration by parts but didn't work . We can apply power series but it doesn't solve problem .
real-analysis calculus integration indefinite-integrals
real-analysis calculus integration indefinite-integrals
asked Dec 22 '18 at 8:08
S.H.WS.H.W
1,2031923
1,2031923
2
$begingroup$
I am afraid that, even using special functions, closed form solutions could be difficult to get.
$endgroup$
– Claude Leibovici
Dec 22 '18 at 8:20
1
$begingroup$
Hmm.. this guy is fighting back pretty hard..
$endgroup$
– InertialObserver
Dec 22 '18 at 8:21
$begingroup$
Where did you find this beast?
$endgroup$
– Mohammad Zuhair Khan
Dec 22 '18 at 8:26
$begingroup$
@MohammadZuhairKhan My friend asked that beast!
$endgroup$
– S.H.W
Dec 22 '18 at 8:31
3
$begingroup$
Are you sure that he/she is a friend ?
$endgroup$
– Claude Leibovici
Dec 22 '18 at 9:00
|
show 11 more comments
2
$begingroup$
I am afraid that, even using special functions, closed form solutions could be difficult to get.
$endgroup$
– Claude Leibovici
Dec 22 '18 at 8:20
1
$begingroup$
Hmm.. this guy is fighting back pretty hard..
$endgroup$
– InertialObserver
Dec 22 '18 at 8:21
$begingroup$
Where did you find this beast?
$endgroup$
– Mohammad Zuhair Khan
Dec 22 '18 at 8:26
$begingroup$
@MohammadZuhairKhan My friend asked that beast!
$endgroup$
– S.H.W
Dec 22 '18 at 8:31
3
$begingroup$
Are you sure that he/she is a friend ?
$endgroup$
– Claude Leibovici
Dec 22 '18 at 9:00
2
2
$begingroup$
I am afraid that, even using special functions, closed form solutions could be difficult to get.
$endgroup$
– Claude Leibovici
Dec 22 '18 at 8:20
$begingroup$
I am afraid that, even using special functions, closed form solutions could be difficult to get.
$endgroup$
– Claude Leibovici
Dec 22 '18 at 8:20
1
1
$begingroup$
Hmm.. this guy is fighting back pretty hard..
$endgroup$
– InertialObserver
Dec 22 '18 at 8:21
$begingroup$
Hmm.. this guy is fighting back pretty hard..
$endgroup$
– InertialObserver
Dec 22 '18 at 8:21
$begingroup$
Where did you find this beast?
$endgroup$
– Mohammad Zuhair Khan
Dec 22 '18 at 8:26
$begingroup$
Where did you find this beast?
$endgroup$
– Mohammad Zuhair Khan
Dec 22 '18 at 8:26
$begingroup$
@MohammadZuhairKhan My friend asked that beast!
$endgroup$
– S.H.W
Dec 22 '18 at 8:31
$begingroup$
@MohammadZuhairKhan My friend asked that beast!
$endgroup$
– S.H.W
Dec 22 '18 at 8:31
3
3
$begingroup$
Are you sure that he/she is a friend ?
$endgroup$
– Claude Leibovici
Dec 22 '18 at 9:00
$begingroup$
Are you sure that he/she is a friend ?
$endgroup$
– Claude Leibovici
Dec 22 '18 at 9:00
|
show 11 more comments
1 Answer
1
active
oldest
votes
$begingroup$
If the problem was
$$int_0^a frac{tan{(1+x^2)}}{1+x^2},dx qquad text{with} qquad 0 leq a lt sqrt{frac{pi -2}{2}}approx 0.7555$$ it could be possible to have an approximation of it using a Padé approximant built at $x=0$.
