Why does the sign of the second items is negative












-1












$begingroup$


Consider
$$int_0^{2pi}dxint_0^{sin(x)} f(x,y)dy= int_0^1dyint_{arcsin(y)}^{pi-arcsin(y)}f(x,y)dx-int_{-1}^0dyint_{pi-arcsin(y)}^{2pi+arcsin(y)}f(x,y)dx$$
My question is why the sign of the second item is negative?










share|cite|improve this question











$endgroup$

















    -1












    $begingroup$


    Consider
    $$int_0^{2pi}dxint_0^{sin(x)} f(x,y)dy= int_0^1dyint_{arcsin(y)}^{pi-arcsin(y)}f(x,y)dx-int_{-1}^0dyint_{pi-arcsin(y)}^{2pi+arcsin(y)}f(x,y)dx$$
    My question is why the sign of the second item is negative?










    share|cite|improve this question











    $endgroup$















      -1












      -1








      -1





      $begingroup$


      Consider
      $$int_0^{2pi}dxint_0^{sin(x)} f(x,y)dy= int_0^1dyint_{arcsin(y)}^{pi-arcsin(y)}f(x,y)dx-int_{-1}^0dyint_{pi-arcsin(y)}^{2pi+arcsin(y)}f(x,y)dx$$
      My question is why the sign of the second item is negative?










      share|cite|improve this question











      $endgroup$




      Consider
      $$int_0^{2pi}dxint_0^{sin(x)} f(x,y)dy= int_0^1dyint_{arcsin(y)}^{pi-arcsin(y)}f(x,y)dx-int_{-1}^0dyint_{pi-arcsin(y)}^{2pi+arcsin(y)}f(x,y)dx$$
      My question is why the sign of the second item is negative?







      calculus integration






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 22 '18 at 7:47









      Robert Z

      98.3k1067139




      98.3k1067139










      asked Dec 22 '18 at 6:42









      BloodpolyhydronBloodpolyhydron

      41




      41






















          2 Answers
          2






          active

          oldest

          votes


















          0












          $begingroup$

          In the integral on the $LHS$, in the region $pile xle2pi,-1le yle0,y$ ranges from $0tosin(x)$ for any value of $x$. In the corresponding term on the $RHS$, that is $displaystyleint_{-1}^0dyint_{pi-arcsin(y)}^{2pi+arcsin(y)}f(x,y)dx,y$ ranges from $-1to0$, which is the opposite direction. So we add a negative sign:$$-int_{-1}^0dyint_{pi-arcsin(y)}^{2pi+arcsin(y)}f(x,y)dx=int^{-1}_0dyint_{pi-arcsin(y)}^{2pi+arcsin(y)}f(x,y)dx$$






          share|cite|improve this answer









          $endgroup$





















            0












            $begingroup$

            Here is the step-by-step solution:
            $$begin{align}int_0^{2pi}dxint_0^{sin(x)} f(x,y)dy&=int_0^{pi}dxint_0^{color{green}{sin(x)}} f(x,y)dy+int_{pi}^{2pi}dxint_0^{color{green}{sin(x)}} f(x,y)dy=\
            &=int_0^{pi}dxint_0^{color{green}{sin(x)}} f(x,y)dy-int_{pi}^{2pi}dxint_{color{blue}{sin(x)}}^0 f(x,y)dy=\
            &=int_0^1dyint_{arcsin(y)}^{pi-arcsin(y)}f(x,y)dx-int_{-1}^0dyint_{pi-arcsin(y)}^{2pi+arcsin(y)}f(x,y)dx.end{align}$$

            Refer to the graph:



            enter image description here






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3049172%2fwhy-does-the-sign-of-the-second-items-is-negative%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              0












              $begingroup$

              In the integral on the $LHS$, in the region $pile xle2pi,-1le yle0,y$ ranges from $0tosin(x)$ for any value of $x$. In the corresponding term on the $RHS$, that is $displaystyleint_{-1}^0dyint_{pi-arcsin(y)}^{2pi+arcsin(y)}f(x,y)dx,y$ ranges from $-1to0$, which is the opposite direction. So we add a negative sign:$$-int_{-1}^0dyint_{pi-arcsin(y)}^{2pi+arcsin(y)}f(x,y)dx=int^{-1}_0dyint_{pi-arcsin(y)}^{2pi+arcsin(y)}f(x,y)dx$$






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                In the integral on the $LHS$, in the region $pile xle2pi,-1le yle0,y$ ranges from $0tosin(x)$ for any value of $x$. In the corresponding term on the $RHS$, that is $displaystyleint_{-1}^0dyint_{pi-arcsin(y)}^{2pi+arcsin(y)}f(x,y)dx,y$ ranges from $-1to0$, which is the opposite direction. So we add a negative sign:$$-int_{-1}^0dyint_{pi-arcsin(y)}^{2pi+arcsin(y)}f(x,y)dx=int^{-1}_0dyint_{pi-arcsin(y)}^{2pi+arcsin(y)}f(x,y)dx$$