Using $k=tan(1)$, we should have
$$ frac{tan{(1+x^2)}}{1+x^2}=frac {3 k left(-2 k^2+2 k+1right)+3 left(-k^2+k+1right)x^2 +(2 k-3) left(k^2+1right)x^4} {3(-2 k^2+2 k+1)+ 6 (k-1)^2 k x^2+(6 k^3-7 k^2-4)x^4}$$ which can be integrated using partial fraction decomposition (leading to a nasty expression. Numerically, this would be "almost" (making the coefficient rational)
$$int frac{tan{(1+x^2)}}{1+x^2},dx simeq frac{184 }{789}x+frac{1099} {3526}tan ^{-1}left(frac{529
}{801}xright)+frac{1409 }{1667}tanh ^{-1}left(frac{692
}{523}xright)$$ For a few values of $a$, some results (the so called "exact" being obtained by numerical integration)
$$left(
begin{array}{ccc}
a & text{approximation} & text{exact} \
0.05 & 0.07795 & 0.07795 \
0.10 & 0.15637 & 0.15637 \
0.15 & 0.23577 & 0.23577 \
0.20 & 0.31670 & 0.31670 \
0.25 & 0.39982 & 0.39982 \
0.30 & 0.48593 & 0.48593 \
0.35 & 0.57609 & 0.57610 \
0.40 & 0.67171 & 0.67172 \
0.45 & 0.77482 & 0.77482 \
0.50 & 0.88848 & 0.88848 \
0.55 & 1.01775 & 1.01775 \
0.60 & 1.17192 & 1.17195 \
0.65 & 1.37127 & 1.37136 \
0.70 & 1.67673 & 1.67722 \
0.75 & 2.66909 & 2.68502
end{array}
right)$$
Edit
We can make the approximation better using the fact that
$$f(x)=left(x^2-frac{pi }{2}+1right)frac{ tan left(x^2+1right)}{x^2+1}$$ is a quite nice function. Using a $[4,2]$ Padé approximant, we get
$$f(x) simeqfrac {a_0+a_1 x^2+a_2 x^4 }{b_0+b_1 x^2 }$$ where
$$a_0=3 (pi -2) k left(pi (k ((k-1) k+2)-1)-2 left(k^3+kright)right)$$
$$a_1=6 pi -left(k^2+1right) left(3 (pi -2) pi k^2+((8-5 pi ) pi -8) k+3 pi ^2right)$$
$$a_2=left(k^2+1right) left(2 (pi -2) (1+pi ) k^2-2 pi (1+pi ) k-(pi -10) pi -4right)$$
$$b_0=6 (k (k (pi -(pi -2) k)-2 pi +2)+pi )$$
$$b_1=2 left(k left(k left(3 (pi -2) k^2-3 pi k+7 pi -8right)-6 pi right)+4 pi -2right)$$ leading to
$$int frac{tan{(1+x^2)}}{1+x^2},dx simeq frac{a_2 }{b_1}x-frac{2 left(b_1 (a_0 b_1-a_1 b_0)+a_2
b_0^2right)}{sqrt{b_0} b_1^{3/2} (2 b_0+(pi -2) b_1)}tan ^{-1}left(frac{sqrt{b_1} }{sqrt{b_0}}xright) -frac{(4 a_0+(pi -2) (2 a_1+(pi -2)
a_2))}{sqrt{2 (pi -2)} (2 b_0+(pi -2) b_1)}tanh
^{-1}left(sqrt{frac{2}{pi -2}} xright) $$ Making the same table as before
$$left(
begin{array}{ccc}
a & text{approximation} & text{exact} \
0.05 & 0.07795 & 0.07795 \
0.10 & 0.15637 & 0.15637 \
0.15 & 0.23577 & 0.23577 \
0.20 & 0.31670 & 0.31670 \
0.25 & 0.39982 & 0.39982 \
0.30 & 0.48593 & 0.48593 \
0.35 & 0.57610 & 0.57610 \
0.40 & 0.67172 & 0.67172 \
0.45 & 0.77482 & 0.77482 \
0.50 & 0.88848 & 0.88848 \
0.55 & 1.01776 & 1.01775 \
0.60 & 1.17197 & 1.17195 \
0.65 & 1.37142 & 1.37136 \
0.70 & 1.67740 & 1.67722 \
0.75 & 2.68589 & 2.68502
end{array}
right)$$ which looks quite better.
$endgroup$
$begingroup$
Thanks , I keep this question open for more answers .
$endgroup$
– S.H.W
Dec 22 '18 at 18:27
$begingroup$
@S.H.W : For sure, keep it open. It is very interesting. I am still working on it. Cheers.
$endgroup$
– Claude Leibovici
Dec 23 '18 at 2:34
$begingroup$
@Claude Leibovici, I think my Maxima made an error , soon I shall post a better answer.
$endgroup$
– Awe Kumar Jha
Dec 24 '18 at 12:38
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3049210%2findefinite-integral-of-frac-tan1x21x2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If the problem was
$$int_0^a frac{tan{(1+x^2)}}{1+x^2},dx qquad text{with} qquad 0 leq a lt sqrt{frac{pi -2}{2}}approx 0.7555$$ it could be possible to have an approximation of it using a Padé approximant built at $x=0$.
Using $k=tan(1)$, we should have
$$ frac{tan{(1+x^2)}}{1+x^2}=frac {3 k left(-2 k^2+2 k+1right)+3 left(-k^2+k+1right)x^2 +(2 k-3) left(k^2+1right)x^4} {3(-2 k^2+2 k+1)+ 6 (k-1)^2 k x^2+(6 k^3-7 k^2-4)x^4}$$ which can be integrated using partial fraction decomposition (leading to a nasty expression. Numerically, this would be "almost" (making the coefficient rational)
$$int frac{tan{(1+x^2)}}{1+x^2},dx simeq frac{184 }{789}x+frac{1099} {3526}tan ^{-1}left(frac{529
}{801}xright)+frac{1409 }{1667}tanh ^{-1}left(frac{692
}{523}xright)$$ For a few values of $a$, some results (the so called "exact" being obtained by numerical integration)
$$left(
begin{array}{ccc}
a & text{approximation} & text{exact} \
0.05 & 0.07795 & 0.07795 \
0.10 & 0.15637 & 0.15637 \
0.15 & 0.23577 & 0.23577 \
0.20 & 0.31670 & 0.31670 \
0.25 & 0.39982 & 0.39982 \
0.30 & 0.48593 & 0.48593 \
0.35 & 0.57609 & 0.57610 \
0.40 & 0.67171 & 0.67172 \
0.45 & 0.77482 & 0.77482 \
0.50 & 0.88848 & 0.88848 \
0.55 & 1.01775 & 1.01775 \
0.60 & 1.17192 & 1.17195 \
0.65 & 1.37127 & 1.37136 \
0.70 & 1.67673 & 1.67722 \
0.75 & 2.66909 & 2.68502
end{array}
right)$$
Edit
We can make the approximation better using the fact that
$$f(x)=left(x^2-frac{pi }{2}+1right)frac{ tan left(x^2+1right)}{x^2+1}$$ is a quite nice function. Using a $[4,2]$ Padé approximant, we get
$$f(x) simeqfrac {a_0+a_1 x^2+a_2 x^4 }{b_0+b_1 x^2 }$$ where
$$a_0=3 (pi -2) k left(pi (k ((k-1) k+2)-1)-2 left(k^3+kright)right)$$
$$a_1=6 pi -left(k^2+1right) left(3 (pi -2) pi k^2+((8-5 pi ) pi -8) k+3 pi ^2right)$$
$$a_2=left(k^2+1right) left(2 (pi -2) (1+pi ) k^2-2 pi (1+pi ) k-(pi -10) pi -4right)$$
$$b_0=6 (k (k (pi -(pi -2) k)-2 pi +2)+pi )$$