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  In the integral on the $LHS$, in the region $pile xle2pi,-1le yle0,y$ ranges from $0tosin(x)$ for any value of $x$. In the corresponding term on the $RHS$, that is $displaystyleint_{-1}^0dyint_{pi-arcsin(y)}^{2pi+arcsin(y)}f(x,y)dx,y$ ranges from $-1to0$, which is the opposite direction. So we add a negative sign:$$-int_{-1}^0dyint_{pi-arcsin(y)}^{2pi+arcsin(y)}f(x,y)dx=int^{-1}_0dyint_{pi-arcsin(y)}^{2pi+arcsin(y)}f(x,y)dx$$






                  share|cite|improve this answer









                  $endgroup$



                  In the integral on the $LHS$, in the region $pile xle2pi,-1le yle0,y$ ranges from $0tosin(x)$ for any value of $x$. In the corresponding term on the $RHS$, that is $displaystyleint_{-1}^0dyint_{pi-arcsin(y)}^{2pi+arcsin(y)}f(x,y)dx,y$ ranges from $-1to0$, which is the opposite direction. So we add a negative sign:$$-int_{-1}^0dyint_{pi-arcsin(y)}^{2pi+arcsin(y)}f(x,y)dx=int^{-1}_0dyint_{pi-arcsin(y)}^{2pi+arcsin(y)}f(x,y)dx$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Dec 22 '18 at 7:48









                  Shubham JohriShubham Johri

                  5,177717




                  5,177717























                      0












                      $begingroup$

                      Here is the step-by-step solution:
                      $$begin{align}int_0^{2pi}dxint_0^{sin(x)} f(x,y)dy&=int_0^{pi}dxint_0^{color{green}{sin(x)}} f(x,y)dy+int_{pi}^{2pi}dxint_0^{color{green}{sin(x)}} f(x,y)dy=\
                      &=int_0^{pi}dxint_0^{color{green}{sin(x)}} f(x,y)dy-int_{pi}^{2pi}dxint_{color{blue}{sin(x)}}^0 f(x,y)dy=\
                      &=int_0^1dyint_{arcsin(y)}^{pi-arcsin(y)}f(x,y)dx-int_{-1}^0dyint_{pi-arcsin(y)}^{2pi+arcsin(y)}f(x,y)dx.end{align}$$

                      Refer to the graph:



                      enter image description here






                      share|cite|improve this answer









                      $endgroup$


















                        0












                        $begingroup$

                        Here is the step-by-step solution:
                        $$begin{align}int_0^{2pi}dxint_0^{sin(x)} f(x,y)dy&=int_0^{pi}dxint_0^{color{green}{sin(x)}} f(x,y)dy+int_{pi}^{2pi}dxint_0^{color{green}{sin(x)}} f(x,y)dy=\
                        &=int_0^{pi}dxint_0^{color{green}{sin(x)}} f(x,y)dy-int_{pi}^{2pi}dxint_{color{blue}{sin(x)}}^0 f(x,y)dy=\
                        &=int_0^1dyint_{arcsin(y)}^{pi-arcsin(y)}f(x,y)dx-int_{-1}^0dyint_{pi-arcsin(y)}^{2pi+arcsin(y)}f(x,y)dx.end{align}$$

                        Refer to the graph:



                        enter image description here






                        share|cite|improve this answer









                        $endgroup$
















                          0












                          0








                          0





                          $begingroup$

                          Here is the step-by-step solution:
                          $$begin{align}int_0^{2pi}dxint_0^{sin(x)} f(x,y)dy&=int_0^{pi}dxint_0^{color{green}{sin(x)}} f(x,y)dy+int_{pi}^{2pi}dxint_0^{color{green}{sin(x)}} f(x,y)dy=\
                          &=int_0^{pi}dxint_0^{color{green}{sin(x)}} f(x,y)dy-int_{pi}^{2pi}dxint_{color{blue}{sin(x)}}^0 f(x,y)dy=\
                          &=int_0^1dyint_{arcsin(y)}^{pi-arcsin(y)}f(x,y)dx-int_{-1}^0dyint_{pi-arcsin(y)}^{2pi+arcsin(y)}f(x,y)dx.end{align}$$

                          Refer to the graph:



                          enter image description here






                          share|cite|improve this answer









                          $endgroup$



                          Here is the step-by-step solution:
                          $$begin{align}int_0^{2pi}dxint_0^{sin(x)} f(x,y)dy&=int_0^{pi}dxint_0^{color{green}{sin(x)}} f(x,y)dy+int_{pi}^{2pi}dxint_0^{color{green}{sin(x)}} f(x,y)dy=\
                          &=int_0^{pi}dxint_0^{color{green}{sin(x)}} f(x,y)dy-int_{pi}^{2pi}dxint_{color{blue}{sin(x)}}^0 f(x,y)dy=\
                          &=int_0^1dyint_{arcsin(y)}^{pi-arcsin(y)}f(x,y)dx-int_{-1}^0dyint_{pi-arcsin(y)}^{2pi+arcsin(y)}f(x,y)dx.end{align}$$

                          Refer to the graph:



                          enter image description here







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Dec 22 '18 at 8:45









                          farruhotafarruhota

                          20.4k2739




                          20.4k2739






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3049172%2fwhy-does-the-sign-of-the-second-items-is-negative%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Ellipse (mathématiques)

                              Quarter-circle Tiles

                              Mont Emei