$$b_1=2 left(k left(k left(3 (pi -2) k^2-3 pi k+7 pi -8right)-6 pi right)+4 pi -2right)$$ leading to
$$int frac{tan{(1+x^2)}}{1+x^2},dx simeq frac{a_2 }{b_1}x-frac{2 left(b_1 (a_0 b_1-a_1 b_0)+a_2
b_0^2right)}{sqrt{b_0} b_1^{3/2} (2 b_0+(pi -2) b_1)}tan ^{-1}left(frac{sqrt{b_1} }{sqrt{b_0}}xright) -frac{(4 a_0+(pi -2) (2 a_1+(pi -2)
a_2))}{sqrt{2 (pi -2)} (2 b_0+(pi -2) b_1)}tanh
^{-1}left(sqrt{frac{2}{pi -2}} xright) $$ Making the same table as before
$$left(
begin{array}{ccc}
a & text{approximation} & text{exact} \
0.05 & 0.07795 & 0.07795 \
0.10 & 0.15637 & 0.15637 \
0.15 & 0.23577 & 0.23577 \
0.20 & 0.31670 & 0.31670 \
0.25 & 0.39982 & 0.39982 \
0.30 & 0.48593 & 0.48593 \
0.35 & 0.57610 & 0.57610 \
0.40 & 0.67172 & 0.67172 \
0.45 & 0.77482 & 0.77482 \
0.50 & 0.88848 & 0.88848 \
0.55 & 1.01776 & 1.01775 \
0.60 & 1.17197 & 1.17195 \
0.65 & 1.37142 & 1.37136 \
0.70 & 1.67740 & 1.67722 \
0.75 & 2.68589 & 2.68502
end{array}
right)$$ which looks quite better.
$endgroup$
$begingroup$
Thanks , I keep this question open for more answers .
$endgroup$
– S.H.W
Dec 22 '18 at 18:27
$begingroup$
@S.H.W : For sure, keep it open. It is very interesting. I am still working on it. Cheers.
$endgroup$
– Claude Leibovici
Dec 23 '18 at 2:34
$begingroup$
@Claude Leibovici, I think my Maxima made an error , soon I shall post a better answer.
$endgroup$
– Awe Kumar Jha
Dec 24 '18 at 12:38
add a comment |
$begingroup$
If the problem was
$$int_0^a frac{tan{(1+x^2)}}{1+x^2},dx qquad text{with} qquad 0 leq a lt sqrt{frac{pi -2}{2}}approx 0.7555$$ it could be possible to have an approximation of it using a Padé approximant built at $x=0$.
Using $k=tan(1)$, we should have
$$ frac{tan{(1+x^2)}}{1+x^2}=frac {3 k left(-2 k^2+2 k+1right)+3 left(-k^2+k+1right)x^2 +(2 k-3) left(k^2+1right)x^4} {3(-2 k^2+2 k+1)+ 6 (k-1)^2 k x^2+(6 k^3-7 k^2-4)x^4}$$ which can be integrated using partial fraction decomposition (leading to a nasty expression. Numerically, this would be "almost" (making the coefficient rational)
$$int frac{tan{(1+x^2)}}{1+x^2},dx simeq frac{184 }{789}x+frac{1099} {3526}tan ^{-1}left(frac{529
}{801}xright)+frac{1409 }{1667}tanh ^{-1}left(frac{692
}{523}xright)$$ For a few values of $a$, some results (the so called "exact" being obtained by numerical integration)
$$left(
begin{array}{ccc}
a & text{approximation} & text{exact} \
0.05 & 0.07795 & 0.07795 \
0.10 & 0.15637 & 0.15637 \
0.15 & 0.23577 & 0.23577 \
0.20 & 0.31670 & 0.31670 \
0.25 & 0.39982 & 0.39982 \
0.30 & 0.48593 & 0.48593 \
0.35 & 0.57609 & 0.57610 \
0.40 & 0.67171 & 0.67172 \
0.45 & 0.77482 & 0.77482 \
0.50 & 0.88848 & 0.88848 \
0.55 & 1.01775 & 1.01775 \
0.60 & 1.17192 & 1.17195 \
0.65 & 1.37127 & 1.37136 \
0.70 & 1.67673 & 1.67722 \
0.75 & 2.66909 & 2.68502
end{array}
right)$$
Edit
We can make the approximation better using the fact that
$$f(x)=left(x^2-frac{pi }{2}+1right)frac{ tan left(x^2+1right)}{x^2+1}$$ is a quite nice function. Using a $[4,2]$ Padé approximant, we get
$$f(x) simeqfrac {a_0+a_1 x^2+a_2 x^4 }{b_0+b_1 x^2 }$$ where
$$a_0=3 (pi -2) k left(pi (k ((k-1) k+2)-1)-2 left(k^3+kright)right)$$
$$a_1=6 pi -left(k^2+1right) left(3 (pi -2) pi k^2+((8-5 pi ) pi -8) k+3 pi ^2right)$$
$$a_2=left(k^2+1right) left(2 (pi -2) (1+pi ) k^2-2 pi (1+pi ) k-(pi -10) pi -4right)$$
$$b_0=6 (k (k (pi -(pi -2) k)-2 pi +2)+pi )$$
$$b_1=2 left(k left(k left(3 (pi -2) k^2-3 pi k+7 pi -8right)-6 pi right)+4 pi -2right)$$ leading to
$$int frac{tan{(1+x^2)}}{1+x^2},dx simeq frac{a_2 }{b_1}x-frac{2 left(b_1 (a_0 b_1-a_1 b_0)+a_2
b_0^2right)}{sqrt{b_0} b_1^{3/2} (2 b_0+(pi -2) b_1)}tan ^{-1}left(frac{sqrt{b_1} }{sqrt{b_0}}xright) -frac{(4 a_0+(pi -2) (2 a_1+(pi -2)
a_2))}{sqrt{2 (pi -2)} (2 b_0+(pi -2) b_1)}tanh
^{-1}left(sqrt{frac{2}{pi -2}} xright) $$ Making the same table as before
$$left(
begin{array}{ccc}
a & text{approximation} & text{exact} \
0.05 & 0.07795 & 0.07795 \
0.10 & 0.15637 & 0.15637 \
0.15 & 0.23577 & 0.23577 \
0.20 & 0.31670 & 0.31670 \
0.25 & 0.39982 & 0.39982 \
0.30 & 0.48593 & 0.48593 \
0.35 & 0.57610 & 0.57610 \
0.40 & 0.67172 & 0.67172 \
0.45 & 0.77482 & 0.77482 \
0.50 & 0.88848 & 0.88848 \
0.55 & 1.01776 & 1.01775 \
0.60 & 1.17197 & 1.17195 \
0.65 & 1.37142 & 1.37136 \
0.70 & 1.67740 & 1.67722 \
0.75 & 2.68589 & 2.68502
end{array}
right)$$ which looks quite better.
$endgroup$
$begingroup$
Thanks , I keep this question open for more answers .
$endgroup$
– S.H.W
Dec 22 '18 at 18:27
$begingroup$
@S.H.W : For sure, keep it open. It is very interesting. I am still working on it. Cheers.
$endgroup$
– Claude Leibovici
Dec 23 '18 at 2:34
$begingroup$
@Claude Leibovici, I think my Maxima made an error , soon I shall post a better answer.
$endgroup$
– Awe Kumar Jha
Dec 24 '18 at 12:38
add a comment |
$begingroup$
If the problem was
$$int_0^a frac{tan{(1+x^2)}}{1+x^2},dx qquad text{with} qquad 0 leq a lt sqrt{frac{pi -2}{2}}approx 0.7555$$ it could be possible to have an approximation of it using a Padé approximant built at $x=0$.
Using $k=tan(1)$, we should have
$$ frac{tan{(1+x^2)}}{1+x^2}=frac {3 k left(-2 k^2+2 k+1right)+3 left(-k^2+k+1right)x^2 +(2 k-3) left(k^2+1right)x^4} {3(-2 k^2+2 k+1)+ 6 (k-1)^2 k x^2+(6 k^3-7 k^2-4)x^4}$$ which can be integrated using partial fraction decomposition (leading to a nasty expression. Numerically, this would be "almost" (making the coefficient rational)
$$int frac{tan{(1+x^2)}}{1+x^2},dx simeq frac{184 }{789}x+frac{1099} {3526}tan ^{-1}left(frac{529
}{801}xright)+frac{1409 }{1667}tanh ^{-1}left(frac{692
}{523}xright)$$ For a few values of $a$, some results (the so called "exact" being obtained by numerical integration)
$$left(
begin{array}{ccc}
a & text{approximation} & text{exact} \
0.05 & 0.07795 & 0.07795 \
0.10 & 0.15637 & 0.15637 \
0.15 & 0.23577 & 0.23577 \
0.20 & 0.31670 & 0.31670 \
0.25 & 0.39982 & 0.39982 \
0.30 & 0.48593 & 0.48593 \
0.35 & 0.57609 & 0.57610 \
0.40 & 0.67171 & 0.67172 \
0.45 & 0.77482 & 0.77482 \
0.50 & 0.88848 & 0.88848 \
0.55 & 1.01775 & 1.01775 \
0.60 & 1.17192 & 1.17195 \
0.65 & 1.37127 & 1.37136 \
0.70 & 1.67673 & 1.67722 \
0.75 & 2.66909 & 2.68502
end{array}
right)$$
Edit
We can make the approximation better using the fact that
$$f(x)=left(x^2-frac{pi }{2}+1right)frac{ tan left(x^2+1right)}{x^2+1}$$ is a quite nice function. Using a $[4,2]$ Padé approximant, we get
$$f(x) simeqfrac {a_0+a_1 x^2+a_2 x^4 }{b_0+b_1 x^2 }$$ where
$$a_0=3 (pi -2) k left(pi (k ((k-1) k+2)-1)-2 left(k^3+kright)right)$$
$$a_1=6 pi -left(k^2+1right) left(3 (pi -2) pi k^2+((8-5 pi ) pi -8) k+3 pi ^2right)$$
$$a_2=left(k^2+1right) left(2 (pi -2) (1+pi ) k^2-2 pi (1+pi ) k-(pi -10) pi -4right)$$
$$b_0=6 (k (k (pi -(pi -2) k)-2 pi +2)+pi )$$
$$b_1=2 left(k left(k left(3 (pi -2) k^2-3 pi k+7 pi -8right)-6 pi right)+4 pi -2right)$$ leading to
$$int frac{tan{(1+x^2)}}{1+x^2},dx simeq frac{a_2 }{b_1}x-frac{2 left(b_1 (a_0 b_1-a_1 b_0)+a_2
b_0^2right)}{sqrt{b_0} b_1^{3/2} (2 b_0+(pi -2) b_1)}tan ^{-1}left(frac{sqrt{b_1} }{sqrt{b_0}}xright) -frac{(4 a_0+(pi -2) (2 a_1+(pi -2)
a_2))}{sqrt{2 (pi -2)} (2 b_0+(pi -2) b_1)}tanh
^{-1}left(sqrt{frac{2}{pi -2}} xright) $$ Making the same table as before
$$left(
begin{array}{ccc}
a & text{approximation} & text{exact} \
0.05 & 0.07795 & 0.07795 \
0.10 & 0.15637 & 0.15637 \
0.15 & 0.23577 & 0.23577 \
0.20 & 0.31670 & 0.31670 \
0.25 & 0.39982 & 0.39982 \
0.30 & 0.48593 & 0.48593 \
0.35 & 0.57610 & 0.57610 \
0.40 & 0.67172 & 0.67172 \
0.45 & 0.77482 & 0.77482 \
0.50 & 0.88848 & 0.88848 \
0.55 & 1.01776 & 1.01775 \
0.60 & 1.17197 & 1.17195 \
0.65 & 1.37142 & 1.37136 \
0.70 & 1.67740 & 1.67722 \
0.75 & 2.68589 & 2.68502
end{array}
right)$$ which looks quite better.
$endgroup$
If the problem was
$$int_0^a frac{tan{(1+x^2)}}{1+x^2},dx qquad text{with} qquad 0 leq a lt sqrt{frac{pi -2}{2}}approx 0.7555$$ it could be possible to have an approximation of it using a Padé approximant built at $x=0$.
Using $k=tan(1)$, we should have
$$ frac{tan{(1+x^2)}}{1+x^2}=frac {3 k left(-2 k^2+2 k+1right)+3 left(-k^2+k+1right)x^2 +(2 k-3) left(k^2+1right)x^4} {3(-2 k^2+2 k+1)+ 6 (k-1)^2 k x^2+(6 k^3-7 k^2-4)x^4}$$ which can be integrated using partial fraction decomposition (leading to a nasty expression. Numerically, this would be "almost" (making the coefficient rational)
$$int frac{tan{(1+x^2)}}{1+x^2},dx simeq frac{184 }{789}x+frac{1099} {3526}tan ^{-1}left(frac{529
}{801}xright)+frac{1409 }{1667}tanh ^{-1}left(frac{692
}{523}xright)$$ For a few values of $a$, some results (the so called "exact" being obtained by numerical integration)
$$left(
begin{array}{ccc}
a & text{approximation} & text{exact} \
0.05 & 0.07795 & 0.07795 \
0.10 & 0.15637 & 0.15637 \
0.15 & 0.23577 & 0.23577 \
0.20 & 0.31670 & 0.31670 \
0.25 & 0.39982 & 0.39982 \
0.30 & 0.48593 & 0.48593 \
0.35 & 0.57609 & 0.57610 \
0.40 & 0.67171 & 0.67172 \
0.45 & 0.77482 & 0.77482 \
0.50 & 0.88848 & 0.88848 \
0.55 & 1.01775 & 1.01775 \
0.60 & 1.17192 & 1.17195 \
0.65 & 1.37127 & 1.37136 \
0.70 & 1.67673 & 1.67722 \
0.75 & 2.66909 & 2.68502
end{array}
right)$$
Edit
We can make the approximation better using the fact that
$$f(x)=left(x^2-frac{pi }{2}+1right)frac{ tan left(x^2+1right)}{x^2+1}$$ is a quite nice function. Using a $[4,2]$ Padé approximant, we get
$$f(x) simeqfrac {a_0+a_1 x^2+a_2 x^4 }{b_0+b_1 x^2 }$$ where
$$a_0=3 (pi -2) k left(pi (k ((k-1) k+2)-1)-2 left(k^3+kright)right)$$
$$a_1=6 pi -left(k^2+1right) left(3 (pi -2) pi k^2+((8-5 pi ) pi -8) k+3 pi ^2right)$$
$$a_2=left(k^2+1right) left(2 (pi -2) (1+pi ) k^2-2 pi (1+pi ) k-(pi -10) pi -4right)$$
$$b_0=6 (k (k (pi -(pi -2) k)-2 pi +2)+pi )$$
$$b_1=2 left(k left(k left(3 (pi -2) k^2-3 pi k+7 pi -8right)-6 pi right)+4 pi -2right)$$ leading to
$$int frac{tan{(1+x^2)}}{1+x^2},dx simeq frac{a_2 }{b_1}x-frac{2 left(b_1 (a_0 b_1-a_1 b_0)+a_2
b_0^2right)}{sqrt{b_0} b_1^{3/2} (2 b_0+(pi -2) b_1)}tan ^{-1}left(frac{sqrt{b_1} }{sqrt{b_0}}xright) -frac{(4 a_0+(pi -2) (2 a_1+(pi -2)
a_2))}{sqrt{2 (pi -2)} (2 b_0+(pi -2) b_1)}tanh
^{-1}left(sqrt{frac{2}{pi -2}} xright) $$ Making the same table as before
$$left(
begin{array}{ccc}
a & text{approximation} & text{exact} \
0.05 & 0.07795 & 0.07795 \
0.10 & 0.15637 & 0.15637 \
0.15 & 0.23577 & 0.23577 \
0.20 & 0.31670 & 0.31670 \
0.25 & 0.39982 & 0.39982 \
0.30 & 0.48593 & 0.48593 \
0.35 & 0.57610 & 0.57610 \
0.40 & 0.67172 & 0.67172 \
0.45 & 0.77482 & 0.77482 \
0.50 & 0.88848 & 0.88848 \
0.55 & 1.01776 & 1.01775 \
0.60 & 1.17197 & 1.17195 \
0.65 & 1.37142 & 1.37136 \
0.70 & 1.67740 & 1.67722 \
0.75 & 2.68589 & 2.68502
end{array}
right)$$ which looks quite better.
edited Dec 22 '18 at 14:39
answered Dec 22 '18 at 9:49
Claude LeiboviciClaude Leibovici
122k1157134
122k1157134
$begingroup$
Thanks , I keep this question open for more answers .
$endgroup$
– S.H.W
Dec 22 '18 at 18:27
$begingroup$
@S.H.W : For sure, keep it open. It is very interesting. I am still working on it. Cheers.
$endgroup$
– Claude Leibovici
Dec 23 '18 at 2:34
$begingroup$
@Claude Leibovici, I think my Maxima made an error , soon I shall post a better answer.
$endgroup$
– Awe Kumar Jha
Dec 24 '18 at 12:38
add a comment |
$begingroup$
Thanks , I keep this question open for more answers .
$endgroup$
– S.H.W
Dec 22 '18 at 18:27
$begingroup$
@S.H.W : For sure, keep it open. It is very interesting. I am still working on it. Cheers.
$endgroup$
– Claude Leibovici
Dec 23 '18 at 2:34
$begingroup$
@Claude Leibovici, I think my Maxima made an error , soon I shall post a better answer.
$endgroup$
– Awe Kumar Jha
Dec 24 '18 at 12:38
$begingroup$
Thanks , I keep this question open for more answers .
$endgroup$
– S.H.W
Dec 22 '18 at 18:27
$begingroup$
Thanks , I keep this question open for more answers .
$endgroup$
– S.H.W
Dec 22 '18 at 18:27
$begingroup$
@S.H.W : For sure, keep it open. It is very interesting. I am still working on it. Cheers.
$endgroup$
– Claude Leibovici
Dec 23 '18 at 2:34
$begingroup$
@S.H.W : For sure, keep it open. It is very interesting. I am still working on it. Cheers.
$endgroup$
– Claude Leibovici
Dec 23 '18 at 2:34
$begingroup$
@Claude Leibovici, I think my Maxima made an error , soon I shall post a better answer.
$endgroup$
– Awe Kumar Jha
Dec 24 '18 at 12:38
$begingroup$
@Claude Leibovici, I think my Maxima made an error , soon I shall post a better answer.
$endgroup$
– Awe Kumar Jha
Dec 24 '18 at 12:38
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3049210%2findefinite-integral-of-frac-tan1x21x2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
I am afraid that, even using special functions, closed form solutions could be difficult to get.
$endgroup$
– Claude Leibovici
Dec 22 '18 at 8:20
1
$begingroup$
Hmm.. this guy is fighting back pretty hard..
$endgroup$
– InertialObserver
Dec 22 '18 at 8:21
$begingroup$
Where did you find this beast?
$endgroup$
– Mohammad Zuhair Khan
Dec 22 '18 at 8:26
$begingroup$
@MohammadZuhairKhan My friend asked that beast!
$endgroup$
– S.H.W
Dec 22 '18 at 8:31
3
$begingroup$
Are you sure that he/she is a friend ?
$endgroup$
– Claude Leibovici
Dec 22 '18 at 9:00